中圖分類號】 R 543.5 【文獻標識碼】 ADOI:10.12114/j.issn.1007-9572.2024.0440
【Abstract】Cardiovascular disease is a prevalent condition characterized bya high incidence rate and mortality. Atherosclerosis(AS)servesastheunderlying pathologicalmechanism fornumerous cardiovasculardiseases,primarilymarked bylipidaccumulationand plaque formation withinarterial wals,therebyimpactingtissueororgan ischemiaornecrosis.This comprehensivearticledelvesintothepivotalroleofendothelialcells(ECs)inatheroslerosis,elucidatingtheirmechanismsof injuryanddysfunction,aswellastheir interactions withmacrophagesandvascularsmoothmusclecells(VSMCs)duringthis proces.ThefindingspresentedhereinunderscorethecriticalinvolvementofECsinASpathogenesis,emphasizingthatmitigating damagetothesecellsandpreservingtheirfunctionalitycanpotentiallyameliorate theonsetandprogresionofAS.Ouraimis to provide novel therapeutic avenues for AS.
【Key words】 Atherosclerosis;Endothelial cells;Dysfunction;Energy metabolism
心血管疾病是全球人口死亡的主要原因,而動脈粥樣硬化(AS)是多種心血管疾病的病理基礎(chǔ),如高血壓、冠心病、心肌梗死、缺血性卒中等[1]。心血管疾病往往首先發(fā)生內(nèi)皮細胞(ECs)的功能障礙,因而ECs被認為是心血管健康的哨兵[2]。AS的病理過程是ECs損傷和功能障礙,脂質(zhì)堆積,巨噬細胞吞噬脂蛋白形成泡沫細胞,血管平滑肌細胞(VSMCs)受到炎癥刺激從基質(zhì)向內(nèi)膜層遷移和增殖,最終導(dǎo)致斑塊形成。ECs的損傷和功能障礙作為AS病理過程的早期標志,探究ECs的功能具有極其重要的作用。
1本文文獻檢索策略
計算機檢索PubMed數(shù)據(jù)庫,檢索時間設(shè)定為建庫至 2024年8月,英文檢索詞包括“atherosclerosis”“huvec”“endothelial cell”“energy metabolism”。納入標準:文獻內(nèi)容涉及血管ECs對AS的影響,ECs損傷及功能障礙機制,ECs與巨噬細胞及VSMCs之間的相互作用機制。排除標準:與本文主題無關(guān)聯(lián)、質(zhì)量差、無法獲得全文的文獻。最終納入81篇文獻。
2 ECs功能與能量代謝有關(guān)
ECs是一種可以合成和分泌多種對于維持血管健康和正常功能至關(guān)重要的生物活性物質(zhì)的特化上皮細胞,對維持代謝穩(wěn)態(tài)和血管功能起到重要的生理作用。在組織損傷和炎癥應(yīng)激時,活化的ECs在細胞表面呈現(xiàn)黏附因子并釋放趨化因子,如血管細胞黏附因子1(VCAM-1)、細胞間黏附因子1(ICAM-1)和e-選擇素等,以促進白細胞的招募、黏附、跨內(nèi)皮遷移。最近研究發(fā)現(xiàn),ECs的功能不僅由血管內(nèi)皮生長因子(VEGF)和其他信號調(diào)控,還受著ECs 的能量代謝調(diào)控[3] C
ECs主要依賴糖酵解而非氧化磷酸化(OXPHOS)進行能量代謝,這種機制被稱為有氧糖酵解或Warburg效應(yīng)[4]。當葡萄糖無限制時,糖酵解可以更快地合成ATP,產(chǎn)生更少的活性氧(ROS),使氧氣最大量地轉(zhuǎn)移到血管周圍細胞,適應(yīng)缺氧環(huán)境生長[5];此外,糖酵解的多種調(diào)控因子,如Kruppel樣因子2(KLF2),也參與了ECs 的功能調(diào)控[6] C
脂肪酸(FA)代謝對于ECs也十分重要[7],幾乎在所有組織中,脂質(zhì)的吸收需要通過ECs屏障。FA合成的脂肪酸合酶(FASN)可以調(diào)節(jié)內(nèi)皮型一氧化氮合酶(eNOs)的生物利用度,從而產(chǎn)生一氧化氮(NO)。ECs缺失脂肪三酰甘油脂肪酶(ATGL)會導(dǎo)致血管中性脂質(zhì)積累,降低了血管張力和NO合成,從而導(dǎo)致內(nèi)皮功能障礙[8-9]。在AS中,ECs通過激活核因子 κB ( NF-κB )通路誘導(dǎo)炎癥反應(yīng)[10],而曲美他嗪通過抑制脂肪酸氧化(FAO),降低NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NLRP3)激活,從而減輕炎癥反應(yīng)[]
除葡萄糖和FA外,氨基酸代謝對ECs同樣具有重要意義。在ECs中,eNOs通過多種輔助因子將精氨酸轉(zhuǎn)化為瓜氨酸和NO,維持正常血管穩(wěn)態(tài),但在AS中,精氨酸具有限速作用。當精氨酸和輔助因子BH4的可用性降低時,eNOs不能產(chǎn)生NO和瓜氨酸,而是產(chǎn)生ROS,這一過程被稱為eNOs解偶聯(lián),eNOs解偶聯(lián)是導(dǎo)致 AS 的關(guān)鍵因素之—[12]。eNOs 的減少和解偶聯(lián)增加,導(dǎo)致NO和超氧化物之間的不平衡,從而引發(fā) AS因此,考慮到細胞代謝在調(diào)節(jié)ECs功能中的作用,在分子水平上深化研究ECs能量代謝機制及其在AS發(fā)生、發(fā)展中的變化,可能為研發(fā)AS的預(yù)防藥物開創(chuàng)新的思路。
3ECs功能障礙對AS的影響
AS的發(fā)展過程可以分為以下幾個階段:脂質(zhì)沉積、炎癥反應(yīng)、泡沫細胞形成、VSMCs增殖及纖維帽形成等。在AS的發(fā)生、發(fā)展中,常認為首先發(fā)生的是ECs受到多種因素(氧化應(yīng)激、機械應(yīng)力、衰老等)影響導(dǎo)致其結(jié)構(gòu)和功能發(fā)生改變,見表1。
3.1氧化應(yīng)激和炎癥反應(yīng)對ECs的影響
氧化應(yīng)激是指體內(nèi)氧化與抗氧化作用失衡,從而導(dǎo)致自由基大量積累。ECs的氧化應(yīng)激和炎癥反應(yīng)是AS發(fā)生、發(fā)展的關(guān)鍵危險因素[13]。在AS的發(fā)展過程中,ECs受到刺激并釋放炎癥因子和ROS、自由基等物質(zhì),這些物質(zhì)可以與ECs中的蛋白質(zhì)、脂質(zhì)和DNA等生物分子發(fā)生反應(yīng),從而引起ECs的損傷和功能障礙,導(dǎo)致了AS的發(fā)生。因此如何緩解ECs的氧化應(yīng)激和炎癥反應(yīng)引起大家關(guān)注,例如, 3′- 唾液酸乳糖通過抑制超氧化物活性來抑制脂多糖(LPS)誘導(dǎo)的內(nèi)皮高通透性[14],沉默信息調(diào)節(jié)因子3(SIRT3)-超氧化物歧化酶2(SOD2)-線粒體活性氧(mtROS)通路和核因子-E2相關(guān)因子2(Nrf2)通路改善線粒體功能障礙和脂質(zhì)過氧化進而抑制炎癥反應(yīng)[15-18],前蛋白轉(zhuǎn)化酶枯草桿菌蛋白酶/kexin9型(PCSK9)和Nogo-B通過 NF-k B通路調(diào)節(jié)ECs氧化應(yīng)激和炎癥反應(yīng)[19-20],辛伐他汀和Bio-LN/SPMs(一種新型的靶向納米藥物)可以用于解決AS中的炎癥[21-22]。在AS中,ECs中ROS水平升高不僅是通過eNOs解偶聯(lián)產(chǎn)生的,NADPH氧化酶(NOX)也是ECs中ROS的重要來源,同時,NOX產(chǎn)生的ROS還具有信號傳導(dǎo)作用,影響ECs很多對氧化還原敏感的關(guān)鍵信號因子,如 NF-κB 、缺氧誘導(dǎo)因子1a、p53,進而調(diào)節(jié)黏附因子的釋放以及血管通透性[23-24]。促炎細胞因子、生長因子、缺氧、高糖和高FA水平,以及剪切應(yīng)力都可以誘導(dǎo)NOX表達。目前,NOX1/NOX2拮抗劑已被用于治療心血管疾病,如:Rab27a通過抑制NOX2和含半胱氨酸的天冬氨酸蛋白水解酶3(caspase-3)表達來減少ECs氧化應(yīng)激[25]人參皂苷通過破壞NOX2復(fù)合物的組裝減少了氧化應(yīng)激和炎癥反應(yīng)[26]。由此可見,減輕ECs的氧化應(yīng)激與炎癥反應(yīng)對于治療AS是至關(guān)重要的。
3.2程序性死亡對ECs的影響
3.2.1ECs的凋亡。細胞凋亡是一種主要以能量依賴的生化功能變化以及明顯的形態(tài)學(xué)改變?yōu)樘卣鞯某绦蛐约毎劳鲂问?,受BCL2蛋白家族調(diào)控的內(nèi)在線粒體依賴途徑或外部因素激活死亡受體調(diào)控[27]。ECs的凋亡是AS病理生理學(xué)的基礎(chǔ)之一,目前人們發(fā)現(xiàn)CD137信號通路可以通過Nrf2和 NF-κB 通路介導(dǎo)的促氧化和促炎機制促進ECs 的凋亡[28],胰島素受體底物1和跨膜蛋白215(TMEM215)通過線粒體氧化應(yīng)激和內(nèi)質(zhì)網(wǎng)應(yīng)激調(diào)節(jié) ECs凋亡[29-30]。最近,microRNAs(miRNAs,一類通過調(diào)節(jié)mRNA導(dǎo)致蛋白表達的減少的單鏈非編碼RNA)已經(jīng)成為新的凋亡調(diào)控因子。有研究表明,在AS的發(fā)病機制中,miRNAs參與了ox-LDL誘導(dǎo)的ECs功能障礙,凋亡和炎癥反應(yīng),如 miR-106a-5p 的下調(diào)可以緩解ox-LDL通過靶向信號傳導(dǎo)及轉(zhuǎn)錄激活蛋白3(STAT3)引發(fā)的ECs損傷[31],miR-122通過靶向XIAP(一種內(nèi)源性哺乳動物半胱天冬酶抑制劑)促進ECs 凋亡,從而加重 AS[32-33] 。由此可見,在AS 的發(fā)生、發(fā)展中,ECs的凋亡由多種途徑引起,如何減少ECs的凋亡對于AS具有重要治療意義。
3.2.2ECs的焦亡。焦亡是一種主要以細胞腫脹、質(zhì)膜起泡和促炎細胞因子的強烈釋放為特征的由多種因素誘導(dǎo)的新型程序性死亡,這一過程涉及多個生物學(xué)機制[34]。根據(jù)焦亡是否需要caspase-1的激活,可以分為經(jīng)典途徑和非經(jīng)典途徑。在AS的過程中,ECs的焦亡會導(dǎo)致斑塊的穩(wěn)定性降低,從而引發(fā)心血管事件,其中ROS(或mtROS)-NLRP3-caspase-1通路或許具有重要作用[35-36]。最近,除了caspase-1外,有學(xué)者還發(fā)現(xiàn)一些調(diào)節(jié)焦亡新的途徑,如caspase-3和caspase-8通過切割焦孔素家族蛋白(GSDME和GSDMD)介導(dǎo)凋亡[37],Circ-USP9X與EIF4A3的相互作用通過調(diào)節(jié)GSDMD的穩(wěn)定性促進了ECs焦亡[38],含有IQ基序的GTP酶激活蛋白1(IQGAP1)通過環(huán)磷酸鳥苷-磷酸腺苷合酶(cGAS)-干擾素刺激因子(STING)通路誘導(dǎo) ECs 焦亡導(dǎo)致AS[39],Rnd3 通過調(diào)節(jié)泛素連接酶6(TRAF6)的泛素化抑制了AS中的ECs焦亡[40]miRNAs對ECs的焦亡也具有調(diào)控作用,如miR-635、miR-302-3p、miR-455-5p p[41-42]。就目前的結(jié)果來看,在AS中,ECs的非經(jīng)典途徑的焦亡仍需要后續(xù)的深入研究。
3.2.3ECs的鐵死亡和銅死亡。近來研究發(fā)現(xiàn)了一種新的細胞死亡方式一一鐵死亡和銅死亡。鐵和銅均為細胞必需的微量元素,但在細胞中含量相對較低,當其的水平升高時,會引起ROS的積累,引發(fā)細胞的程序性死亡[43]。鐵死亡的特點是通過細胞脂質(zhì)過氧化和 DNA斷裂誘導(dǎo)細胞死亡,而銅死亡通過氧化應(yīng)激反應(yīng),賴氨酸氧化酶的構(gòu)建,以及與VEGF結(jié)合調(diào)節(jié)ECs的損傷[44-45]。越來越多的證據(jù)表明,在AS的發(fā)展過程中,ECs的鐵死亡導(dǎo)致ECs的直接損傷,影響ECs的正常功能,如腎上腺髓質(zhì)素通過抑制 5′- 磷酸腺苷活化蛋白激酶(AMPK)介導(dǎo)的ECs鐵死亡來緩解 AS[46] ,GLXB細胞和褪黑激素通過激活Nrf2通路抑制鐵死亡來抑制AS[47-48],高劑量電離輻射通過調(diào)節(jié)p38/核受體共激活因子4(NCOA4)介導(dǎo)的ECs鐵死亡來加重 AS[49] ,N-乙酰神經(jīng)氨酸觸發(fā)溶質(zhì)載體家族3成員2(SLC3A2)降解,增加ECs鐵下垂,加重AS[50]。鐵死亡和銅死亡與其他程序性死亡模式具有緊密的聯(lián)系[51],理解連接這些細胞死亡模式的潛在機制,開發(fā)能夠同時靶向、多種途徑治療的新藥物可能成為有效的治療AS的策略。
3.3 衰老對ECs的影響
各種衰老細胞可以改變細胞微環(huán)境并產(chǎn)生慢性炎癥反應(yīng),使組織造成損傷[52]。以形態(tài)扁平、增大、多倍體增加、NO生物利用度降低、分泌大量促炎細胞因子等特征的衰老ECs在心血管疾病中起著關(guān)鍵作用[53]SIRT1、SIRT6、血管緊張素、胰島素樣生長因子結(jié)合蛋白(IGFBP)、mTOR和 p53 在與衰老相關(guān)的血管重塑中起到重要作用,如復(fù)方丹參滴丸通過SIRT1的激活減少了ECs 的衰老[54],PM2.5 通過 SIRT1/過氧化物酶體增殖受體 γ 輔激活因子 ∝ ( PGC-1α )/SIRT3信號通路誘導(dǎo)ECs 過早地衰老「55],YPEL2通過 p53/p21 途徑調(diào)節(jié) ECs 衰老和 AS[56] ,鈉-葡萄糖協(xié)同轉(zhuǎn)運蛋白2(SGLT2)抑制劑和西洛他唑可通過減輕ECs炎癥和線粒體功能障礙調(diào)節(jié)ECs衰老改善血管功能而延遲血管老化[57-58]。由于ECs直接與血液接觸,ECs 的衰老也可以被機械刺激觸發(fā),如血流紊亂會導(dǎo)致ECs中DNA損傷、端粒功能障礙和過量ROS的產(chǎn)生。由此可見,緩解血管老化對于減少AS的發(fā)生具有極其重要的意義。
3.4 剪切應(yīng)力對ECs的影響
在動脈分支點和彎曲處,血流從穩(wěn)定層流轉(zhuǎn)變?yōu)檎袷幍母蓴_流,從而對ECs產(chǎn)生微小但連續(xù)的剪切應(yīng)力[32]。如血流模式通過受體酪氨酸激酶(MerTK)介導(dǎo)的胞吞作用來調(diào)節(jié)ECs的功能一樣[59],在AS中,血管壁上的斑塊會使得血管內(nèi)壁受到的剪切應(yīng)力增加,使ECs受到刺激觸發(fā)細胞內(nèi)信號改變,增加血管通透性,有利于富含膽固醇的載脂蛋白顆粒滲入血管內(nèi)膜,形成動脈壁內(nèi)膜脂質(zhì)沉積,同時,血液中的白細胞會被招募,黏附在血流速度緩慢的部位的ECs上,進一步加劇了AS的發(fā)展[60-61]。在不同剪切應(yīng)力下,ECs機械感應(yīng)受體功能的改變破壞了ECs Ca2+ 穩(wěn)態(tài),使 Ca2+ 快速地流入細胞質(zhì),激活了ECs中的 eNOs ,從而進一步誘導(dǎo)NO的產(chǎn)生,引起了內(nèi)皮功能障礙和 AS[62-63] 。剪切應(yīng)力的大小和持續(xù)時間在血管內(nèi)皮調(diào)節(jié)中的不同作用,如層流誘導(dǎo)暴露于干擾素 γ ( IFN-γ )的ECs的Kruppel 樣因子2/4(KLF2/4)表達,抑制ECs增殖,對AS有保護作用[64]。而擾流誘導(dǎo)ROS的產(chǎn)生,創(chuàng)造了AS的環(huán)境,但對ECs增殖有刺激作用[65-67]。雖然剪切應(yīng)力對于ECs 的損傷已經(jīng)被大家所認可,但是如何減輕剪切應(yīng)力對于ECs的損傷還有待研究。
4 ECs通過調(diào)控巨噬細胞,平滑肌細胞影響AS
AS的發(fā)病機制是復(fù)雜的,涉及多種細胞和炎癥介質(zhì)之間的持續(xù)相互作用,包括ECs、單核巨噬細胞、VSMCs和其他免疫細胞。其中ECs起著至關(guān)重要的作用。在早期的AS中,當血管壁受到各種刺激時,ECs會分泌多種生長因子和細胞因子調(diào)控單核巨噬細胞聚集、黏附,遷移至血管內(nèi)膜下,吞噬脂質(zhì)形成泡沫細胞。ECs分泌的因子不僅促進VSMCs的增殖和遷移引起斑塊的形成,還可以通過調(diào)節(jié)VSMCs的收縮和舒張來影響血流狀態(tài),從而影響斑塊的形成和穩(wěn)定性。有人認為,這三種類型的細胞可能通過微粒(MPs)進行相互作用,調(diào)節(jié)AS的進展[37]
4.1ECs通過調(diào)節(jié)巨噬細胞趨化和浸潤影響AS的發(fā)展
動物證據(jù)和人類證據(jù)都表明,在AS的過程中,ECs和單核巨噬細胞之間存在復(fù)雜緊密的相互作用。AS發(fā)展過程中的第一步是由ECs介導(dǎo)的,一方面,當受到各種有害刺激時,ECs可以分泌多種生長因子和細胞因子,使ECs通透性增加以及ECs下的細胞外基質(zhì)組成發(fā)生改變,引起單核巨噬細胞的浸潤和聚集,從而促進AS的發(fā)生,如:三甲胺N-氧化物(TMAO)和ECs的GATA結(jié)合因子6(GATA6)分別通過內(nèi)質(zhì)網(wǎng)/線粒體應(yīng)激和胞苷/尿苷單磷酸激酶2(CMPK2)-NLRP3觸發(fā) ECs 招募白細胞導(dǎo)致AS[68-69],二甲雙胍通過中斷巨噬細胞浸潤和減少促炎細胞因子的產(chǎn)生減輕 AS[70] 。另一方面,聚集、浸潤到病變的血管壁中的單核巨噬細胞通過清道夫受體吞噬動脈壁中脂質(zhì)顆粒形成泡沫細胞,分泌多種生長因子和細胞因子,如腫瘤壞死因子∝ (TNF- ∝ )、白介素 1β ( IL-1β )等,進一步加重ECs的損傷和功能障礙,形成惡性循環(huán),如:TNF- ∝ 刺激ECs釋放的外泌體使巨噬細胞向M1表型極化[71],組蛋白去乙?;?(HDAC3)通過調(diào)節(jié)炎性細胞因子的表達和附著在ECs上的單核細胞數(shù)量來調(diào)節(jié)HUVEC細胞的炎癥反應(yīng)[72]。因此,了解ECs和單核巨噬細胞之間的相互作用對于深人探討AS的發(fā)病機制和治療策略具有重要意義,如:阿米替林和卡馬替尼通過抑制ECs 和單核細胞之間的相互作用抑制炎癥反應(yīng)[17,73]
4.2ECs通過調(diào)節(jié)平滑肌細胞增殖和遷移影響AS的發(fā)展
在AS的發(fā)生過程中,ECs和VSMCs的相互作用可以促進斑塊的形成和發(fā)展。當ECs受到損傷時,它們可以合成和分泌多種生物活性物質(zhì),如生長因子、炎癥因子和黏附分子,吸引白細胞和VSMCs遷移到內(nèi)膜下并促進斑塊的形成,加劇了AS的發(fā)展,如ECs的DKK家族1(DKK-1)通過細胞色素P450環(huán)氧化酶啟動子的結(jié)合4A11(CYP4A11)/甾醇調(diào)節(jié)元件結(jié)合蛋白2(SREBP2)/膽固醇輸出蛋白ATP結(jié)合盒轉(zhuǎn)運蛋白A1(ABCA1)和泛素特異性肽酶53(usp53)介導(dǎo)的SR-A去泛素化促進VSMCs泡沫細胞的形成和AS的發(fā)展[74-75]。同時,VSMCs也可以通過釋放多種生長因子和細胞因子來影響ECs的生存和功能,從而進一步促進AS的發(fā)生和發(fā)展。
針對ECs和VSMCs的相互作用,可以采取相應(yīng)的治療策略來抑制AS的進展。首先,通過抑制ECs的炎癥反應(yīng)和釋放生長因子等措施減少VSMCs的增殖和遷移,如:ECs的CD137信號通路的激活減弱了ECs外泌體的釋放,抑制了VSMCs表型轉(zhuǎn)換和新生內(nèi)膜形成[76],復(fù)方丹參滴丸通過DKK-1/低密度脂蛋白受體相關(guān)蛋白6(LRP6)/β-連環(huán)蛋白信號通路調(diào)節(jié)ECs和VSMCs的相互作用來降低血管鈣化[54]。其次,通過抑制VSMCs的異常增殖和功能異常等措施改善ECs的功能和生存來抑制AS的發(fā)生和發(fā)展可能也是很好的治療措施。
5 總結(jié)與展望
ECs作為血管系統(tǒng)中重要的組成成分起到至關(guān)重要的屏障作用。ECs的損傷和功能障礙一直發(fā)生在AS的疾病過程中,不同的機制相互交錯,相互影響。隨著科學(xué)技術(shù)的不斷進步,探討ECs的作用機制不斷深入,對ECs在AS的發(fā)生和發(fā)展中的重要作用有了更深入的了解。
為了延緩或逆轉(zhuǎn)AS的進程,可以探索如何通過改變生活方式、藥物治療等手段來減少ECs的損傷。(1)改變吸煙、飲酒、高血壓、高膽固醇等不良生活習(xí)慣及狀態(tài)均可以對 ECs起到保護作用[37,778]。(2)盡管一些保護和改善ECs功能的藥物,如抗氧化劑、抗炎藥物等已經(jīng)開始研發(fā)[79-81],但是可以考慮研發(fā)更靶向精準、不良反應(yīng)更小的藥物用于保護ECs的功能??傊?,了解ECs激活和內(nèi)皮功能障礙發(fā)生的發(fā)病機制,進一步揭示ECs的奧秘將為AS的治療提供更多的思路和方法,為尋找心血管疾病的治療靶點提供關(guān)鍵信息。
作者貢獻:高海鈞負責(zé)文章的構(gòu)思與設(shè)計、研究資料的收集與整理、論文撰寫;任佳禹、王若琳、周慧亞負責(zé)表格的編輯、整理;曲鵬負責(zé)論文修訂、文章的質(zhì)量控制及審校,對文章整體負責(zé),監(jiān)督管理。
本文無利益沖突。
參考文獻
[1]ADKAR S S,LEEPERN J.Efferocytosis in atherosclerosis[J]. NatRevCardiol,2024,21(11):762-779.D0I:10.1038/ s41569-024-01037-7.
[2]ALEXANDER Y,OSTO E,SCHMIDT-TRUCKSASS A ,etal. Endothelial function in cardiovascular medicine:a consensus paper of the European society of cardiology working groups on atherosclerosis andvascularbiology,aorta andperipheral vasculardiseases, coronarypathophysiologyand microcirculation,and thrombosis[J]. CardiovascRes,2021,117(1):29-42.D0I:10.1093/cvr/ cvaa085.
[3]EELENG,DEZEEUWP,SIMONSM,etal.Endothelial cell metabolismin normal and diseased vasculature[J]. CircRes,2015,116(7):1231-1244.D0I:10.1161/ CIRCRESAHA.116.302855.
[4]FITZGERALD G, SORO-ARNAIZ I,DE BOCK K. The Warburg effect inendothelial cellsand itspotentialasananti-angiogenic target incancer[J].FrontCellDevBiol,2018,6:100.DOI:10.3389/ fcell.2018.00100.
[5]BONACINAF,DADALTL,CATAPANOAL,et al.Metabolic adaptationsof cellsat the vascular-immune interface during atherosclerosis[J].Mol AspectsMed,2021,77:100918.DOI: 10.1016/j.mam.2020.100918.
[6]ULLAHK,WURX.Hypoxia-induciblefactorregulatesendothelial metabolismincardiovasculardisease[J].FrontPhysiol,2021, 12:670653.DOI: 10.3389/fphys.2021.670653.
[7]ABUMRADNA,CABODEVILLAAG,SAMOVSKID,etal. Endothelial cel receptors in tissue lipid uptake and metabolism [J]. Circ Res,2021,128(3):433-450.D01:10.1161/ CIRCRESAHA.120.318003.
[8]XU SW,OFFERMANNS S.Endothelial lipid droplets drive atherosclerosis and arterial hypertension[J].Trends Endocrinol Metab,2024,35(6): 453-455.D0I:10.1016/j.tem.2024.02.014.
[9]JAFFEI Z,KARUMANCHI S A. Lipid droplets in the endothelium: the missing link between metabolic syndrome and cardiovascular disease?[J].JClin Invest,2024,134(4):e176347.DOI: 10.1172/JCI176347.
[10]XIAO QQ,LI X T,LI Y,et al. Biological drug and drug deliverymediated immunotherapy[J].Acta Pharm Sin B,2O21,11(4): 941-960. DOI: 10.1016/j.apsb.2020.12.018.
[11]HOHENSINNER P J,LENZ M,HAIDER P,et al. Pharmacological inhibition of fatty acid oxidation reduces atherosclerosis progression by suppression of macrophage NLRP3 inflammasome activation[J].Biochem Pharmacol,2O21,190: 114634.DOI: 10.1016/j.bcp.2021.114634.
[12]WANGL,ZENG WJ,WANG CW,et al. SUMOylation and coupling of ENOs mediated by PIAS1 contribute to maintenance of vascular homeostasis[J].FASEBJ,2024,38(1):e23362. DOI:10.1096/fj.202301963R.
[13] KANG P F,DONG P. CircMETTL14(11)S upregulated METTL14 and induced CXCR4 to aggravate endothelial inflammation and atherosclerosis[J]. Int Immunopharmacol,2O24,126: 110979.DOI: 10.1016/j.intimp.2023.110979.
[14]NGUYENDV,JINYJ,NGUYEN TLL,et al. 3′ -Sialyllactose protects against LPS-induced endothelial dysfunction by inhibiting superoxide-mediated ERK1/2/STAT1 activation and HMGB1/ RAGE axis[J].Life Sci,2024,338:122410.DOI:10.1016/ j.lfs.2023.122410.
[15]CAOXY,WUVWY,HANYM,et al.Role of argininosuccinate synthase 1-dependent L-arginine biosynthesis in the protective effect of endothelial sirtuin 3 against atherosclerosis[J].Adv Sci, 2024,11(12):e2307256.DOI:10.1002/advs.202307256.
[16] CAO X Y,WUY L,HONG HL,et al.Sirtuin 3 dependent and independent effects of NAD + to suppress vascular inflammation and improve endothelial function in mice[J].Antioxidants,2022, 11(4):706.D0I:10.3390/antiox11040706.
[17]JIY,CHENJ,PANG L H,et al. The acid sphingomyelinase inhibitor amitriptyline ameliorates TNF- α -induced endothelial dysfunction[J].Cardiovasc Drugs Ther,2024,38(1):43- 56.DOI: 10.1007/s10557-022-07378-0.
[18]HE L,CHEN Q H,WANG L,et al. Activation of Nrf2 inhibits atherosclerosis in ApoE- -/- mice through suppressing endothelial cell inflammation and lipid peroxidation[J].Redox Biol,2024,74: 103229.DOI: 10.1016/j.redox.2024.103229.
[19]PENG C,LI J,CHEN Y,et al. PCSK9 aggravated carotidartery steNOsis in ApoE- ?/- mice by promoting the expression of tissue factors in endothelial cells via the TLR4/NF- κ B pathwav「J]. Biochem Pharmacol,2024,225:116314.DOI:10.1016/ j.bcp.2024.116314.
[20]ZHANG Y,LIJJ,XUR,et al. Nogo-B mediates endothelial oxidative stress and inflammation to promote coronary atherosclerosis in pressure-overloaded mouse hearts[J].Redox Biol,2023, 68:102944.DOI: 10.1016/j.redox.2023.102944.
[21] ZHUANG T,LIU J,CHEN X L,et al. Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation[J].CircRes,2019,125(6):590-605.DOI: 10.1161/CIRCRESAHA.118.314402.
[22]ANGHELACHE M,VOICU G,DELEANU M,et al. Biomimetic nanocarriers of pro-resolving lipid mediators for resolution of inflammation in atherosclerosis[J].Adv Healthc Mater,2024, 13(3):e2302238.D0I:10.1002/adhm.202302238.
[23]USHIO-FUKAI M. Redox signaling in angiogenesis:role of NADPH oxidase[J].Cardiovasc Res,2006,71(2):226-235.DOI: 10.1016/j.cardiores.2006.04.015.
[24]FUKAI T,USHIO-FUKAI M. Cross-talk between NADPH oxidase and mitochondria:role in ROS signaling and angiogenesis[J]. Cells,2020,9(8):1849.D01:10.3390/cells9081849.
[25]MAXT,ZHAO J,LISQ,et al. Rab27a-dependent exosomes protect against cerebral ischemic injury by reducing endothelial oxidative stress and apoptosis[J].CNS Neurosci Ther,2O22,28 (10):1596-1612.D0I: 10.1111/cns.13902.
[26]WANG Z C,NIUK M,WUYJ,et al.A dual Keapl and p47phox inhibitor GinseNOside Rbl ameliorates high glucose/ox-LDLinduced endothelial cell injury and atherosclerosis[J].Cell Death Dis,2022,13(9):824.D0I:10.1038/s41419-022-05274-x.
[27]TISCH N,RUIZ DE ALMODOVAR C. Contribution of cell death signaling to blood vessel formation[J].Cell Mol Life Sci,2021, 78(7): 3247-3264. DOI: 10.1007/s00018-020-03738-x.
[28] GENG TX,YAN Y, ZHANG Y,et al. CD137 signaling promotes endothelial apoptosis by inhibiting Nrf2 pathway,and upregulating NF- κ Bpathway[J].Mediators Inflamm,2020,2020: 4321912. DOI: 10.1155/2020/4321912.
[29]LIU J,YI X,TAO Y,et al. Insulin-receptor substrate1 protects against injury in endothelial cell models of ox-LDL-induced atherosclerosisbyinhibitingER stress/oxidative stress-mediated apoptosis and activating the Akt/FoxO1 signaling pathway[J]. IntJMol Med,2020,46(5):1671-1682.D0I:10.3892/ ijmm.2020.4728.
[30]ZHANGPR,YANXC,ZHANG XY,et al.TMEM215 prevents endothelial cell apoptosis in vessel regression by blunting BIKregulated ER-to-mitochondrial Ca influx[J]. Circ Res,2023, 133(9):739-757.DOI: 10.1161/CIRCRESAHA.123.322686.
[31]HU Y,XUR,HEY,et al. Downregulation of microRNA-106a5palleviatesox-LDL-mediated endothelialcell injurybyargeting STAT3[J].Mol Med Rep,2020,22(2):783-791.DOI: 10.3892/mmr.2020.11147.
[32] LI Y,YANG N,DONG B,et al. MicroRNA-122 promotes endothelial cell apoptosis by targeting XIAP:therapeutic implication for atherosclerosis[J].Life Sci,2019,232:116590.DOI: 10 1016/i Ife 2019 116500
[33]YUWM,LISQ,WUHX,et al.Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase[J].Free Radic Biol Med,2021, 164:44-57.DOI: 10.1016/j.freeradbiomed.2020.12.450.
[34]HE B,NIE QQ,WANG F,et al. Role of pyroptosis in atherosclerosis and its therapeutic implications[J].J Cell Physiol,2021,236(10):7159-7175.D0I:10.1002/ jcp.30366.
[35]QIAN Z T,ZHAOYL,WANCD,et al.Pyroptosis in the initiation and progression of atherosclerosis[J].FrontPharmacol, 2021,12:652963.DOI:10.3389/fphar.2021.652963.
[36] JUJ,LIU YY,LIANGHH,et al. The role of pyroptosis in endothelial dysfunction induced by diseases[J].Front Immunol, 2022,13:1093985.D0I:10.3389/fimmu.2022.1093985.
[37]LIU X H,LUO P Y, ZHANG WY,et al. Roles of pyroptosis in atherosclerosis pathogenesis[J].Biomed Pharmacother,2023, 166:115369.DO1:10.1016/j.biopha.2023.115369.
[38]XU SK,GE Y S,WANG X B,et al. Circ-USP9X interacts with EIF4A3 to promote endothelial cell pyroptosis by regulating GSDMD stability in atherosclerosis[J].Clin Exp Hypertens,2023, 45(1) : 2186319.D0I:10.1080/10641963.2023.2186319.
[39] AN C,SUN F,LIU C,et al. IQGAP1 promotes mitochondrial damage and activation of the mtDNA sensor cGAS-STING pathway to induce endothelial cell pyroptosis leading to atherosclerosis[J]. IntImmunopharmacol,2023,123:110795.D0I:10.1016/ j.intimp.2023.110795.
[40] ZHANG Y, ZHU Z R,CAO Y,et al. Rnd3 suppresses endothelial cell pyroptosis in atherosclerosis through regulation of ubiquitination of TRAF6[J].Clin Transl Med,2023,13(9):e1406.DOI: 10.1002/ctm2.1406.
[41]BAI BC,YANG YY,JISX,et al.MicroRNA-302c-3p inhibits endothelial cell pyroptosisvia directly targeting NOD-,LRRandpyrin domain-containingprotein3in atherosclerosis[J].J Cell Mol Med,2021,25(9):4373-4386.D0I:10.1111/ jcmm.16500.
[42]GEYS,LIUWW,YINW,etal.CircularRNAcirc_0090231 promotes atherosclerosis in vitro by enhancing NLR family pyrin domain containing 3-mediated pyroptosis of endothelial cels[J]. Bioengineered,2021,12(2):10837-10848.DOI: 10.1080/21655979.2021.1989260.
[43]CHEN Z Y,LI Y Y, LIU X J. Copper homeostasis and copperinduced cell death:noveltargetingforintervention inthe pathogenesis of vascularaging[J].Biomed Pharmacother, 2023,169:115839.DOI:10.1016/j.biopha.2023.115839.
[ 44] ZHENG D D,LIU J,PIAO HL,et al. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis,parthanatos,and ferroptosis[J].Front Immunol,2022,13:1039241.DOI: 10.3389/fimmu.2022.1039241.
[45] CHEN X Y, CAI Q,LIANG R K,et al. Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies[J].Cell Death Dis,2023,14(2) 105.DOI: 10.1038/s41419-023-05639-w.
[46]HUYC,GU X,ZHANGY,et al.Adrenomedullin, transcriptionally regulated byvitamin D receptors,alleviates atherosclerosisin mice through suppressing AMPK-mediated endothelial ferroptosis[J].Environ Toxicol,2024,39(1): 199-211. DOI: 10.1002/tox.23958.
[47] TAO Y Y,ZHAOQ L,LU C B,et al. Melatonin suppresses atherosclerosis by ferroptosis inhibition via activating NRF2 pathway[J].FASEB J,2024,38(10):e23678. DOI: 10.1096/fj.202400427RR.
[48]ZHUL,BAOYL,LIUZJ,etal.Gualou-Xiebaiherb pair ameliorate atherosclerosis in HFD-induced ApoE- ?/- mice and inhibit the ox-LDL-induced injury of HUVECs by regulating the Nrf2-mediated ferroptosis[J].JEthnopharmacol,2024,326: 117892. DOI: 10.1016/j.jep.2024.117892.
[49]WU Z N,CHEN TW,QIAN Y X,et al. High-dose ionizing radiation accelerates atherosclerotic plaque progression by regulating P38/NCOA4-mediated ferritinophagy/ferroptosis of endothelial cells[J]. IntJRadiat Oncol Biol Phys,2023,117(1):223- 236.DOI:10.1016/j.ijrobp.2023.04.004.
[50]XIANG P,CHENQQ,CHEN L,et al. Metabolite Neu5Ac triggers SLC3A2 degradation promoting vascular endothelial ferroptosis and aggravates atherosclerosis progression in ApoE- ?/ 一 mice[J].Theranostics,2023,13(14):4993-5016.DOI: 10.7150/thno.87968.
[51] YANG SJ,LIYJ,ZHOU L J,et al. Copper homeostasis and cuproptosis in atherosclerosis:metabolism,mechanisms and potential therapeutic strategies[J]. CellDeath Discov,2O24,10 (1):25.DOI: 10.1038/s41420-023-01796-1.
[52]SUNY,WANGX,LIUTW,etal.Themultifacetedroleof the SASP in atherosclerosis:from mechanisms to therapeutic opportunities[J].Cell Biosci,2022,12(1):74. DOI: 10.1186/s13578-022-00815-5.
[53]BU LL,YUAN HH,XIE L L,et al.New dawn for atherosclerosis:vascular endothelial cell senescence and death[J].IntJMol Sci,2023,24(20):15160.DOI: 10.3390/ijms242015160.
[54]YANG YF,YUAN LY,XIONGH,et al. Inhibition of vascular calcification by Compound Danshen Dripping Pill through multiple mechanisms[J].Phytomedicine,2024,129:155618.DOI: 10.1016/j.phymed.2024.155618.
[55]YANQ,ZHENG R,LI Y,et al.PM2.5-induced premature senescence in HUVECs through the SIRT1/PGC-1α /SIRT3 pathway[J].Sci Total Environ,2024,921:171177.DOI: 10.1016/j.scitotenv.2024.171177.
[56]XUJX,TANG ML,LU Z F,et al. A novel role for YPEL2 inmediating endothelial cellular senescence via thep53/p21 pathway[J].Mech Ageing Dev,2023,211:111803. DOI: 10.1016/j.mad.2023.111803.
[57]XUHL,F(xiàn)UJ,TUQ,et al. The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy[J]. JPhysiol Biochem,2024,80(1):27-39.D0I:10.1007/ s13105-023-00974-0.
[58] ZHENG Z H,WANGJJ,LINJG,et al. Cytosolic DNA initiates a vicious circle of aging-related endothelial inflammation and mitochondrial dysfunction via STING:the inhibitory effectof cilostazol[J].ActaPharmacol Sin,2024,45(9):1879- 1897. DOI: 10.1038/s41401-024-01281-0.
[59]WU JZ,LIU SJ,BANERJEE O,et al. Disturbed flow impairs MerTK-mediated efferocytosis in aortic endothelial cels during atherosclerosis[J].Theranostics,2024,14(6):2427-2441. DOI:10.7150/thno.93036.
[60]MAURYA MR,GUPTA S,LI JY,et al. Longitudinal shear stress response in human endothelial cels to atheroprone and atheroprotective conditions[J].Proc Natl Acad Sci U S A, 2021,118(4) : e2023236118.DOI: 10.1073/pnas.2023236118.
[61] CANHAM L,SENDAC S,DIAGBOUGA M R, et al. EVA1A(Eva-1 homolog A) promotes endothelial apoptosis and inflammatory activation under disturbed flow via regulation of autophagy[J]. Arterioscler Thromb Vasc Biol,2023,43(4):547-561.DOI: 10.1161/ATVBAHA.122.318110.
[62]NASR M,F(xiàn)AY A,LUPIERI A,et al.PI3KCIIα-dependent autophagy program protects from endothelial dysfunction and atherosclerosis in response to low shear stress in mice [J]. Arterioscler ThrombVasc Biol,2024,44(3):620-634.DOI: 10.1161/ATVBAHA.123.319978.
[63]RENH,HUWY,JIANGT,etal.Mechanicalstress induced mitochondrial dysfunction in cardiovascular diseases: novel mechanisms and therapeutic targets [J]. Biomedecine Pharmacother,2024,174:116545.D0I:10.1016/ j.biopha.2024.116545.
[64]TAMARGO IA,BAEK K I,XU C B,et al. HEG1 protects against atherosclerosisbyregulating stable flow-induced KLF2/4 expression in endothelial cells[J].Circulation,2024,149(15):1183- 1201.DOI: 10.1161/CIRCULATIONAHA.123.064735.
[65]ANDO J,YAMAMOTO K.Hemodynamic forces,endothelial mechanotransduction,and vascular diseases[J].Magn Reson Med Sci,2022,21(2):258-266.D01:10.2463/mrms. rev.2021-0018.
[66]TSAI Y C,HSIEH HJ,LIAO F,et al. Laminar flow attenuates interferon-induced inflammatory responses in endothelial cells[J]. Cardiovasc Res,2007,74(3):497-505.D01:10.1016/ j.cardiores.2007.02.030.
[67] LE N T, SANDHU U G, QUINTANA-QUEZADA R A, et al. Flow signaling and atherosclerosis[J]. Cell Mol Life Sci,2017, 74(10) : 1835-1858.D01: 10.1007/s00018-016-2442-4.
[68]LIJY,ZENG QC,XIONG ZY,et al. Trimethylamine N-oxide induces osteogenic responses in human aortic valve interstitial cells in vitro and aggavates aortic valve lesions in mice[J]. Cardiovasc Res,2022,118(8):2018-2030.D0I:10.1093/cvr/cvab243.
[69]WUWR,BAO WZ,CHEN XL,et al. Endothelial Gata6 deletion reduces monocyte recruitment and proinflammatory macrophage formation and atenuates atherosclerosis through Cmpk2-Nlrp3 pathways[J]. Redox Biol,2023,64:102775. DOI:10.1016/j.redox.2023.102775.
[70]YANG QB,YUANHM,CHENM,etal.Metformin ameliorates the progression of atherosclerosis via suppressing macrophage infiltration and inflammatory responses in rabbits[J].Life Sci, 2018,198:56-64.D01: 10.1016/j.lfs.2018.02.017.
[71]LINWW,HUANGF,YUANY,et al.Endothelial exosomes work as a functional mediator to activate macrophages[J]. Front Immunol,2023,14:1169471.D01:10.3389/ fimmu.2023.1169471.
[72]CHEN L F,SHANG C X,WANG B,et al. HDAC3 inhibitor suppresses endothelial-to-mesenchymal transition via modulating inflammatory response in atherosclerosis[J].Biochem Pharmacol,2021,192:114716.D0I:10.1016/j.bcp.2021.114716.
[73]PARKHS,ABDEL-ATYAM,JEONGJH,etal.Capmatinib suppresses LPS-induced interaction between HUVECs and THP1 monocytes through suppression of inflammatory responses [J]. Biomed J,2023,46(2):100534.D01:10.1016/j.bj.2022.04.005.
[74]LI X, ZHENG T F, ZHANG Y,et al. Dickkopf-1 promotes vascular smooth muscle cell foam cell formation and atherosclerosis development through CYP4A11/SREBP2/ABCA1[J].FASEB J, 2023,37(8):e23048.D0I:10.1096/fj.202300295R.
[75]LIUXL,ZHENGTF,ZHANGY,et al.Endothelial dickkopf-1 promotes smooth muscle cell-derived foam cell formation via USP53- mediated deubiquitinationof SR-aduringatherosclerosis[J].Int J Biol Sci,2024,20(8):2943-2964.D0I:10.7150/ijbs.91957.
[76]LI B,ZANG GY,ZHONGW,et al. Activation of CD137 signaling promotes neointimal formation by attenuating TET2 and transferring from endothelial cell-derived exosomes to vascular smooth muscle cells[J].Biomedecine Pharmacother,2020, 121:109593.DOI:10.1016/j.biopha.2019.109593.
[77]WANG C,LIUC,SHIJX,et al.Nicotine exacerbates endothelial dysfunction and drives atherosclerosis via extracelllar vesiclemiRNA[J].Cardiovasc Res,2023,119(3):729-742. DOI:10.1093/cvr/cvac140.
[78] ZHOU HK,KHAN D,GERDES N,et al. Colchicine protets against ethanol-induced senescence and senescence-associated secretory phenotype in endothelial cels[J]. Antioxidants, 2023,12(4):960.D0I:10.3390/antiox12040960.
[79]ZHANG Q,LIU J,DUAN H,et al.Activation of Nrf2/HO-1 signaling:an important molecular mechanismof herbal medicine in the treatment of atherosclerosis via the protectionof vascular endothelial cells from oxidative stress [J].JAdv Res,2021, 34:43-63.DOI: 10.1016/j.jare.2021.06.023.
[80]XUE JJ,ZHANG Z W,SUN Y T,et al. Research progress and molecular mechanisms of endothelial cells inflammation in vascularrelated diseases[J].J Inflamm Res,2023,16:3593-3617. DOI:10.2147/JIR.S418166.
[81]CHHOR M,TULPAR E,NGUYEN T,et al. E-cigarette aerosol condensate leads to impaired coronary endothelial cell health and restricted angiogenesis[J].IntJMol Sci,2023,24(7): 6378. DOI: 10.3390/ijms24076378. (收稿日期:2024-07-10;修回日期:2024-11-10)