中圖分類(lèi)號(hào):R737.14 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-1959(2025)14-0175-05
Abstract:Feotsisisflatoyellatractedceasulatifpentdpos ssociatedlonoodingARoedithadiioalticaeruodiotaaproefcfcedduce mortaityStuglofeoseadaelvereatotofodceC)cefly summarizestedsoldieabolifdactiesesOotosisds between ferroptosis and LncRNA in BC.
Keywords:Ferroptosis;Bladder cancer;Long non-coding RNA
細(xì)胞是生命的基本單位,細(xì)胞依賴(lài)氧進(jìn)行代謝,氧化應(yīng)激的管理對(duì)細(xì)胞命運(yùn)至關(guān)重要。脂質(zhì)過(guò)氧化是細(xì)胞代謝調(diào)控的關(guān)鍵因素,其過(guò)量可導(dǎo)致一種特殊形式的細(xì)胞死亡,即鐵死亡。自2012年“鐵死亡”概念提出,相關(guān)研究數(shù)量激增I。在泌尿生殖系統(tǒng)腫瘤中,膀胱癌(bladdercancer,BC)是最常見(jiàn)的類(lèi)型,2020年全球新發(fā)患者超過(guò)57萬(wàn),死亡人數(shù)超過(guò)21萬(wàn)[2]。非肌層浸潤(rùn)性膀胱癌(non-muscle-invasivebladdercancer,NMIBC)是指腫瘤僅限于膀胱黏膜層或黏膜下層,而未侵入膀胱的肌肉層。這類(lèi)膀胱癌通常被認(rèn)為是早期膀胱癌,其治療相對(duì)較為簡(jiǎn)單,預(yù)后也較好。相反,肌層浸潤(rùn)性膀胱癌(muscle-in-vasivebladdercancer,MIBC)是指腫瘤已經(jīng)穿透膀胱的肌肉層,侵入到膀胱的外層或周?chē)M織。這類(lèi)膀胱癌的治療更為復(fù)雜,預(yù)后相對(duì)較差,通常需要更為激進(jìn)的治療方法,如手術(shù)切除或放化療。BC患者在未經(jīng)適當(dāng)治療的情況下具有較高的死亡風(fēng)險(xiǎn),在歐洲,膀胱癌患者的5年生存率不足 60% 且轉(zhuǎn)移后生存率降至 5.5%[3] 。因此,探索新的細(xì)胞死亡信號(hào)通路、減少BC患者耐藥性、提高BC患者生存率已成為當(dāng)前研究熱門(mén)。長(zhǎng)鏈非編碼RNA(longnon-cod-ingRNAs,lncRNAs)是長(zhǎng)度大于200個(gè)核苷酸的RNA分子4。由于lncRNAs在癌癥中的獨(dú)特作用,其獲得了相當(dāng)大的關(guān)注,比如腫瘤相關(guān)lncRNA編碼的肽或蛋白與傳統(tǒng)的癌癥藥物和放療聯(lián)合使用可提高療效并降低死亡率;lncRNA編碼的ASRPS可抑制血管生成從而抑制三陰性乳腺癌(triplenegativebreastcancer,TNBC)的進(jìn)展;而lncRNAHOXB簇反義RNA3(HOXB-AS3)肽抑制結(jié)直腸癌(carcino-maofcolonandrectum,CRC)[67的生長(zhǎng);此外,lncR-NAs在BC中參與調(diào)節(jié)鐵死亡。為此,本文就近年來(lái)有關(guān)鐵死亡在BC中的作用以及BC與IncRNAs之間的關(guān)系綜述如下。
1鐵死亡概述
鐵死亡于2012年首次報(bào)道。鐵死亡抑制了GPX4的活性,引起脂質(zhì)過(guò)氧化過(guò)程中活性氧簇(ROS)的累積,特別是脂質(zhì)氫過(guò)氧化物[,在脂質(zhì)氫過(guò)氧化物的代謝過(guò)程中,若解毒機(jī)制與積累現(xiàn)象之間出現(xiàn)失衡狀態(tài),紊亂的生物化學(xué)反應(yīng)就會(huì)引發(fā)鐵死亡。應(yīng)激環(huán)境導(dǎo)致脂質(zhì)ROS積累失衡,從而促進(jìn)鐵死亡[2]。癌細(xì)胞通常通過(guò)抵抗鐵死亡來(lái)促進(jìn)其生存和轉(zhuǎn)移。與其他與細(xì)胞死亡相關(guān)的形態(tài)學(xué)變化不同,鐵死亡導(dǎo)致細(xì)胞內(nèi)線(xiàn)粒體縮小、膜密度增加、嵴減少或消失,以及外膜破裂但不破壞細(xì)胞膜,同時(shí)細(xì)胞核形態(tài)有輕微變化,但無(wú)染色質(zhì)濃縮[13]。在生物化學(xué)方面,磷脂過(guò)氧化物酶GPX4主要導(dǎo)致過(guò)氧化修復(fù)能力的缺陷、活性鐵的獲得以及誘導(dǎo)鐵死亡的多不飽和脂肪酸(PUFA)磷脂的氧化[4]。GPX受到多種途徑的影響,如XC-/GSH/GPX4系統(tǒng),ACSL4/LPCAT3/15-LOX和FSP1/CoQ10/NAD(P)H途徑[15,16]
1.1系統(tǒng)XC-/GSH/GPX4和鐵死亡 在鐵死亡這一過(guò)程中,脂質(zhì)過(guò)氧化物(LPO)的清除障礙和過(guò)量生成均可導(dǎo)致其蓄積至致死水平。胱氨酸的供應(yīng)、谷胱甘肽的合成及GPX4的作用對(duì)于保持氧化還原平衡和防止細(xì)胞鐵死亡至關(guān)重要。GPX4將GSH轉(zhuǎn)化為氧化還原反應(yīng)谷胱甘肽二硫化物(GSSG),降低LPO,維持細(xì)胞氧化還原穩(wěn)態(tài)[7。此外,GPX4是唯一直接從生物膜脂質(zhì)中還原過(guò)氧化氫的酶[18]。抑制系統(tǒng)XC-/GSH/GPX4軸導(dǎo)致LPO的積累,從而導(dǎo)致鐵死亡;例如,鐵死亡誘導(dǎo)劑erastin直接抑制系統(tǒng)XC-活性,破壞氧化還原穩(wěn)態(tài),增加LPO積累,導(dǎo)致鐵死亡]。
1.2ACSL4/LPCAT3/15-LOX與鐵死亡成簇規(guī)律間隔回文重復(fù)序列(CRISPR)-Cas9和基于全基因組單倍體的篩選分析已經(jīng)確定了兩種膜周轉(zhuǎn)酶:溶血磷脂酰膽堿?;D(zhuǎn)移酶3(LPCAT3)和?;o酶A合成酶長(zhǎng)鏈家族成員4(ACSL4)是鐵死亡的關(guān)鍵驅(qū)動(dòng)因子[19]。這些酶對(duì)于通過(guò)代謝脂質(zhì)重編程激活內(nèi)源性鐵鏈至關(guān)重要[20。ACSL4是參與多不飽和脂肪酸(PUFAs)生物代謝的重要同工酶,決定其對(duì)鐵死亡的易感性2]。脂質(zhì)合成介導(dǎo)的PUFAs的產(chǎn)生增加了鐵死亡的易感性22]。PUFAs進(jìn)入磷脂是鐵死亡的關(guān)鍵步驟,需要ACSL4,它將輔酶A與長(zhǎng)鏈PUFAs聯(lián)系起來(lái),然后通過(guò)幾種LPCAT酶將長(zhǎng)鏈PUFAs轉(zhuǎn)酯化為磷脂,增加長(zhǎng)鏈PUFAs在脂質(zhì)和膜中的整合[10,22]。ACSL4的高水平表達(dá)增強(qiáng)了細(xì)胞對(duì)鐵死亡的敏感性,并對(duì)腎上腺素(AdA)和花生四烯酸(AA)具有很強(qiáng)的親和力。ACSL4催化AA和AdA分別轉(zhuǎn)化為AACoA和AdA-CoA,導(dǎo)致LPO的產(chǎn)生。衍生物首先與LPCAT3酯化形成磷脂酰乙醇胺(AA-PE和AdA-PE),然后被15-脂氧合酶(ALOX15)直接氧化其脂質(zhì)過(guò)氧化氫,ALOX15作為三價(jià)鐵離子的信號(hào),最終促進(jìn)鐵死亡[23,24],此外,該過(guò)程影響細(xì)胞脂質(zhì)組成[15,23]。因此,ACSL4/LPCAT3/15-LOX可能在鐵死亡過(guò)程中致死性L(fǎng)POs的產(chǎn)生中發(fā)揮重要作用。
1.3FSP1/CoQ10/NAD(P)H與鐵死亡調(diào)亡誘導(dǎo)因子線(xiàn)粒體相關(guān)蛋白2(AIFM2)是凋亡誘導(dǎo)因子(AIF)家族成員之一,參與氧化還原酶功能,可誘導(dǎo)細(xì)胞程序性死亡。最近,AIFM2被認(rèn)為是反鐵卟啉基因而被重新命名為鐵細(xì)胞凋亡抑制蛋白1(ferroptosisapoptosis suppressorprotein1,F(xiàn)SP1)[25],F(xiàn)SP1是一種具有氧化還原作用的酶,它將CoQ10還原并產(chǎn)生自由基,協(xié)助抗氧化劑捕獲,以防止脂質(zhì)過(guò)氧化,從而抑制鐵死亡,CoQ10是清除脂質(zhì)過(guò)氧自由基的還原劑,負(fù)責(zé)脂質(zhì)過(guò)氧化。使用FSP1作為藥理學(xué)靶點(diǎn)與GPX4抑制劑聯(lián)合可誘導(dǎo)多種腫瘤類(lèi)型的鐵死亡[26]。
1.4鐵死亡的其他基因和通路P53影響細(xì)胞周期停滯、衰老和細(xì)胞凋亡,其失活在多數(shù)腫瘤形成中起關(guān)鍵作用,因此,P53基因被認(rèn)為是一種潛在的抑癌基因。此外,P53還參與多種代謝活動(dòng),P53下調(diào)溶質(zhì)載體家族7成員11(solutecarrierfamily7member11,SLC7A11)的表達(dá),通過(guò)抑制GPX4,減少胱氨酸的攝取,使細(xì)胞抗氧化能力下降與脂質(zhì)ROS累積,導(dǎo)致鐵死亡。
其他誘導(dǎo)或抑制鐵死亡的方法: ① 葡萄糖饑餓抑制鐵死亡[27,28]; ② 調(diào)節(jié)細(xì)胞鐵死亡的信號(hào)通路,如Keleh樣ECH相關(guān)蛋白1(Keap1)核因子紅系相關(guān)因子2(Nrf2)和淋巴組織特異性解偶聯(lián)酶(LSH)等,這些分子在鐵死亡調(diào)節(jié)中發(fā)揮著重要作用。例如,一些抗氧化酶和轉(zhuǎn)運(yùn)蛋白能夠清除細(xì)胞內(nèi)多余的鐵離子,降低鐵死亡的風(fēng)險(xiǎn);而一些促氧化酶和激酶則能夠促進(jìn)鐵離子的積累和氧化應(yīng)激的發(fā)生,從而加速鐵死亡的過(guò)程,這些分子與信號(hào)通路相互作用,共同構(gòu)建了精細(xì)復(fù)雜的鐵死亡調(diào)節(jié)網(wǎng)絡(luò); ③EgI 九同源物1 (EGLN1)/細(xì)胞性髓細(xì)胞腫瘤原癌基因(c-Myc)硫轉(zhuǎn)移、黏蛋白1C端(MUC1-C)/系統(tǒng)性XC-( ΔxCT 通路介導(dǎo)鐵死亡[29]。
2鐵死亡及相關(guān)長(zhǎng)鏈非編碼RNA與膀胱癌的關(guān)系
2.1鐵死亡與膀胱癌的關(guān)系下調(diào)或抑制鐵死亡可能與膀胱癌細(xì)胞的增殖密切相關(guān)。有研究報(bào)道[30,低游離鐵濃度明顯有利于膀胱癌細(xì)胞的增殖,相反,當(dāng)鎵與轉(zhuǎn)鐵蛋白結(jié)合時(shí),膀胱癌細(xì)胞內(nèi)游離鐵水平升高,從而抑制其增殖。MazdakH等[3研究比較了51例膀胱癌患者與58名健康對(duì)照者的血清鐵水平,結(jié)果顯示膀胱癌患者的血清鐵水平普遍低于健康人群。以上證據(jù)表明,游離鐵和血清鐵水平升高可能參與膀胱癌的發(fā)生,需要進(jìn)一步的前瞻性研究。YanY等32發(fā)現(xiàn)3個(gè)鐵死亡相關(guān)基因(CRYAB、SQLE、ZEB1)與膀胱癌分期呈正相關(guān)。YangL等[3]構(gòu)建一個(gè)新的膀胱癌預(yù)后模型,整合了9個(gè)鐵死亡相關(guān)的差異表達(dá)基因,包括ALB、BID、FADS2、FANCD2、IFNG、MIOX、PLIN4、SCD和SLC2A3,可用于膀胱癌患者的預(yù)后預(yù)測(cè)。LuanJC等34通過(guò)生物信息學(xué)分析,在膀胱尿路上皮癌(CRYAB、TFRC、SQLE和G6PD)中鑒定出4個(gè)鐵死亡相關(guān)基因,可準(zhǔn)確預(yù)測(cè)膀胱癌患者的預(yù)后。LiangY等[35構(gòu)建了基于7個(gè)鐵死亡相關(guān)基因的新預(yù)后模型,包括NOX1,GCLM,ACSL4,ALOX5,ACACA,ZEB1和FADS2,這些基因可用于膀胱癌的治療選擇和預(yù)后預(yù)測(cè)
LiX等使用8個(gè)鐵死亡相關(guān)基因(CDO1、JUN、MAFG、PRDX6、SCD、SLC2A12、TUBE1、TXNRD1)來(lái)建立預(yù)后特征,這些鐵死亡相關(guān)基因可概括為四種類(lèi)型:鐵代謝(CDO1)、脂質(zhì)代謝(JUN、TUBE1)、(抗)氧化代謝(TXNRD1、SCD、SLC2A12)和能量代謝(MAFG、PRDX6)。CDO1在BLCA中被啟動(dòng)子甲基化沉默,可減少鐵死亡的發(fā)生,從而抑制BC侵襲[7]。據(jù)報(bào)道[38],JUN可以減少脂質(zhì)過(guò)氧化并抑制鐵死亡,從而促進(jìn)BC的侵襲和轉(zhuǎn)移。TUBE1通過(guò)脂質(zhì)代謝促進(jìn)鐵死亡來(lái)抑制BC轉(zhuǎn)移[39]。已發(fā)現(xiàn)SLC2A12的高表達(dá)與鐵死亡中的葡萄糖代謝有關(guān),這加劇了BC的侵襲[40]。PRDX6可以抑制鐵死亡引起的高氧化損傷,從而促進(jìn)BLCA的增殖4I。此外,SCD在鐵死亡中通過(guò)脂肪酸代謝途徑促進(jìn)BC的增殖[42]。
綜上所述,游離鐵和血清鐵水平與膀胱癌的增殖呈現(xiàn)負(fù)相關(guān)的關(guān)系,鐵死亡相關(guān)基因可能通過(guò)鐵死亡途徑參與BC的增殖、侵襲和轉(zhuǎn)移等關(guān)鍵生物學(xué)過(guò)程,對(duì)BC的發(fā)生、發(fā)展有良好的預(yù)測(cè)作用。2.2鐵死亡相關(guān)長(zhǎng)鏈非編碼RNA與膀胱癌的關(guān)系迄今為止,已有多項(xiàng)研究表明lncRNA可以通過(guò)調(diào)節(jié)鐵死亡作為抗癌靶點(diǎn)[43,44],鐵死亡相關(guān)的lncRNAs對(duì)結(jié)腸癌患者的預(yù)后有預(yù)測(cè)作用[45]。SLC7A11是一種胱氨酸轉(zhuǎn)運(yùn)體和鐵死亡抑制劑,一種核長(zhǎng)非編碼
RNALINC00618在白血病中通過(guò)增加脂質(zhì)活性氧和鐵加速鐵死亡,并降低SLC7A11的水平;通過(guò)誘導(dǎo)細(xì)胞凋亡加速鐵死亡。最近的一項(xiàng)獨(dú)立研究表明[46,47,鐵依賴(lài)性細(xì)胞死亡相關(guān)的IncRNAs可以作為結(jié)直腸癌患者的預(yù)后因素。lncRNAs參與調(diào)控細(xì)胞內(nèi)鐵離子平衡和氧化還原狀態(tài),這些對(duì)癌癥發(fā)展和進(jìn)程至關(guān)重要。作為一類(lèi)新興的分子調(diào)控者,lncRNAs其在細(xì)胞生物學(xué)中的功能逐漸被人們所認(rèn)識(shí),它不僅參與基因表達(dá)的調(diào)控,還與細(xì)胞生長(zhǎng)、分化和死亡等多種生物過(guò)程緊密相關(guān)。因此,開(kāi)發(fā)針對(duì)BCa患者的鐵死亡相關(guān)lncRNA預(yù)測(cè)標(biāo)簽具有重要意義。
ZhangY等48在膀胱癌標(biāo)本中發(fā)現(xiàn)多個(gè)lncRNAs的異常表達(dá)。異常表達(dá)的lncRNA通常通過(guò)調(diào)節(jié)轉(zhuǎn)錄和翻譯來(lái)影響疾病進(jìn)展,也可以通過(guò)調(diào)節(jié)鐵死亡來(lái)影響癌癥進(jìn)展。肺腺癌細(xì)胞中的細(xì)胞質(zhì)lncRNAP53RRA與RasGTP酶激活蛋白結(jié)合蛋白1(G3BP1)RNA識(shí)別基序(RRM)的結(jié)構(gòu)部分結(jié)合,導(dǎo)致P53的核質(zhì)分離,并將P53保留在細(xì)胞核中,并在細(xì)胞核中積累脂質(zhì)ROS,從而導(dǎo)致細(xì)胞鐵死亡[8]。LncRNALINC00618誘導(dǎo)的鐵死亡增加脂質(zhì)ROS和鐵水平,并減少SLC7A11的表達(dá)。LncRNAGABPB1-AS1在HepG2肝癌細(xì)胞中調(diào)節(jié)erastin誘導(dǎo)的GABPB1鐵死亡[43]。類(lèi)似地, GSK3β/Nrf2 信號(hào)通路在BC中發(fā)揮作用,它通過(guò)增加Nrf2的表達(dá)來(lái)對(duì)抗鐵死亡[49];lncRNARP11-89吸收miRNA129-5p并上調(diào)pro-minin2蛋白表達(dá),prominin2可以通過(guò)多泡小體/外泌體途徑將鐵離子轉(zhuǎn)運(yùn)出細(xì)胞,減少細(xì)胞內(nèi)鐵積累,防止鐵死亡,從而增加膀胱癌對(duì)鐵死亡的抵抗力[50]。
一些長(zhǎng)鏈非編碼RNA在腫瘤形成和進(jìn)展中起關(guān)鍵作用,引起了廣泛關(guān)注,并在初步研究中闡明了其既定的功能。通用遺傳密碼的公開(kāi)使得研究人員能夠識(shí)別功能蛋白中的缺陷;然而,利用現(xiàn)有的預(yù)測(cè)框架來(lái)理解IncRNA生物學(xué)對(duì)細(xì)胞功能的影響仍然具有挑戰(zhàn)性5。由于其增強(qiáng)的效率、組織特異性和穩(wěn)定性,lncRNAs有潛力成為適當(dāng)?shù)脑\斷和治療的靶點(diǎn)[52]。
3總結(jié)與展望
鐵死亡是一種受調(diào)節(jié)的細(xì)胞死亡形式,其特征是鐵依賴(lài)性脂質(zhì)氫過(guò)氧化物的積累,已成為細(xì)胞生物學(xué)和疾病研究的重要研究領(lǐng)域。它不同于細(xì)胞凋亡、壞死和自噬等其他形式的細(xì)胞死亡,并且與許多生物過(guò)程密切相關(guān),包括氨基酸、鐵和多不飽和脂肪酸代謝,以及谷胱甘肽、磷脂、NADPH和COQ10。
鐵死亡領(lǐng)域的未來(lái)研究方向可集中于進(jìn)一步闡明這種細(xì)胞死亡形式背后的分子機(jī)制。這包括了解關(guān)鍵調(diào)節(jié)因子(如GPX4、FSP1、ACSL4、NADPH氧化酶和P53)在鐵死亡中的作用。
深入了解BC中鐵死亡的具體機(jī)制以及在BC發(fā)展的各個(gè)階段針對(duì)鐵死亡的干預(yù)措施將為患者提供有價(jià)值的見(jiàn)解并為更準(zhǔn)確的預(yù)防和治療策略提供依據(jù)。但是,BC與鐵死亡的相關(guān)性及其潛在機(jī)制仍為完全闡明,仍需進(jìn)一步的研究及探討。
參考文獻(xiàn):
[1]XieY,Hou W,SongX,etal.Ferroptosis:processand function [J].Cell Death Differ,2016,23(3):369-379.
[2]SungH,F(xiàn)erlayJ,Siegel RL,etal.Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for36 Cancers in 185 Countries [J].CA CancerJ Clin,2021,71 (3):209-249.
[3]Richters A,Aben K,Kiemeney L.The global burden ofurinary bladder cancer:anupdate[J].WorldJ Urol,2020,38 (8):1895- 1904.
[4]Safi A,Saberiyan M,Sanaei MJ,et al.Therole of noncoding RNAs in metabolic reprogramming of cancer cels [J].Cell Mol Biol Lett,2023,28(1):37.
[5]WuP,Mo Y,Peng M,etal.Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA[J].Mol Cancer,2020,19(1):22.
[6]WangY,Wu S,Zhu X,et al.LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancerangiogenesis[].J Exp Med,2020,217(3):jem.20190950.
[7]Huang JZ,Chen M,Chen D,et al.A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresss Colon Cancer Growth [J].Mol Cell,2017,68(1):171-184.
[8]Mao C,WangX,Liu Y,etal.A G3BP1-Interacting lncRNA Promotes Ferroptosis and Apoptosis in Cancer via Nuclear Sequestration of p53[J].Cancer Res,2018,78(13):3484-3496.
[9]Dixon SJ,Lemberg KM,Lamprecht MR,etal.Ferroptosis:an iron -dependent form of nonapoptotic cell death [J].Cel, 2012,149(5):1060-1072.
[10]Jiang X,Stockwell BR,Conrad M.Ferroptosis:mechanisms, biologyand roleindisease[J].NatRevMol Cell Biol,2021,22 (4):266-282.
[11]Xu T,Ding W,JiX,et al.Molecular mechanisms of ferroptosis and itsrole in cancer therapy Jl.J Cell Mol Med,2O19,23 (8): 4900-4912.
[12]WangW,Green M,Choi JE,et al.CD8 (+) T cells regulate tumour ferroptosisduringcancer immunotherapy [l.Nature, 2019,569(7755):270-274.
[13]Li J,CaoF,YinHL,etal.Ferroptosis:past,presentand futre [J].Cell Death Dis,2020,11(2):88.
[14]Li Z,Chen L,Chen C,et al.Targeting ferroptosisin breast cancer[].Biomark Res,2020,8(1):58.
[15]LiD,Li Y.Theinteraction between ferroptosisand lipid metabolism in cancer[J].Signal Transduct Target Ther,2020,5(1): 108.
[16]Wu J,Minikes AM,Gao M,etal.Intercellular interaction dictatescancer cell ferroptosisvia NF2-YAPsignalling[].Nature, 2019,572(7769):402-406.
[17]Yang WS,Sriramaratnam R,Welsch ME,et al.Regulation of ferroptotic cancer cell death by GPX4 [J].Cell,2014,156 (1-2): 317-331.
[18]Brigelius-Flohe R,Maiorino M.Glutathione peroxidases[]. Biochim Biophys Acta,2013,1830(5):3289-3303.
[19]Zou Y,Palte MJ,Deik AA,etal.A GPX4-dependentcancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis[J].Nat Commun,2019,10(1):1617.
[20]Liao P,WangW,WangW,et al.CD8 (+ )Tcellsand fatty acids orchestrate tumor ferroptosis and immunity via ACSL4[J]. Cancer Cell,2022,40(4):365-78.
[21]Cui Y,Zhang Y,Zhao X,et al.ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation[J].Brain Behav Immun,2021,93:312-321.
[22]Chen X,Li J,KangR,etal.Ferroptosis: machinery andregulation[J].Autophagy,2021,17(9):2054-2081.
[23]Doll S,PronethB,Tyurina YY,etal.ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition [].Nat Chem Biol,2017,13(1):91-98.
[24]Kuch EM,Vellaramkalayil R,Zhang I,etal.Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fattyacidstowardsphosphatidylinositol []. Biochim Biophys Acta,2014,1841(2):227-239.
[25]Novo N,F(xiàn)erreiraP,Medina M.The apoptosis-inducing factor family:Moonlighting proteins in the crosstalk between mitochondria and nuclei[J].IUBMB Life,2021,73(3):568-581. [26]Doll S,F(xiàn)reitasFP,ShahR,etalFSP1isaglutathionendependent ferroptosis suppresor [].Nature,2019,575 (7784):693- 698.
[27]Lee H,Zandkarimi F,Zhang Y,etal.Energy-stress-mediated AMPK activation inhibits ferroptosis[J].Nat Cell Biol,2O20,22(2): 225-234.
[28]Li C,Dong X,Du W,et al.LKB1-AMPK axis negatively regulatesferroptosis by inhibiting fatty acidsynthesis [].Signal Transduct Target Ther,2020,5(1):187.
[29]Cao JY,Dixon SJ.Mechanisms of ferroptosis[J].Cell MolLife Sc1,2016,/3(11-12):2195-2209.
[30]Martin -Sanchez D,F(xiàn)ontecha-Barriuso M,Sanchez -Nino MD,et al.Cell death-based approaches in treatment of the urinary tract-associated diseases:a fight for survival in the killing fields[J].Cell Death Dis,2018,9(2):118.
[31]Mazdak H,YazdekhastiF,MovahedianA,etal.The comparative study of serum iron,copper,and zinc levels between bladdercancer patients and a control group [].Int Urol Nephrol, 2010,42(1):89-93.
[32]Yan Y,Cai J,Huang Z,etal.A Novel Ferroptosis-Related Prognostic Signature Reveals Macrophage Infiltration and EMT Status inBladder Cancer[J].Front Cell Dev Biol,2O21,9:712230. [33]YangL,Li C,QinY,etal.A Novel Prognostic Model Based on Ferroptosis-Related Gene Signature for Bladder Cancer[J]. Front Oncol,2021,11:686044.
[34]Luan JC,Zeng TY,Zhang QJ,et al.A novel signature constructed by ferroptosis-associated genes(FAGs) for the prediction of prognosis in bladder urothelial carcinoma(BLCA)and associated with immune infiltration [].Cancer Cell Int,2021,21 (1):414.
[35]Liang Y,Ye F,Xu C,et al.A novel survival model based on a Ferroptosis-related gene signature for predicting overall survival in bladder cancer[J].BMC Cancer,2021,21(1):943.
[36]Li X,Huang J,Chen J,etal.A Novel Prognostic Signature Based on Ferroptosis-Related Genes Predicts the Prognosis of PatientsWith Advanced Bladder Urothelial Carcinoma[J].Front Oncol,2021,11:726486.
[37]BraitM,Ling S,Nagpal JK,etal.Cysteinedioxygenase1isa tumor suppressor gene silenced by promoter methylation in multiple human cancers[J].PLoS One,2012,7(9):e44951.
[38]Ren S,Zhang N,Shen L,et al.LncO0892 competes with cJun to block NCL transcription,reducing the stabilityof RhoA/RhoC mRNA and impairing bladder cancer invasion[J]. Oncogene,2021,40(48):6579-6589.
[39]Pitsava G,F(xiàn)eldkamp ML,Pankratz N,etal.Exome sequencing of child-parent trios with bladder exstrophy:Findings in 26 children[J].AmJMed Genet A,2021,185(10):3028-3041.
[40]Xiong Y,Lei F.SLC2A12 of SLC2 Gene Family in Bird Provides Functional Compensation for the Loss of SLC2A4 Gene in Other Vertebrates[J].Mol BiolEvol,2021,38(4):1276-191.
[41]Gao L,Meng J,Yue C,etal.Integrative analysis the characterIZauOI OI pan-cacer UJ.Caicer Cel Il, 2021,21(1):366.
[42]Sun J,YueW,YouJ,etal.IdentificationofaNoveleop tosis-Related Gene Prognostic Signature in Bladder Cancer[J]. Front Oncol,2021,11:730716.
[43]QiW,Li Z,Xia L,et al.LncRNA GABPB1 -AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosisin HepG2 hepatocellular carcinoma cells[J].Sci Rep, 2019,9(1):16185.
[44]Yang Y,Tai W,Lu N,et al.lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosisvia functioning asa ceRNA through miR-150-5p/SLC38A1 axis[]. Aging(Albany NY),2020,12(10):9085-9102.
[45]Cai HJ,Zhuang ZC,Wu Y,etal.Development and validation of a ferroptosis-related lncRNAs prognosis signature in colon cancer[].Bosn J Basic Med Sci,2021,21(5):569-576.
[46]Tang Y,Li C,Zhang YJ,et al.Ferroptosis-Related Long Non-Coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma [J].Int JBiol Sci,2O21,17(3): 702-711.
[47]Zhang W,F(xiàn)ang D,Li S,et al.Construction and Validation of a Novel Ferroptosis-Related lncRNA Signature to Predict Prognosisin Colorectal Cancer Patients [J].Front Genet,2O21,12: 709329.
[48]ZhangY,ZhangY,HuJ,etal.scTPA:aweb tool forsinglecell transcriptome analysis of pathway activation signatures[J]. Bioinformatics,2020,36(14):4217-4219.
[49]Wu X,LiuC,Li Z,etal.Regulationof GSK3beta/Nrf2signaling pathway modulated erastin-induced ferroptosis in breast cancer[].Mol Cell Biochem,2020,473(1-2):217-228.
[50]Brown CW,Amante JJ,Chhoy P,et al.Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export J].Dev Cell, 2019,51(5):575-586.
[51]Schmitt AM,Chang HY.Long Noncoding RNAs in Cancer Pathways[J].Cancer Cell,2016,29(4):452-463.
[52]Jia CL,Yang F,LiR.Prognostic Model Construction and Immune Microenvironment Analysis of Breast Cancer Based on Ferroptosis-Related IncRNAs ].IntJGenMed,2021,14:9817- 9831.
收稿日期:2024-09-04;修回日期:2024-10-11