【中圖分類號】R966 【文獻(xiàn)標(biāo)志碼】A 【文章編號】1007-8517(2025)11-0076-07
DOI:10.3969/j. issn.1007-8517.2025.11. zgmzmjyyzz202511016
Research Progress of Luteolin in the Treatment of Diabetic Nephropathy
YU Xiaoze1HUANG Rong1WANG Xuewei2SHI Yunke2MA Yiming2 ZHANG Ling1LUO Min1 CAI Hongyan2 LI Yan2 YANG Weimin1 * 1.School of Pharmacy,Kunming Medical University and Yunnan Provincial Key Laboratory of Natural Drug Pharmacology,Kunming 65050o,China; 2.The First Afiliated Hospital of Kunming Medical University,Kunming 65OoOo,China
Abstract:Diabetic nephropathyisaserious threatto human health,primarilycharacterizedbyabnormal renalhemodynamics, includinghighglomerularfltratioandpefusionstates.Asthconditionprogresses,teaccumulationofadvancedglycationedproductsgraduallydestroysrenalfiltrationfunction,leadingtoincreasedurinaryalbuminandrenalfailure,amongothersevereconsequences.Thepathogenesisofdiabeticnephropathyiscomplexandinvolvesdisordersinglucosemetabolism,vascular/blodflow,secretionof inflammatorycytokines,xidativestress,andmore.Luteolinisfavooidompoundextractedfromthespecialyplants, suchaslampflowerfoundinYunnanIttargetsthemolecularmechanismsofdiabeticnephropathyndexertsitstherapeuticeffects througharious targetpathways.Luteoliplaysacrucialoleinimprovingmicrociclation,protectingthecardiovascularsystemnti -inflammation,andantioxidantactions.Thisarticleaimstoreviewthemolecularmechanismsofdiabeticnephropathyandthere search progress on the molecular mechanisms of luteolin in treating diabetic nephropathy.
Key words:Diabetic Nephropathy;Luteolin;Target Points;Signal Pathway
糖尿?。╠iabetesmellitus,DM)是一類以高血糖為主要病理特征的代謝疾病。長期的高血糖水平會導(dǎo)致糖尿病微血管并發(fā)癥的發(fā)生包括糖尿病腎臟疾?。╠iabeticnephropathy,DN)、糖尿病周圍神經(jīng)病變、糖尿病足等[1]。DN是DM最常見的微血管并發(fā)癥之一,約 40% 的DM可進(jìn)展為DN,導(dǎo)致蛋白尿和腎小球病變,最終發(fā)展為終末期腎病和慢性腎臟疾病[2]。其發(fā)病機(jī)制非常復(fù)雜,目前尚不完全清楚,然而嚴(yán)格控制血糖和血壓的標(biāo)準(zhǔn)療法已被證明不能阻正DN進(jìn)展為終末期腎病,因此急需找到新的方法預(yù)防DN的發(fā)生發(fā)展[3] 。
云南特色藥用植物燈盞花富含多種黃酮類化合物,其中活性較強(qiáng)的木犀草素(luteolin,LTD)具有豐富的藥理作用和顯著的藥用價值,對重大疾病有一定的治療作用,對人類健康具有深遠(yuǎn)的意義[4]。LTD作為炎癥性疾病的有效調(diào)節(jié)劑,通過抑制促炎介質(zhì)釋放,能顯著改善各種炎癥狀態(tài)并影響其起始途徑,對膿毒癥,潰瘍性結(jié)腸炎和狼瘡性腎炎等有很好的治療作用[5-7]。LTD 在抗氧化,減少脂肪生成及異位脂質(zhì)沉積和調(diào)節(jié)糖脂代謝等方面也有較好的療效[8-9]。除此之外,LTD 對各種癌癥如肺癌、黑素瘤、乳腺癌等也起到減輕癥狀并延緩進(jìn)展的作用[10]。因此,探索LTD對人類疾病的治療作用及其相關(guān)機(jī)制具有重大意義。在本篇綜述中,筆者將重點(diǎn)闡述DN的分子機(jī)制,并討論黃酮類化合物L(fēng)TD如何預(yù)防或減輕 DN 。
1 DN機(jī)制概述
DN的病理機(jī)制十分復(fù)雜,涉及糖代謝紊亂、血管微循環(huán)受阻、免疫炎癥及氧化應(yīng)激等多種因素,其中持續(xù)的高葡萄糖水平在DN的發(fā)病機(jī)制中通過不同途徑起核心作用。
1. 1 糖代謝失調(diào)
1.1.1 多元醇途徑 多元醇途徑由醛糖還原酶(al-dosereductase,AR)和山梨醇脫氫酶(sorbitoldehy-drogenase,SDH)催化的兩個反應(yīng)組成,是DM及其并發(fā)癥發(fā)生發(fā)展的重要環(huán)節(jié)。過量的葡萄糖通過多元醇途徑在還原型輔酶II(nicotinamideadeninedinucle-otidephosphate,NADPH)的催化下生成果糖(nico-tinamideadeninedinucleotide, NAD+ )和還原型輔酶I(nicotinamideadeninedinucleotide,NADH),不僅導(dǎo)致細(xì)胞內(nèi)的谷胱甘肽濃度減少,細(xì)胞內(nèi)抗氧化能力減弱,還會破環(huán)NAD + 和NADH的氧化還原平衡,導(dǎo)致NADH的過量生成,使活性氧(reactiveoxygenspecies,ROS)產(chǎn)生增加,引起氧化應(yīng)激,促進(jìn)DN的發(fā)生發(fā)展[3I]。因此通過抑制 AR 和 SDH 在多元醇通路中的作用,維持氧化還原平衡,可以減輕DM及其并發(fā)癥。
1.1.2晚期糖基化終末產(chǎn)物過度積累晚期糖基化終末產(chǎn)物(advancedglycationend products,AGEs)是異質(zhì)交聯(lián)的糖衍生蛋白,在腎小球基底膜、系膜細(xì)胞、內(nèi)皮細(xì)胞和足細(xì)胞中積累,導(dǎo)致腎臟功能和結(jié)構(gòu)的改變,并引發(fā)DN典型的形態(tài)學(xué)改變[12]。在高血糖條件下 AGEs 與其受體結(jié)合后,能激活絲裂原活化蛋白激酶(mitogen-activatedproteinkinase,MAPK)和核轉(zhuǎn)錄因子- κB (nu-clearfactor- κB , NF-κB )級聯(lián)信號轉(zhuǎn)導(dǎo),導(dǎo)致多種炎癥和促纖維化因子產(chǎn)生參與血管損傷機(jī)制;還能激活蛋白激酶C系統(tǒng)(proteinkinaseCsystem,PKCsystem)和/或產(chǎn)生ROS以及激活Janus激酶2/信號轉(zhuǎn)導(dǎo)和轉(zhuǎn)錄激活因子3(januskinase2/signal transducer and activator of transcription 3,JAK2/STAT3)和 c-Jun 氨基末端激酶( c-JunN -terminalkinase,JNK)等信號通路,促進(jìn)各種炎癥因子和促纖維化因子的釋放,上調(diào)氧化應(yīng)激引發(fā)大量炎癥細(xì)胞介導(dǎo)的病理生理反應(yīng)[13-14]。因此干預(yù)AGEs信號通路,可減緩DN的進(jìn)展。
1.1.36-磷酸果糖酰基轉(zhuǎn)移酶活性上調(diào)6-磷酸果糖?;D(zhuǎn)移酶(glutamine:fructose-6-phos-phateaminotransferase,GFAT)是氨基己糖生物合成途徑中的第一個限速酶,在DN機(jī)制中發(fā)揮重要作用[15]。GFAT能催化果糖-6-磷酸(fructose-6-phosphate,F(xiàn)-6-P),使其轉(zhuǎn)化為尿苷-5-二磷酸-N-乙酰葡萄糖胺(uridine-5’-diphos-phate-N-acetylglucosamine,UDP-GlcNAc),加快O-連接的N-乙酰氨基葡萄糖轉(zhuǎn)移酶(O-Gl-cNActransferase,OGT)的產(chǎn)生,降低胰島素信號傳導(dǎo)并參與肌肉和脂肪細(xì)胞的胰島素抵抗[16]。因此,GFAT活性上調(diào)導(dǎo)致的UDP-GlcNAc產(chǎn)生增加是導(dǎo)致胰島素抵抗和DN 的原因之一。
1.1.4AMPK通路的抑制單磷酸腺苷活化蛋白激酶(adenosine monophosphate-activated proteinkinase,AMPK)作為機(jī)體能量代謝平衡的關(guān)鍵調(diào)控分子,可通過磷酸化修飾、亞細(xì)胞定位等方式發(fā)揮抗炎癥、清除膽固醇等功能,防治肥胖所致胰島素抵抗[17-18]。高血糖能降低腎臟中 AMPK 的活性、抑制AMPK信號通路的激活導(dǎo)致的細(xì)胞自噬過程,影響腎臟蛋白質(zhì)合成、糖原代謝和線粒體功能等,導(dǎo)致 DN進(jìn)一步發(fā)展[19-20]。鈉-葡萄糖協(xié)同轉(zhuǎn)運(yùn)體2(sodium-dependent glucose trans-porters,SGLT2)抑制劑通過激活A(yù)MPK信號通路一方面能誘導(dǎo)自噬改善細(xì)胞應(yīng)激和腎小球和腎小管損傷,另一方面也有助于其在2型糖尿病中限制腎鈉轉(zhuǎn)運(yùn)和保護(hù)腎臟[21]??傊せ預(yù)MPK信號通路能減輕炎癥反應(yīng)、改善線粒體的功能、抑制ROS的生成以及減少微血管的損傷等。
1.2 血管/血流異常
1.2.1血管內(nèi)皮功能障礙血管內(nèi)皮作為血管腔與血管壁之間的結(jié)構(gòu)屏障,能夠分泌多種生長因子和細(xì)胞因子,從而調(diào)節(jié)血管的功能。血管內(nèi)皮損傷的根本原因是一氧化氮(nitricoxide,NO)生成不足,生物利用度下降,繼而引起氧化應(yīng)激增強(qiáng)、炎癥因子釋放增多、血管舒縮功能紊亂、內(nèi)皮損傷修復(fù)障礙等[22-23]。長期高糖水平既能導(dǎo)致內(nèi)皮細(xì)胞受損釋放更多內(nèi)皮素-1,進(jìn)一步抑制內(nèi)皮一氧化氮合酶的活性,減少NO的產(chǎn)生;又能激活PKC通路上調(diào)多種生長因子的表達(dá)及轉(zhuǎn)化,促進(jìn)細(xì)胞外基質(zhì)(extracellularmatrix,ECM)積聚和ROS 的產(chǎn)生,加快DN 的進(jìn)展[24]。此外,多種細(xì)胞生長因子和黏附因子對維持血管完整性和內(nèi)皮細(xì)胞屏障功能以及調(diào)節(jié)體內(nèi)平衡和病理狀態(tài)(癌癥、動脈粥樣硬化、DN等)發(fā)揮重要作用[25] 。
1.2.2腎素-血管緊張素系統(tǒng)腎素-血管緊張素系統(tǒng)(renin-angiotensinsystem,RAS)對DN的進(jìn)展具有重要的調(diào)控作用。血管緊張素ⅡI(an-giotensinII,AngII)是RAS的主要參與者,既能通過激活JAK2/STAT3通路,導(dǎo)致小鼠足細(xì)胞的凋亡、線粒體功能障礙、氧化應(yīng)激和炎癥反應(yīng)等;也能促進(jìn)小鼠體內(nèi)生長因子和細(xì)胞因子的合成和分泌,導(dǎo)致腎臟病理改變,同時激活的白細(xì)胞介素6(interleukin6,IL-6)能進(jìn)一步刺激JAK2/STAT通路,導(dǎo)致 DN的發(fā)生[26-27]。而血管緊張素轉(zhuǎn)換酶2 (angiotensin converting enzyme 2,ACE2)作為RAS的負(fù)調(diào)節(jié)因子能抑制RAS的活化,從而通過抑制JAK2/STAT3途徑來抑制細(xì)胞凋亡和炎癥反應(yīng),減緩DN的進(jìn)展[28]
1.3免疫炎癥因子及氧化應(yīng)激
1.3.1免疫炎癥因子在DN的發(fā)生和發(fā)展過程中,免疫炎癥因子扮演了關(guān)鍵角色。這些炎癥因子包括Toll 樣受體(toll-likereceptors,TLR)、核昔酸結(jié)合寡聚化結(jié)構(gòu)域樣受體含3的吡啶結(jié)構(gòu)域蛋白(nucleotide-binding oligomerization domainlike receptor pyrin domain containing 3,NLRP3)、趨化因子以及補(bǔ)體系統(tǒng)[29]。有研究[30]表明TLR家族中的TLR2和TLR4在DN小鼠的腎小球和腎小管細(xì)胞中顯著表達(dá),并在誘導(dǎo)腎臟炎癥和纖維化中起重要作用。TLR信號通過骨髓分化因子88(my-eloiddifferentiationfactor88,MyD88)途徑激活NF-κB 和MAPKs通路,從而觸發(fā)下游多種基因的激活,導(dǎo)致炎癥反應(yīng)趨化因子和促炎細(xì)胞因子合成增加,促進(jìn)了DN 的發(fā)生發(fā)展[31]。NLRP3 炎癥復(fù)合體是一類由感知蛋白、凋亡斑蛋白、效應(yīng)蛋白構(gòu)成的復(fù)合體[32]。在DN患者和DN小鼠模型中,通過 K+ 通道模型,溶酶體損傷模型和ROS模型激活NLRP3,形成NLRP3炎癥復(fù)合體,誘導(dǎo)炎癥因子白細(xì)胞介素 1β (interleukin -1β ,IL-1β)和白細(xì)胞介素18(interleukin-18,IL-18)的產(chǎn)生進(jìn)而引發(fā)炎癥級聯(lián)反應(yīng),促進(jìn)DN 的進(jìn)展[33]。因此,抑制TLR信號的激活和NLRP3炎癥復(fù)合體的形成,能減輕腎足細(xì)胞和腎小球的損傷,對腎臟起到保護(hù)作用[34]
1.3.2氧化應(yīng)激氧化應(yīng)激是指抗氧化系統(tǒng)和ROS之間的平衡受到破壞,導(dǎo)致細(xì)胞或組織中的ROS過量產(chǎn)生和積累以及抗氧化系統(tǒng)失衡[35]ROS包括多種自由基,如 02- 、過氧自由基、烷氧基自由基和羥基自由基,以及非自由基如單線態(tài)分子氧、過氧化氫、有機(jī)氫過氧化物、次氯酸和臭氧,這些活性物質(zhì)在細(xì)胞內(nèi)累積可能導(dǎo)致多種疾病的發(fā)生發(fā)展[36]。高血糖是促使ROS產(chǎn)生過量導(dǎo)致氧化應(yīng)激的主要原因。高血糖誘導(dǎo)葡萄糖通多元醇途徑代謝,使ROS的產(chǎn)生增加,機(jī)體積累過量的ROS,打開線粒體通透性轉(zhuǎn)換孔,細(xì)胞內(nèi)Ca2+ 濃度增加,一系列凋亡酶和幾種炎癥介質(zhì)被激活,導(dǎo)致腎小球足細(xì)胞損傷[37]。除此之外 ROS還能通過激活MAPK通路,增加轉(zhuǎn)化生長因子-β(transforming growth factor -β ,TGF-β)的合成,激活磷脂酰肌醇3-激酶和蛋白激酶B(Phosphati-dylinositol 3 - kinase and protein kinase B, PI3K Akt)信號傳導(dǎo)途徑,加速ECM的增殖,促進(jìn)腎臟纖維化的發(fā)生發(fā)展;同時也能激活 NF-κB 和 NL-RP3炎癥復(fù)合體,最終導(dǎo)致DN的發(fā)生發(fā)展[38]
2LTD拮抗DN的分子機(jī)制
云南特色藥用植物燈盞花中的黃酮類化合物是一類重要的天然產(chǎn)物,具有保護(hù)心血管、抗炎、抗氧化、調(diào)節(jié)血糖和防治DN并發(fā)癥的作用[39]LTD是燈盞花中一種活性很強(qiáng)的黃酮類化合物,具有調(diào)節(jié)糖脂代謝、改善血管內(nèi)皮功能、抗炎、抗氧化等特性,包括抑制IL-6、 IL-1β 和腫瘤壞死因子-α(tumornecrosisfactor -α , TNF-α )等炎癥介質(zhì)的釋放和調(diào)節(jié) NF-κB 、PI3K/Akt和JAK-STAT通路等[40]。
2.1LTD對糖脂代謝的作用Wang等[41]通過分析LTD的藥代動力學(xué)特性發(fā)現(xiàn),其攝入可以通過系統(tǒng)循環(huán)作用于機(jī)體的下丘腦、肝臟、脂肪組織、腎臟和其他器官,從而改善脂質(zhì)和葡萄糖代謝,有利于改善糖脂代謝紊亂(glucosemetabolismdis-orders,GLMD),特別是胰島素抵抗,DM和肥胖。Filex 等[42]通過計(jì)算機(jī)模擬篩選發(fā)現(xiàn),LTD對AR具有更強(qiáng)的結(jié)合親和力并能抑制其在多元醇途徑中的作用,同時延遲微血管并發(fā)癥的發(fā)生。Qin等[43]通過光譜和分子相互作用發(fā)現(xiàn),LTD對AGEs有較強(qiáng)的抑制作用,能減少AGEs的積聚,從而減緩DN的進(jìn)展。Wang等[44]發(fā)現(xiàn)LTD能激活A(yù)MPK通路,調(diào)節(jié)AMPK和人叉頭框蛋白O1的表達(dá)水平,減輕腎臟葡萄糖代謝障礙和血脂異常,從而減輕腎損傷。Park 等[45]發(fā)現(xiàn)LTD 通過Akt/糖原合成酶激酶 3β (glycogen synthase kinase -3β ,GSK-3β )/微管相關(guān)蛋白(microtubule-associatedproteintau,Tau)信號通路,增強(qiáng)了海馬區(qū)的胰島素信號傳遞,促進(jìn)葡萄糖的快速攝取,抑制肝臟產(chǎn)生和釋放葡萄糖的過程,從而調(diào)節(jié)血糖。一項(xiàng)用LTD提取物治療肥胖小鼠的研究4表明,通過抑制糖異生和脂肪生成,改善了肝臟脂肪變性,對受損肝臟的葡萄糖生成產(chǎn)生了積極影響。LTD對高脂飲食與鏈脲佐菌素誘導(dǎo)的DM大鼠具有顯著的調(diào)節(jié)作用,能夠抑制丙二醛的升高,并提高超氧化物歧化酶、過氧化氫酶和谷胱甘肽等抗氧化劑的活性,增強(qiáng)過氧化物酶體增殖物激活受體 ∝ 的表達(dá),降低膽固醇?;D(zhuǎn)移酶-2與甾醇調(diào)節(jié)元件結(jié)合蛋白-2的表達(dá),從而減少血脂異常,改善GLMD[47]
2.2LTD 對血管內(nèi)皮的作用內(nèi)皮功能缺陷是DM并發(fā)癥的重要病理機(jī)制,因此改善內(nèi)皮功能障礙對治療DN起到關(guān)鍵作用[48]。Jia等[49]發(fā)現(xiàn)LTD能有效抑制 TNF-α 誘導(dǎo)的趨化因子單核細(xì)胞趨化蛋白-1、黏附分子細(xì)胞間黏附分子-1和血管細(xì)胞黏附分子-1的表達(dá),可防止主動脈內(nèi)膜層內(nèi)皮細(xì)胞的萌發(fā),并保留彈性纖維的微妙組織結(jié)構(gòu),能顯著降低 TNF-α 刺激的單核細(xì)胞與主動脈內(nèi)皮細(xì)胞的黏附,對 TNF-α 誘導(dǎo)的血管內(nèi)皮功能障礙具有保護(hù)作用。 Su 等[50]發(fā)現(xiàn)LTD能抑制RAS系統(tǒng),導(dǎo)致 AngII 的表達(dá)下調(diào),抑制對氧化還原敏感的信號分子的活化,進(jìn)而降低血管平滑肌細(xì)胞的增殖細(xì)胞核抗原表達(dá)并調(diào)節(jié)細(xì)胞生長,從而抑制血管平滑肌細(xì)胞增殖和遷移;同時減少AngII誘導(dǎo)的ROS過度生成和金屬蛋白酶的激活,進(jìn)而改善血管重塑。Assungao等[5通過使用不同濃度的LTD對大鼠靜脈內(nèi)皮細(xì)胞進(jìn)行培養(yǎng),觀察到在LTD 培養(yǎng)10分鐘后,細(xì)胞內(nèi)的NO水平顯著升高,同時ROS的產(chǎn)生量相應(yīng)減少。這一發(fā)現(xiàn)表明,LTD對血管內(nèi)皮具有多方面的保護(hù)作用。它能夠有效地減少ROS的產(chǎn)生,提高靜脈內(nèi)皮細(xì)胞中NO的利用率,并誘導(dǎo)3-硝基酪氨酸殘基的減少。此外,LTD還能提升內(nèi)皮前列環(huán)素的生物利用度,從而有助于維持血管內(nèi)皮細(xì)胞的穩(wěn)態(tài)。除此之外,LTD不僅能降低DM大鼠的體重、肥胖指數(shù)和膽固醇水平,而且通過在血管周圍脂肪組織中積累,能抑制血管氧化應(yīng)激和AGEs的積累,改善血管內(nèi)皮功能[52]。LTD 還可以抑制促炎細(xì)胞因子表達(dá)、擴(kuò)張血管,減輕DM誘導(dǎo)的內(nèi)皮依賴性松弛損傷,并防止與肥胖相關(guān)的全身代謝和血管改變[53]
2.3LTD對炎癥反應(yīng)及氧化應(yīng)激的作用高水平的葡萄糖和其他代謝物產(chǎn)生并釋放過量的ROS及多種炎癥因子和細(xì)胞因子,導(dǎo)致DN的腎功能惡化進(jìn)一步發(fā)展為終末期腎病[54]。Zhang 等[55]在對 DN小鼠進(jìn)行為期12周的LTD灌胃給藥后發(fā)現(xiàn),LTD能夠通過STAT3通路來抑制IL-1β、IL-6、TNF-α 等炎癥因子的釋放和氧化應(yīng)激反應(yīng),同時LTD還能改善DN小鼠的腎纖維化狀況,進(jìn)一步改善DN小鼠模型中的腎小球硬化和間質(zhì)纖維化,從而延緩DN的進(jìn)展。 Yu 等[56]發(fā)現(xiàn),LTD能緩解高糖誘導(dǎo)的小鼠腎足細(xì)胞的損傷并抑制NLRP3炎性小體復(fù)合物的形成及 IL-1β 分泌,同時通過阻止ROS的產(chǎn)生來抑制NLRP3炎性體的活化減輕腎損傷。已有研究發(fā)現(xiàn),LTD不僅能誘導(dǎo)AKT磷酸化從而抑制 NF-κBp65 核易位還能阻斷MAPK炎癥通路,從而下調(diào)IL-6,I-8等炎癥因子,減輕炎癥反應(yīng)[57]。Chen等[58]發(fā)現(xiàn)LTD能顯著降低DM大鼠的血糖和尿素氮水平,增加血清鈉和氯水平,同時能有效抑制腎臟糖蛋白沉積和膠原纖維的生成,抑制 NF-κB 介導(dǎo)的促炎因子產(chǎn)生,通過抑制PI3K/Akt信號通路的激活下調(diào)下游凋亡相關(guān)蛋白半胱天冬酶3的表達(dá),并增強(qiáng)核因子E2相關(guān)因子的依賴性抗氧化能力。LTD也能通過AMPK/mTOR途徑調(diào)節(jié)自噬相關(guān)基因改善大鼠的氧化應(yīng)激和細(xì)胞凋亡,減輕腎損傷[59]。
3討論與展望
DN的病理機(jī)制頗為復(fù)雜,涉及多條途徑和多個靶點(diǎn)的相互作用。LTD能夠通過AMPK/mTOR通路、PI3K/Akt通路、STAT3通路和MAPK通路等改善GLMD,調(diào)節(jié)氧化應(yīng)激和炎癥因子的釋放,保護(hù)腎臟血管內(nèi)皮,對DN的進(jìn)展產(chǎn)生一定的拮抗作用。然而,現(xiàn)階段的治療機(jī)制仍有一定的局限性。首先,雖然云南特有植物燈盞花中的LTD活性較高,但其含量較低,因此可以考慮對其進(jìn)行結(jié)構(gòu)修飾以獲得活性更強(qiáng)、產(chǎn)量更高、成藥性更佳、溶解性更好的LTD衍生物;其次,DN的病理機(jī)制尚未完全明確,不僅涉及糖脂代謝、血管/血液異常,還涉及氧化應(yīng)激、免疫炎癥等多種因素,因此探索其全面的靶點(diǎn)通路較為困難,可以考慮將多組學(xué)中的轉(zhuǎn)錄組學(xué)、蛋白組學(xué)、代謝組學(xué)與網(wǎng)絡(luò)藥理學(xué)相結(jié)合,并通過實(shí)驗(yàn)驗(yàn)證和數(shù)據(jù)分析來發(fā)現(xiàn)新的靶點(diǎn)通路;最后,盡管現(xiàn)有文獻(xiàn)發(fā)現(xiàn)LTD的拮抗機(jī)制與多條通路有關(guān),但大多數(shù)研究僅停留在疾病表象的蛋白表達(dá)層面,未能深人探究其拮抗機(jī)制以及LTD與之結(jié)合的靶點(diǎn)蛋白,明確其具體作用方式,因此仍需進(jìn)一步研究,為民族用藥的后續(xù)發(fā)展積累更多力量。
參考文獻(xiàn)
[1] MCELWAIN C,MCCARTHY F,MCCARTHY C. Gestational diabetes mellitus and maternal immune dysregulation:what we know so far[J].IntJMol Sci,2021,22 (8):42-61.
[2]SAMSU N,BELLINI MI. Diabetic Nephropathy:Challenges in Pathogenesis,Diagnosis,and Treatment [J]. BioMed ResInt,2021,2021[2314-6141(Electronic)]:1-17.
[3] KOPEL J, PENA - HERNANDEZ C,NUGENT K. Evolving spectrum of diabetic nephropathy [J]. World JDiabetes,2019,10(5):269-279.
[4]LVJJ,ZHOU D M,WANG Y,et al.Effects of luteolin on treatment of psoriasis by repressing HSP9O [J].Int Immunopharmacol,2020(79):60-70.
[5]VAJDI M,KARIMI A, KARIMI M, et al. Effects of luteolin on sepsis: A comprehensive systematic review [J]. Phytomedicine,2023(113):54-73.
[6] TAN C, FAN H, DING JH, et al. ROS -responsive nanoparticles fororal deliveryof luteolinand targeted therapy of ulcerative colitis byregulating pathological microenvironment[J]. Materials Today Bio,2022(14):100246.
[7]DING T,YI T T,LI Y,et al. Luteolin attenuates lupus nephritis by regulating macrophage oxidative stress via HIF -1α pathway[J].Eur JPharmacol,2023:953.
[8]AHMADI S M,F(xiàn)ARHOOSH R, SHARIF A,et al. Structure-antioxidant activity relationships of luteolin and Catechin[J].JFood Sci,2020,85(2):298-305.
[9]ZHANG ZX,WANGJH,LINY,etal. Nutritional activities of luteolin in obesity and associated metabolic diseases:an eye on adipose tissues [J]. Crit Rev Food Sci Nutr,2024,64(12):4016-30.
[10]FUQT,ZHONG XQ,CHEN M Y,et al. Luteolin - loaded nanoparticles for the treatment of melanoma [J]. International Journal of Nanomedicine,2023(18): 2053 -2068.
[11] GE TX,YANG JW, ZHOU SH,et al. The Role of the pentose phosphate pathway in diabetes and cancer [J]. Front Endocrinol(Lausanne),2020(11):365.
[12]LEE J,YUN J S,KO S H. Advanced Glycation End Products and Their Effect on Vascular Complications in Type2Diabetes Mellitus[J].Nutrients,2022,14 (15).
[13]DIABETES RESEARCH AND CLINICAL PRACTICEASADIPOOYA K,UY E M. Advanced glycation end produets(AGFs)recentor for aGEsdiahetesand hone. (10):1799-818.
[14]KHALID M,PETROIANU G,ADEM A. Advanced glycation end products and diabetes mellitus:mechanisms andperspectives[J].Biomolecules,2022,12 (4):542.
[15]OLIVEIRAIDA,LUCENAD MD S,RODRIGUESB D C,et al. From metabolism to disease:the biological roles of glutamine:fructose -6 - phosphate amidotransferase(GFAT)[J].Pure Appl Chem,2023,95(9): 1009 -26.
[16]BHUYAN P,SARMA S,GANGULY M,et al.Glutamine: Fructose - 6- phosphate aminotransferase (GFAT)inhibitory activityof the anthocyanins present in black rice bran:a probable mechanism for the anti diabetic effect[J].JMol Struct,2020(1222):128957.
[17] CARMAN L, NELSON M D. Measuring AMPK activity in vivo using a genetically-encoded biosensor[J]. FASEBJ,2022(36):704-714.
[18]ZHENGAMY,KWAKSE,BIRKJB,et al.Greater phosphorylation of AMPK and multiple AMPK substrates in the skeletal muscle of 24-month-old calorie restricted compared to ad-libitum fed male rats[J].JGerontol A Biol Sci Med Sci,2023,78(2):177-185.
[19]PACKER M.Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development:implications for understanding the effects of sodium - glucose cotransporter 2 - Inhibitors [J].JAm Soc Nephrol,2020,31(5):907-919.
[20]DUGAN L L,YOU Y H,ALI S S, et al. AMPK dysregulation promotes diabetes -related reduction of superoxide and mitochondrial function[J].J Clin Invest,2013, 123(11) : 4888-4899.
[21]FARIDVAND Y, KAZEMZADEH H, VAHEDIAN V, et al.Dapagliflozin attenuates high glucose - induced endothelial cell apoptosis and inflammation through AMPK/ SIRT1 activation [J].Clin Exp Pharmacol Physiol, 2022,49(6):643-651.
[22]VERAOD,WULFFH,BRAUNAP.Endothelial KCa channels:Novel targets to reduce atherosclerosis - driven vascular dysfunction[J].Front Pharmacol,2023(14): 1151244.
[23]MARTINEZ -ARROYO O,ORTEGA A,F(xiàn)LORES - CHOVA A,et al. High miR -126-3p levels associated with cardiovascular events in a general population [J]. Eur JIntern Med,2023(113):49-56.
[24]MARUHASHI T,HIGASHI Y. Pathophysiological association between diabetes mellitus and endothelial dysfunction[J].Antioxidants,2021,10(8):1306.
[25]SINGHV,KAURR,KUMARI P,et al. ICAM-1 and VCAM -1: Gatekeepers in various inflammatory and cardiovascular disorders [J]. Clin Chim Acta,2023 (548): 117487.
[26]JI Z Z,XU Y C. Melatonin protects podocytes from angiotensin II-induced injury inanin vitro diabetic nephropathy model[J]. Mol Med Report,2016,14(1): 920 -926.
[27] ZHANG Z Y, DENG S F,SHI Q W. Isoliquiritigenin attenuates high glucose -induced proliferation,inflammation,and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway [J].Naunyn Schmiedebergs Arch Pharmacol,2023, (397):123-131.
[28]REN Y,XIE W,YANG S,et al. Angiotensin-converting enzyme 2 inhibits inflammation and apoptosis in high glucose - stimulated microvascular endothelial cell damage by regulating the JAK2/STAT3 signaling pathway [J].Bioengineered,2022,13(4):10802-10810.
[29]YANG M,ZHANG C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences [J].JPharm Anal,2023,14(1):39-51.
[30]PEREZ - MORALES ROSA E,DEL PINO MARIA D, VALDIVIELSO JOSE M,et al. Inflammation in Diabetic Kidney Disease[J].Nephron,2019,143(1):12 -16.
[31] MERTOWSKI S, LIPA P, MORAWSKA I, et al. Toll - Like receptor as a potential biomarker in renal diseases [J].Int JMol Sci,2020,21(18):6712.
[32]RAM C, JHA A K, GHOSH A, et al. Targeting NLRP3 inflammasome as a promising approach for treatment of diabetic nephropathy:preclinical evidences with therapeutic approaches [J]. European Journal of Pharmacology, 2020:885.
[33]WU M, HAN W, SONG S, et al. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice [J].Mol Cell Endocrinol,2018(478):115-125.
[34]WU M,YANG Z, ZHANG C, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy[J].Metabolism,2021(118):154748.
[35]SCIOLI MG, STORTIG,D'AMICO F,et al. Oxidative stress and new pathogenetic mechanisms in endothelial dysfunction:potential diagnostic biomarkers and therapeutic targets[J]. J Clin Med,2020,9(6):1995.
[36] SIES H, JONES D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents [J]. Nat Rev Mol Cell Biol,2020,21(7):363-383.
[37] SAGOO M K, GNUDI L. Diabetic nephropathy: Is there a role for oxidative stress?[J].Free Radic Biol Med, 2018(116): 50-63.
[38]FAKHRUDDIN S,ALANAZI W,JACKSONKE. Diabetes - induced reactive oxygen species: mechanism of their generation and role in renal injury[J].JDiabetes Res,2017:1-30.
[39]CARO -ORDIERES T,MARIN -ROYO G,OPAZO - RiOSL,et al. The coming age of flavonoids in the treatment of diabetic complications[J].JClin Med,2020,9 (2):346.
[40]AZIZ N,KIM M Y,CHO JY.Anti-inflammatory effects of luteolin:A review of in vitro,in vivo,and in silico studies[J].JEthnopharmacol,2018(225): 342 -358.
[41] WANG Z Y, ZENG M M,WANG Z J, et al. Dietary luteolin:a narrative review focusing on Its pharmacokinetic properties and effects on glycolipid metabolism[J]. JAgric Food Chem,2021,69(5):1441-1454.
[42]OTIENO F,KAGIA R. Virtual sereening for chemical analogues similar to phytochemicals that inhibit aldose reductase in the development of diabetic microvascular complications [J].F1000 Research,2023,12.
[43]QIN C,LI Y, ZHANG Y,et al. Insights into oat polyphenols constituent against advanced glycation end products mechanism by spectroscopy and molecular interaction [J].Food Bioscience,2021(43):101313.
[44]WANGXR,ZHANGKL,ALI W,et al.Luteolin alleviates cadmium - induced metabolism disorder through antioxidant and anti-inflammatory mechanisms in chicken kidney[J].Poult Sci,2024,103(7):103817.
[45]PARK S,KIM D S,KANG S,et al. The combination of luteolin and l - theanine improved Alzheimer disease likesymptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid - β -infused rats[J].Nutr Res,2018(60):116-131.
[46]KWONEY,KIMSY,CHOIMS.Luteolin-enriched artichoke leaf extract alleviates the metabolic syndrome in mice with high-fat diet-induced obesity[J].Nutrients,2018,10(8):979.
[47]SHEHNAZ S I,ROY A, VIJAYARAGHAVAN R, et al. Luteolin mitigates diabetic dyslipidemia in rats by modulating ACAT -2, PPARα, SREBP -2 Proteins,and oxidative stress[J].Appl Biochem Biotechnol,2O23,195 (8):4893-4914.
[48]YANG S,MAC,WUH,etal.Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway [J]. Pharmacol Res,2020(153):104678.
[49]JIA Z,NALLASAMYP,LIUD,et al.Luteolin protects against vascular inflammation in mice and TNF- alpha - induced monocyte adhesion to endothelial cels via suppressing IKBα/NF - kB signaling pathway [J]. J Nutr Biochem,2015,26(3):293-302.
「50]SU J. XU H T.YUJJ.et al. Luteolin Ameliorates Hvpertensive Vascular Remodeling through Inhibitingthe Proliferation and Migration of Vascular Smooth Muscle Cells[J].Evid Based Complement Alternat Med,2015 (2015):1-14.
[51]ASSUNCAO HCR,CRUZYMC,BERTOLINOJS,et al.Protective effects of luteolin on the venous endothelium[J].MolCellBiochem,2021,476(4):1849 -1859.
[52] QUEIROZ M,LEANDRO A,AZUL L,et al. Luteolin improves perivascular adipose tissue profile and vascular dysfunction in goto-kakizaki rats[J].IntJMol Sci, 2021,22(24):13671.
[53]GENTILED,F(xiàn)ORNAI M,PELLEGRINIC,etal.Luteolin prevents cardiometabolic alterations and vascular dysfunctioninmicewithHFD-inducedobesity[J].Front Pharmacol,2018(9):1094.
[54]WANGLP,GAOYZ,SONGB,etal.MicroRNAs in theprogress of diabetic nephropathy:a systematic review andmeta-analysis[J].Evid Based ComplementAlternat Med,2019:1-9.
[55]ZHANG M,HEL,LIUJ,etal.Luteolin attenuates diabeticnephropathy through suppressing inflammatoryresponse and oxidative stress by inhibiting STAT3 pathway [J].Exp Clin Endocrinol Diabetes,2021,129(10): 729 -739.
[56]YUQ,ZHANGMD,QIANLF,etal.Luteolinattenuates high glucose-induced podocyte injury via suppressingNLRP3 inflammasome pathway[J].Life Sci,2019 (225):1-7.
[57]HUANGWC,LIOUCJ,SHENSC,etal.LuteolinattenuatesIL-1β-induced THP-1 adhesion to ARPE19 cells via suppression of NF- kB and MAPK pathways [J].Mediators Inflamm,2020 (2020):1-15.
[58]CHENLY,CHENGHL,LIAOCK,etal.Luteolin improvesnephropathyin hyperglycemic rats throughanti - oxidant,anti-inflammatory,and anti-apoptotic mechanisms[J]. J Funct Foods,2023 (102):105461.
[59]XUX,YUZ,HANB,etal.Luteolinalleviatesinorganicmercury-induced kidney injuryvia activation of the AMPK/mTOR autophagy pathway[J]. J Inorg Biochem, 2021(224):111583. (收稿日期:2024-09-09編輯:劉斌)