中圖分類號R979.1;R737.25 文獻標(biāo)志碼A 文章編號 1001-0408(2025)13-1683-06
DOI 10.6039/j.issn.1001-0408.2025.13.22
Progress in the application of microtubulin inhibitors in prostate cancer
GUO Nan,DOU Baokai,ZHANG Jing(Dept.of Pharmacy,Provincial Hospital Afiliated to Shandong Firs MedicalUniversity,Jinan ,China)
ABSTRCTWhenprostatecancer(PCa)progreses tothemetastaticcastration-resistantstage,significantchalengesarisein clinicaltreatment.Microtubulinibitorshavebcomefis-liedugsforthetreamentofmetastaticastratio-resistantPCaduto their uniqe mechanismofaction.Among them,taxanes (.g.docetaxeland cabazitaxel)remainstandardcare with proven survival benefits,whileothermicrotubuleinhbitors(e.g.vincristine,colchicine)showlimitedclinicalutiltyduetotoxicity.Curently,the clinicalappoachprimarilyemploysdocetaxel-basedtripletherapyandcombinedwithimmunecheckpointinhbitorstoimprovethe prognosisofPCapatients,reversetheimmunosuppresive stateof the tumor microenvironment,and enhance therapeutic eicacy. DespitetheremarkableclinicaleffcacyofmicrotubuleinhibitorsinthetreatmentofPCa,theemergenceofdrugresistancehas limitedtheirlong-termaplication.Toaddressthisisue,researchershaveexplorednewsolutions,includingthedevelopmentof novelmicrotubuleiibitorsincombinationwithATP-bindingcasetesufamilyBmemberlihibitors,theconcuentuseoffatty acidsynthaseinhibitorswithmicrotubuleinhibitors,andthedevelopmentofdegradersbasedonproteolysis-targetingchimeras technology.Futureresearchshouldfocusontargetdiscovery,drugformulationoptimization,andpersonalizedapproachesto overcome current therapeutic limitations.
KEYWORDSprostatecancer;metastaticcastration-resistantprostatecancer;microtubuleinhibitors;docetaxel;combination therapy;drug resistance
前列腺癌(prostatecancer,PCa)是男性常見的惡性腫瘤,其發(fā)病率在美國癌癥中居首位[1,在我國的發(fā)病率也逐漸上升2。PCa具有轉(zhuǎn)移性,常發(fā)展為轉(zhuǎn)移性激素敏感性前列腺癌(metastatichormone-sensitiveprostatecancer,mHSPC)。雄激素剝奪治療(androgendepriva-tiontherapy,ADT)是其核心療法,可通過降低雄激素水平抑制腫瘤生長,但多數(shù)患者會進展為轉(zhuǎn)移性去勢抵抗性前列腺癌(metastatic castration-resistant prostate cancer,mCRPC),導(dǎo)致治療困難[3。近年來,微管蛋白抑制劑因其獨特作用機制成為mCRPC的一線治療藥物[4]。
微管蛋白是細胞骨架核心,主要含 α,β 兩種類型,可通過動態(tài)組裝形成微管結(jié)構(gòu),對細胞分裂至關(guān)重要;一旦微管蛋白平衡被干擾,即可抑制腫瘤細胞有絲分裂,誘導(dǎo)腫瘤細胞凋亡。此外,微管蛋白還參與了雄激素受體(androgenreceptor,AR)的核轉(zhuǎn)運過程,AR與雄激素結(jié)合后,可通過微管網(wǎng)絡(luò)進入細胞核,推動細胞增殖、遷移及上皮間質(zhì)轉(zhuǎn)化,對PCa進展至關(guān)重要。微管蛋白抑制劑可分為兩類,一類是可促進微管蛋白聚合、穩(wěn)定微管、阻滯細胞周期并誘導(dǎo)細胞凋亡的紫杉烷類藥物;另一類是可抑制微管聚合、破壞微管蛋白平衡的長春新堿類和秋水仙堿類藥物。兩類皆不受基因突變和腫瘤免疫環(huán)境影響,適用范圍廣泛,且聯(lián)合治療潛力巨大,能與激素類藥物、免疫檢查點抑制劑等協(xié)同增效?;诖耍疚臄M對微管蛋白抑制劑在PCa中的應(yīng)用進展歸納綜述,包括臨床療效、聯(lián)合應(yīng)用新策略、耐藥機制及應(yīng)對策略等,以期為PCa臨床治療方案的優(yōu)化提供新思路。
1微管蛋白抑制劑的臨床療效
1.1紫杉烷類微管蛋白抑制劑
1.1.1 紫杉醇
作為紫杉烷類藥物中首個被應(yīng)用于癌癥化療的藥物,紫杉醇在抗腫瘤研究中展現(xiàn)出重要意義。紫杉醇可通過增加活性氧積累,促進缺氧誘導(dǎo)因子 1αα 表達,激活c-JunN末端激酶/胱天蛋白酶3信號通路,從而促進PCaPC3M細胞凋亡。紫杉醇雖具有抗腫瘤活性,但不良反應(yīng)(如周圍神經(jīng)病變、中性粒細胞減少和黏膜炎等)明顯,臨床應(yīng)用時需監(jiān)測其不良反應(yīng)并調(diào)整劑量,因此在用于PCa中受到限制。雖然相關(guān)研究發(fā)現(xiàn)紫杉醇與卡鉑聯(lián)合應(yīng)用耐受性較好[,但隨著多西他賽等更優(yōu)藥物的出現(xiàn),紫杉醇被逐漸替代。
1.1.2 多西他賽
多西他賽是一種半合成紫杉醇衍生物,相比于紫杉醇,其對微管蛋白的親和力更強,血漿半衰期更長,穩(wěn)定微管的效率更高。在mCRPC治療中,多西他賽單藥治療的中位總生存(overallsurvival,OS)期為13.89個月,中位無進展生存(progression-freesurvival,PFS)期為5.29個月,可顯著延長患者生存時間并延緩疾病進展[]。即使在多種治療方案失敗后,多西他賽仍對mCRPC患者有效[12]。一項回顧性研究分析了150例經(jīng)AR靶向藥物治療失敗后的mCRPC患者,發(fā)現(xiàn)多西他賽聯(lián)合卡鉑治療的客觀緩解率是多西他賽單藥治療的2.6倍;聯(lián)合組患者30個月的OS率為 70.7% ,顯著高于多西他賽單藥組的 38.9% 和卡巴他賽單藥組的 30.3%[13] 。因此,多西他賽可作為AR靶向藥物治療失敗后的有效治療選擇。
延長患者從mHSPC進展到mCRPC的時間是改善晚期PCa患者預(yù)后的關(guān)鍵。在mHSPC治療中,3項隨機對照試驗(CHAARTED、GETUG-15和STAMPEDE研究)證實,多西他賽聯(lián)合ADT可顯著延長患者的OS期[風(fēng)險比(hazardratio,HR) 置信區(qū)間(confi-dence interval,CI)(0.70,0.88), Plt;0.000 1]、PFS期Δ[HR=0.70,95%CI(0.63,0.77) ! Plt;0.000 1] 和無失敗生存(failure-freesurvival,F(xiàn)FS)期[H R=0.64,95%CI(0.58 0.71), Plt;0.000 1],5年絕對改善率為 9%~11%[14] 。然而,多西他賽的療效受轉(zhuǎn)移瘤體積和臨床分期影響,高瘤負荷、臨床T4期患者獲益最大,治療第5年時患者的生存獲益最為顯著[PFS率為 27%,95%CI(17%,37%) :OS率為 35%,95%CI(24%,47%)] ,而低瘤負荷合并后續(xù)轉(zhuǎn)移患者獲益不明顯[PFS率為 -1% 95%CI(-15% ,12% );OS率為 0% 95%CI(-10%,12%)]14] 。因此,雖然多西他賽可顯著延長高瘤負荷mHSPC患者的OS期,但低瘤負荷合并后續(xù)轉(zhuǎn)移患者可能還需要其他的治療方法。
1.1.3 卡巴他賽
卡巴他賽是第2代紫杉烷類抗腫瘤藥物,具有強大的細胞毒性和誘導(dǎo)細胞凋亡能力[5,被美國國立綜合癌癥網(wǎng)絡(luò)(National Comprehensive Cancer Network,NCCN)推薦為mCRPC在多西他賽和新型激素療法干預(yù)后的首選治療方案,尤其適用于多西他賽治療后病情進展的患者[1。相比傳統(tǒng)紫杉烷類藥物,卡巴他賽減少了脫發(fā)和外周神經(jīng)病變等不良反應(yīng),但中性粒細胞減少的發(fā)生率較高。該不良反應(yīng)可通過調(diào)整劑量有效管理,如將 25mg/m2 、每3周1次的給藥方案調(diào)整為 16mg/m2 每2周1次,可顯著降低mCRPC患者3級或以上中性粒細胞減少的發(fā)生率( 62.5% VS. 5.1% )[],這為在不影響卡巴他賽療效的前提下提供了更安全的治療選擇。另外,卡巴他賽在患者疼痛緩解、生活質(zhì)量改善等方面相較于AR靶向劑更好,其疼痛緩解率為 46% ,顯著高于阿比特龍/恩雜魯胺對照組的 19%(Plt;0.000 1) ;其PCa治療功能評估問卷總評分中惡化時間的中位數(shù)也優(yōu)于對照組[14.8個月vs.8.9個月, HR=0.72,95%CI(0.44,1.20), P=0.21] ;其PFS期也顯著長于對照組[8.0個月vs.3.7個月, HR=0.54,95%CI(0.40,0.73) Plt;0.001][18] 。由此可知,卡巴他賽在mCRPC治療中療效顯著,可通過優(yōu)化劑量有效控制不良反應(yīng),是mCRPC二線治療的重要選擇。
1.2長春新堿類微管蛋白抑制劑
1.2.1 長春新堿
長春新堿作為一種經(jīng)典的抗腫瘤藥物,其抗腫瘤效應(yīng)主要通過抑制微管蛋白聚合來實現(xiàn)。然而,由于其選擇性較低且神經(jīng)毒性較高,故其在PCa治療中的應(yīng)用受到限制。近年來,體外及動物模型研究揭示了其聯(lián)合治療策略(例如長春新堿與西地那非的聯(lián)合應(yīng)用)以及創(chuàng)新性藥物遞送系統(tǒng)(例如透明質(zhì)酸包裹的硫醇化殼聚糖納米制劑)的潛力[19-20]。研究顯示,長春新堿與西地那非聯(lián)合可顯著抑制PCa腫瘤生長,使腫瘤體積減小約80%[19] ;上述納米制劑可將長春新堿的釋放時間延長,并降低全身毒性[2]。此外,溶瘤麻疹病毒與長春新堿聯(lián)合制成的納米制劑可顯著降低PC3細胞的活力,具有良好的應(yīng)用前景2]。未來需通過更多臨床試驗來驗證聯(lián)合治療及遞送系統(tǒng)的安全性和有效性,以期克服長春新堿的毒性限制。
1.2.2 長春瑞濱
長春瑞濱是長春新堿的衍生物,其神經(jīng)毒性低于長春新堿,骨髓抑制為其劑量限制性毒性。一項Ⅱ期臨床試驗中,41例化療耐藥的PCa患者接受長春瑞濱(30mg/d ,每周3次)聯(lián)合地塞米松( 1mg/d) 治療,結(jié)果顯示,長春瑞濱組患者的中位PFS期為4個月 [95%CI (2.8,6.9)],0S期為17.5個月 [95%000.1(10.8,24.5)] ,且毒性輕微[22]。一項I期臨床試驗結(jié)果顯示,替西羅莫司聯(lián)合長春瑞濱治療晚期實體瘤的最大耐受劑量為替西羅莫司25mg (每周1次)和長春瑞濱 20mg/m2 (每2周1次);該研究共人組了19例患者,其中2例為PCa患者,結(jié)果發(fā)現(xiàn),1例PCa患者的癥狀部分緩解,1例PCa患者病情穩(wěn)定,表明上述兩藥的耐受性良好[23]。然而,由于樣本量太小,后續(xù)仍需進一步擴大樣本量來探索長春瑞濱與其他藥物的協(xié)同作用,開發(fā)更有效的治療策略。
1.3 秋水仙堿
秋水仙堿是一種經(jīng)典的抗有絲分裂藥物,其可通過抑制微管蛋白聚合,阻止細胞有絲分裂,誘導(dǎo)細胞凋亡,從而發(fā)揮抗腫瘤作用;還可通過抑制NOD樣受體蛋白3炎癥小體激活,減少腫瘤微環(huán)境中的炎癥反應(yīng),從而抑制腫瘤生長[24-25]。秋水仙堿可克服多藥耐藥,尤其是紫杉烷類藥物耐藥[2]。研究顯示,秋水仙堿對PC3細胞的半數(shù)抑制濃度為 22.99ng/mL ,可使細胞周期停滯在 G2/ M期,降低線粒體膜電位,并提高早期和晚期凋亡細胞比例2]。盡管如此,秋水仙堿的臨床應(yīng)用仍受限于其骨髓抑制和胃腸道反應(yīng)等全身毒性,故尚未獲批用于PCa治療。未來需通過更多臨床試驗來驗證其安全性和有效性,以充分發(fā)揮其在PCa治療中的作用。
2微管蛋白抑制劑聯(lián)合療法在PCa治療中的新策略
2.1基于多西他賽的三聯(lián)療法
三聯(lián)療法中,多西他賽與ADT及AR通路抑制劑聯(lián)合應(yīng)用可顯著提高抗腫瘤療效。ARASENS研究結(jié)果顯示,ADT聯(lián)合達羅他胺和多西他賽治療,可顯著延長mHSPC患者的OS期 [HR=0.68,95%CI(0.57,0.80)] ,這一生存獲益在各個亞組(包括初治患者、復(fù)發(fā)患者、高/低腫瘤負荷患者以及高/低?;颊撸┲芯3忠恢耓28]。日本Ⅲ期ARASENS亞組分析結(jié)果進一步證實,三聯(lián)療法可顯著延緩mHSPC患者進展至mCRPC,且安全性和耐受性良好[29]。因此,三聯(lián)療法已被多項國際指南推薦為mHSPC的標(biāo)準(zhǔn)治療方案。
2.2 聯(lián)用免疫檢查點抑制劑
近年來,免疫療法在腫瘤治療中發(fā)展?jié)摿^大,但其在PCa中效果有限,這可能與PCa免疫浸潤少、T細胞活性低及程序性死亡受體1(programmeddeath-1,PD-1)/程序性死亡受體配體1(programmeddeath-ligand1,PD-L1)高表達有關(guān)[30]。多西他賽和卡巴他賽能調(diào)節(jié)免疫微環(huán)境,逆轉(zhuǎn)PCa免疫抑制,例如多西他賽可激活環(huán)鳥苷酸-腺苷酸合成酶/干擾素基因刺激因子信號通路,促進干擾素傳導(dǎo),增強淋巴細胞浸潤[31]。一項針對30名mCRPC患者的研究顯示,多西他賽聯(lián)合替雷利珠單抗(PD-1抑制劑)治療相比于替雷利珠單抗單藥治療,可顯著延長患者中位PFS期3.12個月vs.1.70個月, P= 0.0044][31]。由此可知,微管蛋白抑制劑與免疫檢查點抑制劑聯(lián)用具有很大潛力,有望改善PCa免疫治療效果,但需更多臨床試驗驗證。
3微管蛋白抑制劑在PCa中的耐藥機制及解決方案
盡管微管蛋白抑制劑在PCa治療中取得了顯著的臨床療效,但出現(xiàn)的耐藥問題限制了其長期應(yīng)用。其耐藥機制復(fù)雜,涉及微管蛋白結(jié)構(gòu)改變、藥物外排增強等,為此研究者們開發(fā)了新型微管蛋白抑制劑(如VERU-111、ABI-231)。筆者總結(jié)了微管蛋白抑制劑在PCa中的耐藥機制及解決方案,以期為耐藥PCa患者提供更有效的治療選擇。
3.1微管蛋白抑制劑在PCa中的耐藥機制
3.1.1 ABCB1介導(dǎo)的藥物外排增加
PCa對微管蛋白抑制劑(尤其是紫杉烷類藥物)的耐藥性復(fù)雜,涉及細胞內(nèi)在改變和腫瘤微環(huán)境,主要耐藥機制為三磷酸腺苷(adenosinetriphosphate,ATP)結(jié)合盒亞家族B成員1(ATP-bindingcassettesubfamilyBmem-ber1,ABCB1)通過水解ATP將抗癌藥物泵出腫瘤細胞,降低藥物濃度,削弱療效[32。研究表明,ABCB1過表達可導(dǎo)致PCa細胞對多西他賽和卡巴他賽耐藥,未經(jīng)化療的PCa患者ABCB1表達較低,而其經(jīng)多西他賽治療后ABCB1表達顯著升高[33]
3.1.2 微管蛋白亞型表達異常
微管蛋白亞型表達異常,特別是微管蛋白β3(tubu-linβ3,TUBB3)過表達會加速微管的解聚速率,抑制磷酸酶和張力蛋白同源物的表達,激活磷脂酰肌醇3-激酶蛋白激酶B信號通路,增強腫瘤細胞耐藥性;另外,TUBB3還可介導(dǎo)多西他賽和卡巴他賽的交叉耐藥[34]。因此,TUBB3或?qū)⒊蔀樽仙纪轭愃幬锏哪退幧飿?biāo)志物,有助于治療前預(yù)測反應(yīng),優(yōu)化治療方案,避免耐藥。
3.1.3 信號通路異常激活
多西他賽耐藥PCa細胞中的白細胞介素11(inter-leukin-11,IL-11)自分泌增加,從而激活Janus激酶1(Ja-nuskinase1,JAK1)/信號轉(zhuǎn)導(dǎo)及轉(zhuǎn)錄活化因子4(signaltransducerandactivatoroftranscription4,STAT4)信號通路,進一步STAT4磷酸化入核并與環(huán)磷酸腺昔反應(yīng)元件結(jié)合蛋白結(jié)合,調(diào)控抗凋亡基因表達,增強腫瘤細胞存活能力和DNA修復(fù)能力,從而抵抗多西他賽的細胞毒性作用[35]。此外,在多西他賽耐藥PCa細胞中,Notch3表達上調(diào)并與TUBB3結(jié)合,從而激活促分裂原活化的蛋白質(zhì)激酶(mitogen-activated proteinkinase,MAPK)信號通路,進而增強耐藥性;同時,MAPK信號通路還可調(diào)控脂質(zhì)代謝,改變細胞膜組成和流動性,減少藥物攝取和分布[3]。
3.1.4 脂質(zhì)代謝重編程
脂質(zhì)代謝重編程可顯著影響PCa對多西他賽的耐藥性。與多數(shù)腫瘤細胞依賴糖酵解產(chǎn)生能量的Warburg效應(yīng)不同,PCa細胞主要靠脂肪酸氧化來獲取能量[]。研究顯示,無脂肪飼料喂養(yǎng)可延長PCa異種移植小鼠的OS期,延緩mHSPC向mCRPC轉(zhuǎn)化[38]。PCa細胞脂代謝紊亂可導(dǎo)致脂肪酸合成酶(fattyacidsynthase,F(xiàn)ASN)過度表達,驅(qū)動脂肪酸合成,從而導(dǎo)致脂質(zhì)堆積,阻礙靶向微管蛋白的功能,增強耐藥性[39]。
3.2微管蛋白抑制劑耐藥的解決方案
3.2.1開發(fā)新型微管蛋白抑制劑與ABCB1抑制劑
VERU-111是一種新型秋水仙堿類微管蛋白抑制劑,能抑制微管蛋白β轉(zhuǎn)錄,誘導(dǎo)微管解聚,抗腫瘤效果顯著。該藥物半數(shù)抑制濃度低,非ABCB1底物,對耐藥PCa細胞系抗增殖效果顯著。在 Ib/I 期試驗中,VERU-111表現(xiàn)出良好的耐受性和療效,中位PFS期達12個月,目前已進入Ⅲ期研究[40]。ABI-231同為新型秋水仙堿類微管蛋白抑制劑,能抑制微管蛋白聚合,誘導(dǎo)腫瘤細胞凋亡,克服紫杉醇耐藥PC-3細胞的耐藥性,脫靶風(fēng)險低[41]。此外,已獲美國FDA批準(zhǔn)的新型ABCB1抑制劑(如 elacridar、zosuquidar、laniquidar和 tariquidar等)正在開發(fā)中,這些藥物在實驗?zāi)P椭酗@示出逆轉(zhuǎn)紫杉烷類藥物耐藥的潛力,但在Ⅱ期臨床試驗中因低特異性和毒性問題,應(yīng)用有限[42]。最新研究表明,非ABCB1底物藥物吉西他濱向?qū)ψ仙纪轭愃幬锬退幍腜Ca細胞展現(xiàn)出強烈的細胞毒性,有望為耐藥PCa患者提供新的治療選擇[43]
3.2.2聯(lián)合使用FASN抑制劑與微管蛋白抑制劑
FASN抑制劑與微管蛋白抑制劑的聯(lián)合使用,為解決PCa對紫杉烷類藥物耐藥提供了新途徑。研究表明,F(xiàn)ASN抑制劑(如TVB-3166、Fasnall)與多西他賽在對紫杉烷類藥物耐藥的PCa細胞(如PC3-TxR、DU145-TxR細胞)中顯示出明顯的協(xié)同效應(yīng),可顯著降低腫瘤細胞活力[44]。這表明FASN抑制劑能有效提升微管靶向藥物的抗腫瘤效果,為克服紫杉醇耐藥提供了新的治療思路。
3.2.3 基于PROTAC技術(shù)開發(fā)降解劑
蛋白質(zhì)降解靶向嵌合體(proteolysis-targetingchimeras,PROTAC)技術(shù)利用細胞的泛素-蛋白酶體系統(tǒng),促使蛋白質(zhì)降解來對抗腫瘤耐藥,與常規(guī)抑制劑相比,不易受突變影響,有望解決傳統(tǒng)藥物耐藥問題[4?;衔?f作為一種基于PROTAC技術(shù)開發(fā)的新型降解劑,可通過降解細胞色素P4501B1(cytochromeP450family1subfamilyBmember1,CYP1B1),顯著降低PCaDU145細胞對多西他賽的耐藥性,且對CYP1B1的選擇性指數(shù)為140.1,表現(xiàn)出良好的降解效率和選擇性;此外,其生物利用度較高,有望減少非特異性毒性[4。這種基于PROTAC技術(shù)的靶向降解策略在PCa耐藥治療中具有廣闊的應(yīng)用前景,值得進一步深入研究。
4總結(jié)與展望
靶向微管蛋白的抗癌策略在PCa治療中潛力顯著。紫杉烷類藥物(如多西他賽、卡巴他賽)能抑制腫瘤生長并緩解免疫抑制,但長期使用易引發(fā)耐藥、中性粒細胞減少、神經(jīng)病變等副作用。為此,研究者們探索了多種新策略:一是開發(fā)靶向其他微管蛋白結(jié)合位點的藥物,包括能夠減少體內(nèi)毒性的納米制劑(如長春新堿納米制劑)和能克服TUBB3及ABCB1耐藥的新型抑制劑(如秋水仙堿位點抑制劑),但安全性仍需驗證;二是采用雙靶點策略,聯(lián)合微管蛋白抑制劑與其他小分子藥物,以應(yīng)對藥物外排增加等多重耐藥機制,但可能引發(fā)新的耐藥問題。近年來,PROTAC技術(shù)因其獨特的蛋白降解機制受到關(guān)注,可靶向傳統(tǒng)不可成藥靶點,有望克服耐藥性,然而,基于該技術(shù)制備的藥物分子量較大,易導(dǎo)致遞送困難,后續(xù)仍需進一步優(yōu)化遞送系統(tǒng)。
參考文獻
[1] DESAIK,BARALOB,KULKARNIA,etal.Cancer statistics:the United States Vs.worldwide[J].JClin Oncol, 2024,42(Suppl.16) :e23276.
[2] XIACF,DONG X S,LIH,et al. Cancer statisticsin ChinaandUnitedStates,2022:profiles,trends,anddeterminants[J].ChinMedJ(Engl),2022,135(5):584-590.
[3] FERRETTIS,MERCINELLIC,MARANDINOL,etal. Metastatic castration-resistant prostate cancer:insightson current therapy and promising experimental drugs[J].Res RepUrol,2023,15:243-259.
[4]LOWRANCE W T,MURAD M H,OH W K,et al. Castration-resistant prostate cancer: AUA guideline amendment 2018[J]. JUrol,2018,200(6):1264-1272.
[5]CHEN Q H. Crosstalk between microtubule stabilizing agents and prostate cancer[J]. Cancers (Basel),2023,15 (13):3308.
[6]WANG L,KONG B,WANG JQ,et al. A novel targeted microtubules transformable nanopeptide system yields strong anti-prostate cancer effects by suppressing nuclear translocation of androgen receptors[J]. Adv Mater,2024, 36(48):e2407826.
[ 7]YAKKALA PA, KAMAL A. Dual-targeting inhibitors inVolving tubulin for the treatment of cancer[J].Bioorg Chem,2025,156:108116.
[8]ZHANG Y,TANG YD,TANG XQ,et al. Paclitaxel induces the apoptosis of prostate cancer cells via ROSmediated HIF-1α expression[J]. Molecules,2022,27 (21):7183.
[9]CHEN C S,SMITH EML,STRINGER KA,et al. Cooccurrence and metabolic biomarkers of sensory and motor subtypes of peripheral neuropathy from paclitaxel[J]. Breast Cancer Res Treat,2022,194(3):551-560.
[10]KENTEPOZIDIS N,SOULTATI A,GIASSAS S,et al. Paclitaxel in combination with carboplatin as salvage treatment in patients with castration-resistant prostate cancer: a Hellenic oncology research group multicenter phase I study[J].Cancer Chemother Pharmacol,2012,70(1): 161-168.
[11]BYEON S,KIM H,KIM J,et al. Docetaxel rechallenge in metastatic castration-resistant prostate cancer: a retrospective,single-center study[J]. Investig Clin Urol,2020,61 (6):588-593.
[12]鄭軍,郭文浩,李世健,等.多西他賽治療轉(zhuǎn)移性去勢抵 抗性前列腺癌患者的劑量選擇及預(yù)后影響因素分析[J]. 國際泌尿系統(tǒng)雜志,2022,42(4):599-603.
[13]KWON E D,SHAH P H,et al. Therapeutic sequencing improves outcomes for patients with progressive mCRPC [J].Prostate,2020,80:1216-1224.
[14]VALE C L,F(xiàn)ISHER D J,GODOLPHIN PJ,et al. Which patients with metastatic hormone-sensitive prostate cancer benefit from docetaxel:a systematic review and metaanalysis of individual participant data from randomised trials[J].Lancet Oncol,2023,24(7) :783-797.
[15]CEVIK O,ACIDERELI H,TURUT F A,et al. Cabazitaxel exhibits more favorable molecular changes compared to other taxanes in androgen-independent prostate cancer cells[J].JBiochem Mol Toxicol,2020,34(9): e22542.
[16]SCHAEFFER E M,SRINIVAS S,ADRA N, et al. Prostate cancer,version 4.2023,NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw,2023,21 (10) :1067-1096.
[17]OUDARD S,RATTA R,VOOG E,et al. Biweekly vs. triweekly cabazitaxel in older patients with metastatic castration-resistant prostate cancer: the CABASTY phase 3randomized clinical trial[J]. JAMA Oncol,2023,9(12) : 1629-1638.
[18]FIZAZI K,KRAMER G,EYMARD JC,et al. Quality of lifein patients with metastatic prostate cancer following treatment with cabazitaxel versus abiraterone or enzalutamide (CARD):an analysis of a randomised, multicentre, open-label,phase 4 study[J].Lancet Oncol,2020,21(11): 1513-1525.
[19]HSU JL,LEU WJ,HSU L C,et al. Phosphodiesterase type 5 inhibitors synergize vincristine in killing castrationresistant prostate cancer through amplifying mitotic arrest signaling[J]. Front Oncol,2020,10:1274.
[20]NASEER F,AHMAD T,KOUSAR K,et al. Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer:a multifunctional targeted drug delivery approach[J]. JDrug Deliv Sci Technol,2022,74:103545.
[21]ANJUM S,NASEER F,AHMAD T,et al. Co-delivery of oncolytic virus and chemotherapeutic modality:vincristine against prostate cancer treatment:a potent virochemotherapeutic approach[J].JMed Virol,2024,96(7): e29748.
[22]DI DESIDERO T,DEROSA L,GALLI L,et al. Clinical, pharmacodynamic and pharmacokinetic results of a prospective phase I study on oral metronomic vinorelbine and dexamethasone in castration-resistant prostate cancer patients[J]. Invest New Drugs,2016,34(6) :760-770.
[23]PIATEK C I,RAJA G L,JI L Y,et al. Phase I clinical trial of temsirolimus and vinorelbine in advanced solid tumors[J].Cancer Chemother Pharmacol,2014,74(6): 1227-1234.
[24]KUREK J,MYSZKOWSKI K,OKULICZ-KOZARYN I, et al.Cytotoxic,analgesic and anti-inflammatory activity of colchicine and its C-10 sulfur containing derivatives[J]. Sci Rep,2021,11(1):9034.
[25]HU JX,XUJM,ZHAO JL,et al. Colchicine ameliorates short-term abdominal aortic aneurysms by inhibiting the expression of NLRP3 inflammasome components in mice [J].EurJPharmacol,2024,964:176297.
[26]YANG JJ,SONG D K,LIB Q,et al. Replacing the tropolonic methoxyl group of colchicine with methylamino increases tubulin binding afinity with improved therapeutic index and overcomes paclitaxel cross-resistance[J]. Drug Resist Updat,2023,68:100951.
[27]ERGUL M,BAKAR-ATES F. Investigation of molecular mechanisms underlying the antiproliferative effects of colchicine against PC3 prostate cancer cells[J].Toxicol In Vitro,2021,73:105138.
[28]HUSSAIN M,TOMBAL B,SAAD F,et al. Darolutamide plus androgen-deprivation therapy and docetaxel in metastatic hormone-sensitive prostate cancer by disease volumeand risk subgroupsin the phase II ARASENS trial [J].J Clin Oncol,2023,41(20):3595-3607.
[29]UEMURA M,KIKUKAWA H,HASHIMOTO Y, et al. Darolutamide in Japanesepatientswith metastatic hormone-sensitive prostate cancer: phase 3 ARASENS subgroup analysis[J]. Cancer Med,2024,13(21):e70029.
[30]WANG C, ZHANG Y,GAO W Q. The evolving role of immune cells in prostate cancer[J].Cancer Lett,2022, 525:9-21.
[31]MA Z H,ZHANG W W,DONG B J,et al. Docetaxel remodels prostate cancer immune microenvironment and enhancescheckpoint inhibitor-basedimmunotherapy[J]. Theranostics,2022,12(11):4965-4979.
[32]CEVATEMRE B,BULUT I,DEDEOGLU B,et al. Exploiting epigenetic targets to overcome taxane resistance in prostate cancer[J]. Cell Death Dis,2024,15(2):132.
[33]LIMA T S,SOUZA L O,IGLESIAS-GATO D,et al. Itraconazole reverts ABCBl-mediated docetaxel resistance in prostate cancer[J].Front Pharmacol,2022,13:869461.
[34]SEKINO Y,HAN XR,KAWAGUCHI T,et al. TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer[J].IntJMol Sci,2019,20(16):3936.
[35]CHENG B S,LI L F,LUO TL,et al. Single-cell deconvolutionalgorithmsanalysis unveils autocrine IL11-mediated resistance to docetaxel in prostate cancer via activation of the JAK1/STAT4 pathway[J]. JExp Clin Cancer Res, 2024,43(1):67.
[36]SUN X C,ZHANG Y,XIN S Y,et al. NOTCH3 promotes docetaxel resistance of prostate cancer cells through regulating TUBB3 and MAPK signaling pathway[J]. Cancer Sci,2024,115(2):412-426.
[37] ZHANG ZL,WANG W X,KONG P P,et al. New insights into lipid metabolism and prostate cancer:review [Jl. Int JOncol.2023.62(6):74.
[38]KIM N H,JEGAL J,KIM Y N,et al. The effects of Aronia melanocarpa extract on testosterone-induced benign prostatic hyperplasia in rats,and quantitative analysis of major constituents depending on extract conditions[J]. Nutrients,2020,12(6):1575.
[39]AHMAD F,CHERUKURI M K,CHOYKE P L. Metabolic reprogramming in prostate cancer[J]. Br J Cancer, 2021,125(9):1185-1196.
[40]MARKOWSKI M C,TUTRONE R,PIECZONKA C, et al. A phase Ib/I study of sabizabulin,a novel oral cytoskeleton disruptor,in men with metastatic castrationresistant prostate cancer with progression on an androgen receptor-targeting agent[J]. Clin Cancer Res,2022,28 (13):2789-2795.
[41]CHEN H,DENG S S,WANG Y X,et al. Structureactivity relationship study of novel 6-aryl-2-benzoylpyridines as tubulin polymerization inhibitors with potent antiproliferative properties[J].JMed Chem,2020,63(2): 827-846.
[42]LAI JN,TSENG YJ,CHEN MH,et al. Clinical perspective of FDA approved drugs with P-glycoprotein inhibition activities for potential cancer therapeutics[J]. Front Oncol,2020,10:561936.
[43]SEO H K,LEE S J,KWON W A,et al. Docetaxelresistant prostate cancer cells become sensitive to gemcitabine due to the upregulation of ABCB1[J]. Prostate, 2020,80(6):453-462.
[44]SOUCHEK JJ,LALIWALA A,HOUSER L,et al. Fatty acid synthase inhibitors enhance microtubule-stabilizing and microtubule-destabilizing drugs in taxane-resistant prostate cancer cels[J].ACS Pharmacol Transl Sci,2023, 6(12):1859-1869.
[45]YEDLA P,BABALGHITH A O,ANDRA V V, et al. PROTACs in the management of prostate cancer[J]. Molecules,2023,28(9) :3698.
[46]CHEN P,WANG S B,CAO C Y,et al. α-naphthoflavonederived cytochrome P450 (CYP)1B1 degraders specific for sensitizing CYP1Bl-mediated drug resistance to prostate cancer DU145:structure activity relationship[J]. Bioorg Chem,2021,116:105295.
(收稿日期:2025-02-10 修回日期:2025-05-29)