摘" 要:來源于澳指檬(Microcitrus australasica)的一種抗菌肽(stable antimicrobial peptide, SAMP),不僅可以降低已感染柑橘黃龍病的病樹體內(nèi)的黃龍病菌(Candidatus Liberibacter asiaticus,CLas)濃度、減輕病樹癥狀,而且還可以誘導(dǎo)未感染黃龍病的健康樹先天免疫、阻止感染黃龍病。本研究對MaSAMP的功能結(jié)構(gòu)、亞細(xì)胞定位、系統(tǒng)發(fā)育等進(jìn)行分析,結(jié)果表明,MaSAMP的開放閱讀框(open reading frame, ORF)全長為201 bp,編碼67個氨基酸,編碼的蛋白分子量為7.59959 kDa,理論等電點為5.38,不穩(wěn)定指數(shù)[instability index (II)]為33.22,脂肪族氨基酸系數(shù)(aliphatic index)為87.16%,平均親水系數(shù)(grand average of hydropathicity)為–0.091,屬于親水性蛋白,含有1個Dabb結(jié)構(gòu)域,MaSAMP蛋白結(jié)構(gòu)以α-螺旋、無規(guī)則卷曲為主。MaSAMP與甜橙脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白CISIN_1g033887mg、克里曼丁橘A/B桶狀結(jié)構(gòu)域蛋白HS1親緣關(guān)系較近,蛋白相似度分別為97.01%、91.04%。亞細(xì)胞定位結(jié)果顯示,MaSAMP定位于葉綠體。進(jìn)一步通過同源重組成功構(gòu)建了融合EGFP熒光標(biāo)簽的pCAMBIA1300-35S::MaSAMP-EGFP過表達(dá)載體,并借助農(nóng)桿菌介導(dǎo)的原位轉(zhuǎn)化技術(shù)獲得柑橘轉(zhuǎn)基因植株。本研究為后續(xù)MaSAMP的生物學(xué)功能研究提供材料基礎(chǔ)。
關(guān)鍵詞:抗菌肽;澳指檬;生物信息學(xué)分析;載體構(gòu)建;轉(zhuǎn)基因中圖分類號:S666 """""文獻(xiàn)標(biāo)志碼:A
Bioinformatics Analysis, Gene Cloning and Genetic Transformation of Antimicrobial Peptide MaSAMP
LIAO Mingjing1,2, LI Xiangyang2*, LYU Yuanda2,3, JIANG Bo2,3, LI Juan1**, ZHONG Yun2,3**, WANG Ting2,3, ZHENG Lanyan2,3
1. College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; 2. Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China; 3. Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs / Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, Guangdong 510640, China
Abstract: An antimicrobial peptide (SAMP) derived from Microcitrus australasica can not only reduce the concentration of Candidatus Liberibacter asiaticus (CLas) in the infected trees and reduce the symptoms of the diseased trees, but also induce innate immunity and prevent the infection of Huanglongbing in healthy trees that are not infected with Huanglongbing. MaSAMP was analyzed by functional structure, subcellular localization and phylogeny. The results showed that the open reading frame (ORF) of MaSAMP was 201 bp in length, encoding 67 amino acids. The molecular weight of the corresponding protein was 7.59959 kDa, the theoretical isoelectric point was 5.38, and the instability index (Instability index (II)) was 33.22. The aliphatic index was 87.16%, and the grand average of hydropathicity was -0.09, indicating that the protein was a hydrophilic one. The protein contained one Dabb domain and was predominantly structured by α-helices and random coils. In terms of evolution, MaSAMP was phylogenetically close to the stress-response A/B barrel domain-containing protein CISIN_1g033887mg from Citrus sinensis and the A/B barrel domain protein HS1 from Citrus×clementina, with protein similarity of 97.01% and 91.04%, respectively. Subcellular localization results indicated that MaSAMP was localized in chloroplasts. Furthermore, through homologous recombination, a pCAMBIA1300-35S::MaSAMP-EGFP overexpression vector fused with an EGFP fluorescent tag was successfully constructed, and transgenic citrus plants were obtained using agrobacterium-mediated in planta transformation technology. This study would provide a material basis for subsequent research on the biological functions of MaSAMP.
Keywords: antimicrobial peptides; Microcitrus australasica; bioinformatics analysis; vector construction; transgene
DOI: 10.3969/j.issn.1000-2561.2025.07.003
我國柑橘產(chǎn)量和栽培面積均居世界首位[1],柑橘產(chǎn)業(yè)在水果貿(mào)易、鄉(xiāng)村振興中發(fā)揮著重要的作用。我國有19個柑橘種植?。ㄊ校渲杏?1個省遭受柑橘黃龍?。?em>Citrus Huanglongbing,HLB)的危害,損失巨大,僅廣東年損失達(dá)50億元[2]。柑橘黃龍病是一種由寄生于韌皮部的革蘭氏陰性細(xì)菌(Candidatus Liberibacter asiaticus, CLas)引起的系統(tǒng)性病害,表現(xiàn)為葉片斑駁黃化,植株枯萎,果實小,結(jié)果率低,產(chǎn)量銳減,并具有傳播快的特征,故被稱為柑橘中的癌癥。該病害嚴(yán)重影響了我國柑橘產(chǎn)業(yè)的發(fā)展[3-6]。近百年來的農(nóng)業(yè)實踐和研究表明,盡管柑橘黃龍病可防可控,但不可根治[7],而其根本有效的解決途徑仍有賴于抗性育種。
澳指檬(Microcitrus australasica)是一種原產(chǎn)于澳大利亞的澳指檬屬的柑橘資源,最近因其對柑橘黃龍病有極高的耐受性而受到廣泛關(guān)注[8-11]。有研究者對澳指檬及其雜交種進(jìn)行不同組合的嫁接接毒實驗,經(jīng)過2 a的接毒評價,發(fā)現(xiàn)嫁接后,在砧木發(fā)病的情況下,澳指檬及后代葉片中均未檢測到黃龍病菌[8]。通過體細(xì)胞融合技術(shù),將OLL8甜橙或Page橘子愈傷組織來源的原生質(zhì)體與澳指檬葉肉分離的原生質(zhì)體進(jìn)行細(xì)胞融合,培育的細(xì)胞融合植株在黃龍病的環(huán)境中生長6"a仍保持黃龍病陰性[9]。
抗菌肽可替代抗生素,靶向細(xì)胞膜或特定的細(xì)胞內(nèi)成分,通過多種特殊機制抑制多種微生物,是作為前瞻性抗真菌和抗細(xì)菌療法的新興候選藥物[12],并且其產(chǎn)生耐藥性的可能很小[13]。植物中具有許多獨特的防御機制,抗菌肽是植物免疫系統(tǒng)最突出的部分,對病原體具有直接和持久的抗性,且抗菌肽是植物天然合成,對植物和哺乳動物細(xì)胞無毒害[14]??咕脑谡麄€植物體內(nèi)的表達(dá)可用于增強抗病性或作物改良。MOULIN等[15]研究表明,富含胰蛋白酶抑制劑(10~14 kDa)的葉提取物通過抑制病原來源蛋白酶的酶活性,實現(xiàn)對辣椒黃花葉病毒(Pepper yellow mosaic virus,Pep YMV)的抗病毒活性。劉琦琦等[16]發(fā)現(xiàn)轉(zhuǎn)入抗菌肽CecropinB能提高錦橙對柑橘潰瘍病的抗性。隨后有學(xué)者通過組學(xué)分析從澳指檬中鑒定出1種熱穩(wěn)定蛋白MaSAMP,體外實驗表明該蛋白可有效降低黃龍病菌濃度及黃龍病陽性樹的發(fā)病癥狀,同時,噴施和注射后亦可激活植株的先天免疫系統(tǒng),抑制黃龍病感染[10],但關(guān)于該功能蛋白對柑橘屬植株的具體生物學(xué)功能未見報道。本研究通過生物信息學(xué)分析進(jìn)一步明確MaSAMP的生化功能及系統(tǒng)發(fā)育關(guān)系,同時借助農(nóng)桿菌介導(dǎo)的原位轉(zhuǎn)化,構(gòu)建柑橘過表達(dá)遺傳材料,為后續(xù)探究MaSAMP在黃龍病抗性中的生理功能及抗性育種等提供遺傳材料基礎(chǔ)。
1.1" 材料
2023年12月于廣東省農(nóng)業(yè)科學(xué)院果樹研究所以經(jīng)評價具高黃龍病耐受性的澳指檬為材料,使用天根(TIANGEN)多糖多酚植物總RNA提取試劑盒提取澳指檬成熟葉片RNA,再通過TaKaRa反轉(zhuǎn)錄試劑盒合成cDNA。遺傳轉(zhuǎn)化所用柑橘種子由廣東省農(nóng)業(yè)科學(xué)院果樹研究所提供。
1.2" 方法
1.2.1" MaSAMP基因克隆" 以澳指檬cDNA為模板,參考HUANG等[10]的方法設(shè)計引物MaSAMP- F/R(表1),通過PCR擴(kuò)增獲得MaSAMP基因。PCR反應(yīng)體系為:無菌水20 μL、cDNA 2 μL、上/下游引物各1.5 μL、PrimeSTAR Max Premix(2×)25 μL。反應(yīng)程序為:98"℃ 3 min;98"℃ 10 s,55"℃ 5 s,72"℃ 12 s;72"℃ 5 min。擴(kuò)增后進(jìn)行凝膠電泳檢測產(chǎn)物,使用美基(Magen)試劑盒回收目的條帶。利用全式金B(yǎng)lunt Simple Cloning Kit進(jìn)行TA克隆,膠回收產(chǎn)物2 μL,無菌水2 μL,pEASY Blunt Simple Cloning Vector 1 μL,37"℃反應(yīng)10 min,將連接產(chǎn)物轉(zhuǎn)入Trans1-T1 Phage Resistant感受態(tài)后再超凈工作臺上加入250 μL無抗LB液體到上述產(chǎn)物中,200 r/min、37"℃培養(yǎng)1 h。將菌液涂于50"μg/mL氨芐青霉素的平板上,37"℃倒置培養(yǎng)12 h。挑取單菌落進(jìn)行菌液PCR,體系為Premix Taq 10 μL、M13F/R各1 μL、模板2 μL、無菌水6 μL,通過電泳檢測后挑選陽性菌液測序。
1.2.2 "MaSAMP基因生物信息學(xué)分析" 利用在線網(wǎng)站NCBI的Conserved Domain(https://www. ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)在線工具查找目的基因的保守結(jié)構(gòu)域。使用ExPASy(https://web.expasy.org/protparam/)在線軟件中的ProtParam工具分析MaSAMP蛋白理化性質(zhì)。使用SOPMA(http://npsa-prabi.ibcp.fr)在線軟件預(yù)測其二級結(jié)構(gòu)。使用SignalP-5.0(https://services. healthtech.dtu.dk/services/SignalP-5.0/)在線軟件預(yù)測該蛋白的信號肽,使用TMHMM(http://www. cbs.dtu.dk/services/TMHMM)在線軟件預(yù)測蛋白質(zhì)跨膜序列。在NCBI數(shù)據(jù)庫中進(jìn)行BLAST,選取一致性較高的序列通過DNAMAN 9.0軟件進(jìn)行蛋白多重序列比對。使用MEGA 11軟件,采用最大簡約法構(gòu)建系統(tǒng)發(fā)育樹。
1.2.3" 植物過表達(dá)載體的構(gòu)建和遺傳轉(zhuǎn)化" 選擇SacⅠ、SalⅠ酶對pCAMBIA1300-EGFP質(zhì)粒進(jìn)行雙酶切,條件為金屬浴37"℃ 1.5"h。以測序驗證成功的pEASY-T1-MaSAMP質(zhì)粒為模板進(jìn)行目的片段擴(kuò)增,體系為:無菌水21"μL、質(zhì)粒DNA 1"μL、上/下游引物各1.5"μL、PrimeSTAR Max Premix(2×)25"μL,反應(yīng)條件為:98"℃ 3"min;98"℃ 10"s,57"℃ 10 s,72"℃ 12 s;72"℃ 5"min。通過凝膠電泳回收目的片段。利用同源重組反應(yīng),將目的片段和酶切產(chǎn)物進(jìn)行連接,通過熱激法將連接產(chǎn)物轉(zhuǎn)入DH5α大腸桿菌,均勻涂布在含卡那霉素的LB固體平板上,37"℃過夜培養(yǎng)。挑取單菌落后進(jìn)行菌液PCR驗證,挑取陽性菌液測序。
于2024年8月選取飽滿完好的種子播種于塑料花盆,于26"℃種植室培養(yǎng)4~6周,取幼苗用于原位轉(zhuǎn)化,轉(zhuǎn)化方法參照謝幸男等[17]的方法。待切口長出新芽后,通過LUYOR-3415激發(fā)光源進(jìn)行檢測。
1.2.4 "亞細(xì)胞定位" 選擇培養(yǎng)60 d左右的柑橘實生苗嫩葉,參照酶解分離法[18-19]對柑橘原生質(zhì)體進(jìn)行分離,運用PEG介導(dǎo)法[19]將質(zhì)粒pCAMBIA 1300-35S::MaSAMP-EGFP轉(zhuǎn)化到柑橘原生質(zhì)體中,培養(yǎng)12 h后于熒光顯微鏡下觀察熒光。
2.1" MaSAMP蛋白理化性質(zhì)及結(jié)構(gòu)分析
通過ExPASy在線軟件中的ProtParam工具對MaSAMP蛋白理化性質(zhì)分析,結(jié)果顯示,MaSAMP蛋白由67個氨基酸組成,其相對分子量為7.59959 kDa,理論等電點為5.38;其不穩(wěn)定指數(shù)(instability index (II))為33.22,GASTEIGER等[20]將不穩(wěn)定指數(shù)小于40的蛋白預(yù)測為穩(wěn)定,反之則可能是不穩(wěn)定蛋白,表明MaSAMP為穩(wěn)定蛋白;脂肪族氨基酸系數(shù)(aliphatic index)為87.16%,表明該蛋白脂肪族氨基酸含量高;平均親水系數(shù)(grand average of hydropathicity)為–0.091,說明該蛋白具有一定的親水性。使用ExPASy在線軟件中的ProtScale工具對其疏水性進(jìn)行分析(圖1A)發(fā)現(xiàn),第8、9位氨基酸均為最低分值-1.267,第54位氨基酸具有最高分值1.267,且整體分布偏于負(fù)值,故預(yù)測其具有親水性。
MaSAMP的二級結(jié)構(gòu)預(yù)測(圖1B)顯示,該序列含有34.33% α-螺旋(alpha helix)、32.84%無規(guī)則卷曲(random coil)、25.37%延伸鏈(extended strand)、7.46% β-轉(zhuǎn)角(beta turn)。MaSAMP蛋白三級結(jié)構(gòu)預(yù)測(圖1C)顯示,其QMQE值為0.67,QMQEN值為0.61±0.07,一致性為77.42%,該模型準(zhǔn)確度較高,為α-螺旋、β-轉(zhuǎn)角、無規(guī)則卷曲和延伸鏈構(gòu)成空間構(gòu)象。
SignalP-5.0軟件預(yù)測結(jié)果顯示該蛋白不存在信號肽(圖1D),表明其不是分泌蛋白。TMHMM軟件進(jìn)行蛋白質(zhì)跨膜序列預(yù)測顯示該蛋白是非跨膜蛋白(圖1E)。
利用NCBI的CDD數(shù)據(jù)庫對MaSAMP蛋白保守結(jié)構(gòu)域進(jìn)行查找(圖1F),發(fā)現(xiàn)其具有1個Dabb(stress responsive A/B Barrel Domain)保守結(jié)構(gòu)域,屬于ABM(antibiotic biosynthesis monooxygenase)超家族。
2.2nbsp; MaSAMP蛋白系統(tǒng)發(fā)育分析
蛋白序列比對(圖2)發(fā)現(xiàn),MaSAMP與甜橙(Citrus sinensis)脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白CISIN_1g033887mg(KDO72075.1)、克里曼丁橘(Citrus×clementina)A/B桶狀結(jié)構(gòu)域蛋白HS1(XP_006419297.1)、甜橙脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白HS1(KAH9683996.1)、酸橙(Citrus×changshan-huyou)WN943_028324(KAK9179 126.1)、苦楝(Melia azedarach)脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白(KAJ4721944.1)、歐洲榿木(Alnus glutinosa)脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白HS1(XP_062178246.1)、藜麥(Chenopodium quinoa)脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域HS1樣蛋白(XP_021762050.1)相似度分別為97.01%、91.04%、89.55%、86.57%、85.07%、82.09%、82.09%。系統(tǒng)發(fā)育分析(圖3)表明多個品種的柑橘以及楝科、樺木科、莧科中均含有MaSAMP同源蛋白,該蛋白與甜橙脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白CISIN_1g033887mg(KDO72075.1)的親緣關(guān)系最近。
2.3" MaSAMP基因克隆
以澳指檬葉片cDNA為模板進(jìn)行PCR擴(kuò)增,獲得一條201 bp的條帶(圖4)。通過菌液PCR、
測序驗證,測序結(jié)果顯示獲得一段長度為201 bp,編碼67個氨基酸的目的序列(圖5),表明基因克隆成功。
2.4" MaSAMP過表達(dá)載體構(gòu)建及柑橘遺傳轉(zhuǎn)化材料的獲得
用Sal I和Sac I酶對pCAMBIA1300-EGFP進(jìn)行雙酶切,獲得1條酶切后的線性條帶(圖6A)。目的基因與載體進(jìn)行連接后轉(zhuǎn)入大腸桿菌DH5α,利用載體上的引物(1300-35S-F/1300-GFP-R)進(jìn)行菌液PCR獲得1條402 bp的條帶(圖6B),再對菌液進(jìn)行測序驗證,結(jié)果顯示載體中插入了1段長度為201 bp的序列,表明pCAMBIA1300- 35S::MaSAMP-EGFP過表達(dá)載體構(gòu)建成功。
利用農(nóng)桿菌介導(dǎo)的原位轉(zhuǎn)化法,通過農(nóng)桿菌EHA105,將構(gòu)建成功的重組載體轉(zhuǎn)化至柑橘幼苗。農(nóng)桿菌侵染后培養(yǎng)4~6周對新芽進(jìn)行檢測。利用表達(dá)載體上攜帶的EGFP綠色熒光蛋白表達(dá)元件,在440~460 nm激發(fā)光源下篩選到轉(zhuǎn)化成功的植株(圖7)。
2.5" MaSAMP亞細(xì)胞定位分析
將融合綠色熒光蛋白(EGFP)的pCAMBIA 1300-35S::MaSAMP-EGFP質(zhì)粒導(dǎo)入柑橘原生質(zhì)體進(jìn)行亞細(xì)胞定位分析,利用熒光顯微鏡觀察。結(jié)果顯示,MaSAMP-EGFP在原生質(zhì)體中成功表達(dá),原生質(zhì)體的葉綠體中檢測到了清晰的EGFP熒光信號(圖8),表明MaSAMP蛋白定位于葉綠體中。
HUANG等[10]通過組學(xué)分析在澳指檬中獲得抗菌肽基因MaSAMP,并通過原核表達(dá)獲得MaSAMP。在對感染黃龍病柑橘的噴灑和注射實驗中,長達(dá)14個月的黃龍病菌濃度檢測結(jié)果表明,MaSAMP對黃龍病菌具有極好的滅殺能力。羅澍[21]進(jìn)一步克隆出Long-SAMP不同特異轉(zhuǎn)錄本類型,并對其氨基酸序列進(jìn)行分析比較。Long-SAMP是一段含有109個氨基酸的長肽,而根據(jù)HUANG等[10]的報道,抗菌肽的功能區(qū)段僅存在于Long-SAMP的后67個氨基酸中。因此,本研究從HUANG等的研究中獲取引物,克隆出MaSAMP基因,并對該序列進(jìn)行分析。
本研究結(jié)果顯示,MaSAMP蛋白的相對分子量為7.59959 kDa,理論等電點為5.38,不穩(wěn)定指數(shù)為33.22,根據(jù)GASTEIGER等[20]的注釋判定MaSAMP為穩(wěn)定蛋白。脂肪族氨基酸系數(shù)為87.16%,說明該蛋白屬于脂肪族氨基酸。平均親水系數(shù)為負(fù)數(shù),表明該蛋白具一定的親水性,同時Kyte and Doolittle算法亦表明其具有親水性。該蛋白二級結(jié)構(gòu)中有34.33%為α-螺旋結(jié)構(gòu),32.84%為無規(guī)則卷曲,25.37%為延伸鏈,7.46%為β-轉(zhuǎn)角,該蛋白三級結(jié)構(gòu)與二級結(jié)構(gòu)預(yù)測結(jié)果一致。天然抗菌肽長約10~100個氨基酸,且大多兩端均含有親水和疏水殘基,其α-螺旋、β-折疊等結(jié)構(gòu)有重要功能特征[22]。該蛋白不存在信號肽,說明該蛋白為非分泌蛋白,且與TMHMM軟件的預(yù)測結(jié)果一致,即為非跨膜蛋白。MaSAMP蛋白保守結(jié)構(gòu)域為Dabb(stress responsive A/B barrel domain),GU等[23]從胡楊(Populus euphratica)的熱休克蛋白(heatshock protein 90, Hsp90)和羥脯氨酸糖蛋白(hydroxyproline-rich glycoprotein, HRGP)中發(fā)現(xiàn)Dabb結(jié)構(gòu)域,2個蛋白均參與了植物耐鹽脅迫反應(yīng)。Dabb類蛋白被發(fā)現(xiàn)顯著抑制各種病原真菌的細(xì)胞生長,參與誘導(dǎo)植物對多種病原真菌的防御[24-25]。MaSAMP含有Dabb結(jié)構(gòu)域,推測該蛋白可能參與植物耐鹽脅迫反應(yīng)和誘導(dǎo)植物對病原菌的防御過程。Blast發(fā)現(xiàn),甜橙、克里曼丁橘、酸橙、苦楝、歐洲榿木、藜麥存在與MaSAMP相似度大于80%的序列,系統(tǒng)發(fā)育分析表明澳指檬MaSAMP與上述物種相似序列蛋白有一定親緣關(guān)系,與甜橙脅迫響應(yīng)A/B桶狀結(jié)構(gòu)域蛋白CISIN_1g033887mg的親緣關(guān)系更近。根據(jù)亞細(xì)胞定位結(jié)果,MaSAMP蛋白定位于葉綠體中。騰海艷[26]研究發(fā)現(xiàn)水稻Ossp1基因定位于葉綠體,且其表達(dá)具有干旱響應(yīng)性,推測其功能可能與葉綠體內(nèi)相關(guān)代謝過程或植物的逆境響應(yīng)有關(guān)。
參考文獻(xiàn)
[1]"""""" 鄧秀新. 中國柑橘育種60年回顧與展望[J]. 園藝學(xué)報, 2022, 49(10): 2063-2074.DENG X X. A review and perspective for citrus breeding in China during the last six decades[J]. Acta Horticulturae Sinica, 2022, 49(10): 2063-2074. (in Chinese)
[2]"""""" 杜美霞, 龐淑瑋, 董麗婷, 莫凱琴, 候夢圓, 王帥, 鄒修平. 柑橘黃龍病菌與寄主互作的分子機制研究進(jìn)展[J]. 園藝學(xué)報, 2024, 51(7): 1623-1638.DU M X, PANG S W, DONG L T, MO K Q, HOU M Y, WANG S, ZOU X P. Research progress on the molecular mechanisms of interactions between Candidatus Liberibacter and Citrus[J]. Acta Horticulturae Sinica, 2024, 51(7): 1623-1638. (in Chinese)
[3]"""""" 程春振, 曾繼吾, 鐘云, 閆化學(xué), 姜波, 鐘廣炎. 柑橘黃龍病研究進(jìn)展[J]. 園藝學(xué)報, 2013, 40(9): 1656-1668.CHENG C Z, ZENG J W, ZHONG Y, YAN H X, JIANG B, ZHONG G Y. Research progress on citrus Huanglongbing disease[J]. Acta Horticulturae Sinica, 2013, 40(9): 1656-1668. (in Chinese)
[4]"""""" 范國成, 劉波, 吳如健, 李韜, 蔡子堅, 柯沖. 中國柑橘黃龍病研究30年[J]. 福建農(nóng)業(yè)學(xué)報, 2009, 24(2): 183-190.FAN G C, LIU B, WU R J, LI T, CAI Z J, KE C. Thirty years of research on citrus Huanglongbing in China[J]. Fujian Journal of Agricultural Sciences, 2009, 24(2): 183-190. (in Chinese)
[5]"""""" 胡文召, 周常勇. 柑橘黃龍病病原研究進(jìn)展[J]. 植物保護(hù), 2010, 36(3): 30-33.HU W Z, ZHOU C Y. Advances in the pathogen of citrus Huanglongbing[J]. Plant Protection, 2010, 36(3): 30-33. (in Chinese)
[6]""""nbsp;" WANG N. The citrus Huanglongbing crisis and potential solutions[J]. Molecular Plant, 2019, 12(5): 607-609.
[7]"""""" 周常勇. 對柑橘黃龍病防控對策的再思考[J]. 植物保護(hù), 2018, 44(5): 30-33.ZHOU C Y. Reconsideration on the control strategy of citrus Huanglongbing[J]. Plant Protection, 2018, 44(5): 30-33. (in Chinese)
[8]"""""" ALVES M N, RAIOL-JUNIOR L L, GIRARDI E A, MIRANDA M, WULFF N A, CARVALHO E V, LOPES S A, FERRO J A, OLLITRAULT P, PENA L. Insight into resistance to 'Candidatus Liberibacter asiaticus', associated with Huanglongbing, in Oceanian citrus genotypes[J]. Front Plant Science, 2022, 13: 1009350.
[9]"""""" DUTT M, MAHMOUD L M, CHAMUSCO K, STANTON D, CHASE C D, NIELSEN E, QUIRICO M, YU Q, GMITTER F J, GROSSER J W. Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica)[J]. PLoS One, 2021, 16(8): e0255842.
[10]""" HUANG C Y, ARAUJO K, SANCHEZ J N, KUND G, TRUMBLE J, ROPER C, GODFREY K E, JIN H. A stable antimicrobial peptide with dual functions of treating and preventing citrus Huanglongbing[J]. Proceedings of the National Academy of Sciences, 2021, 118(6): e2019628118.
[11]""" KILLINY N, JONES S E, NEHELA Y, HIJAZ F, DUTT M, GMITTER F G, GROSSER J W. All roads lead to Rome: towards understanding different avenues of tolerance to Huanglongbing in citrus cultivars[J]. Plant Physiology and Biochemistry, 2018, 129: 1-10.
[12]""" ERDEM B M, KESMEN Z. Antimicrobial peptides (AMPs): a promising class of antimicrobial compounds[J]. Journal of Applied Microbiology, 2022, 132(3): 1573-1596.
[13]""" MAHLAPUU M, HAKANSSON J, RINGSTAD L, BJORN C. Antimicrobial peptides: an emerging category of therapeutic agents[J]. Frontiers in Cellular and Infection Microbiology, 2016, 6: 194.
[14]""" VRIENS K, CAMMUE B P, THEVISSEN K. Antifungal plant defensins: mechanisms of action and production[J]. Molecules, 2014, 19(8): 12280-12303.
[15]""" MOULIN M M, RODRIGUES R, RIBEIRO S F, GONCALVES L S, BENTO CS, SUDRE C P. Trypsin inhibitors from Capsicum baccatum var. pendulum leaves involved in Pepper yellow mosaic virus resistance[J]. Genetics and Molecular Research, 2014, 13(4): 9229-9243.
[16]""" 劉琦琦, 鄒修平, 彭愛紅, 許蘭珍, 何永睿, 陳善春. 轉(zhuǎn)Cecropin B基因柑桔對潰瘍病的離體抗性評價[J]. 中國南方果樹, 2014, 43(2): 1-4.LIU Q Q, ZOU X P, PENG A H, XU L Z, HE Y R, CHEN S C. In vitro evaluation of resistance to citrus canker by transgenic orange plants with antibacterial peptide gene Cecropin B[J]. South China Fruits, 2014, 43(2): 1-4. (in Chinese)
[17]""" 謝幸男, 楊莉, 劉范, 田娜, 車婧如, 靳三鵬, 張永艷, 程春振. ‘伏令夏橙’原位轉(zhuǎn)化體系的建立及優(yōu)化[J]. 園藝學(xué)報, 2020, 47(1): 111-119.XIE X N, YANG L, LIU F, TIAN N, CHE J R, JIN S P, ZHANG Y Y, CHENG C Z. Establishment and optimization of Valencia sweet orange in planta transformation system[J]. Acta Horticulturae Sinica, 2020, 47(1): 111-119. (in Chinese)
[18]""" 楊威. 柑橘原生質(zhì)體瞬時轉(zhuǎn)化體系的建立及應(yīng)用[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2016.YANG W. Establishment amp; application of citrus protoplast transient transformation system[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[19]""" 楊雯惠, 劉丹, 郭文武. PEG法介導(dǎo)的柑橘原生質(zhì)體轉(zhuǎn)化[J]. Bio-101, 2018: e1010187.YANG W H, LIU D, GUO W W. PEG-mediated citrus protoplast transformation[J]. Bio-101, 2018: e1010187. (in Chinese)
[20]""" GASTEIGER E, HOOGLAND C, GATTIKER A, DUVAUD S, WILKINS M R, APPEL R D, BAIROCH A. Protein identification and analysis tools on the ExPASy server[M]//WALKER J M. The proteomics protocols handbook. Totowa: Humana Press, 2005: 571-607.
[21]""" 羅澍. 柑橘砧木‘蒲江香橙’對黃龍病病菌的生理生化響應(yīng)[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2022.LUO S. Physiological and biochemical responses of citrus rootstock 'Pujiang Xiangcheng' to the huanglongbing pathogen CLas[D]. Ya’an: Sichuan Agricultural University, 2022. (in Chinese)
[22]""" 楊晨遠(yuǎn), 于子川, 秦迪, 高媛媛. 抗菌肽的結(jié)構(gòu)分析、抗菌機制及改造應(yīng)用的研究進(jìn)展[J]. 微生物學(xué)報, 2024, 64(7): 2242-2259.YANG C Y, YU Z C, QIN D, GAO Y Y. Research progress in structures, mechanisms, and modification of antimicrobial peptides[J]. Acta Microbiologica Sinica, 2024, 64(7): 2242-2259. (in Chinese)
[23]""" GU R, FONSECA S, PUSKAS L G, HACKLER L, ZVARA A, DUDITS D, PAIS M.S. Transcript identification and profiling during salt stress and recovery of Populus euphratica[J]. Tree Physiology, 2004, 24(3): 265-276.
[24]""" LEE J R, LEE S S, PARK S, KANG J S, KIM S Y, LEE K O, LEE S Y. Functional characterization of pathogen-responsive protein AtDabb1 with an antifungal activity from Arabidopsis thaliana[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2008, 1784(12): 1918-1923.
[25]""" PARK S, LEE J R, SHIN S, PARK Y, LEE S Y, HAHM K. Characterization of a heat-stable protein with antimicrobial activity from Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2007, 362(3): 562-567.
[26]""" 騰海艷. 水稻Ossp1基因的亞細(xì)胞定位及其干旱條件下的表達(dá)[J]. 江蘇農(nóng)業(yè)學(xué)報, 2020, 36(3): 529-534.TENG H Y. Subcellular localization and expression under drought conditions of rice Ossp1 gene[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(3): 529-534. (in Chinese)