• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WRKY基因家族在植物中的研究進(jìn)展

    2025-08-03 00:00:00陳彩錦馬琳包明芳蔣慶雪張國輝張尚沛高婷劉文輝王學(xué)敏
    草地學(xué)報(bào) 2025年7期
    關(guān)鍵詞:基序擬南芥結(jié)構(gòu)域

    中圖分類號:Q943.2 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-0435(2025)07-2059-11

    doi:10.11733/j.issn.1007-0435.2025.07.002

    引用格式:,等.WRKY基因家族在植物中的研究進(jìn)展[J].草地學(xué)報(bào),2025,33(7):2059—2069 CHEN Cai-jin,MA Lin,BAOMing-fang,etal.Research Progress ontheRoleof WRKYFamily Genes inPlants[J]. Acta Agrestia Sinica,2025,33(7) :2059—2069

    ResearchProgressontheRoleofWRKYFamilyGenesinPlants

    CHEN Cai-jin 1,2,3. ,MA Lin1, BAO Ming-fang2,3, JIANG Qing-xue1, ZHANG Guo-hui3, ZHANG Shang-pei,GAO Ting4,LIU Wen-hui2*,WANG Xue-min1* (1.InstituteofAnimalScince,ChineseAcadeyfAgriculturalSiences,BeijingO93,hina;2.AcademyofAnimalieea

    VeterinaryMedicineofQinghaiUniversityXining,QinghaiProvince86,hina;3.GuyuanBranchingxiaAcadeyofAgltural

    andForestrySieces,Guyanngia56ona;4Isituteofimalience,ngiaAcadeyfgriculturadt Sciences,Yinchuan,Ningxia 75Ooo2,China)

    Abstract:WRKY proteins are one of the largest families of transcription factors(TFs) found in plants.Mem bers of this family play important bidirectional regulatory roles in plant growth and development,biomass formation,secondary metabolite synthesis,and response to biotic or abiotic stresses.This paper provided acomprehensive review of the structural features and classification of WRKY TFs in plants,as well as their biological functions in plant growth and development,secondary metabolite synthesis,and biotic and abiotic stresses unearthed in the last five years,and also provided an outlook on the subsequent related studies of WRKY family members,aiming to provide technical references for further excavation of plant WRKY family members and their biological function studies.

    Key Words: WRKY;Growth and development;Secondary metabolism; Biotic stress;Abiotic stress

    近年來,隨著分子生物學(xué)在農(nóng)業(yè)科學(xué)研究領(lǐng)域中的滲透和深入,人們對植物基因家族的關(guān)注越來越多,研究的深度和廣度也逐漸增加。在高等植物中,WRKY蛋白作為一種最大的轉(zhuǎn)錄因子(Transcriptionfactor,TF)家族之一,廣泛參與許多生物信號網(wǎng)絡(luò)的調(diào)控,如植物生長、防御、攻擊、代謝、毛狀體和胚胎的形態(tài)發(fā)生、葉片衰老、生物量形成,以及對生物和非生物脅迫的響應(yīng)等方面[1-5]。WRKY基因家族成員SPF1最初發(fā)現(xiàn)于甘薯[Ipomoeabatatas(L.)Lam.]中,并且受聚谷氨酸(Polyglutamicacid,PGA)和蔗糖的誘導(dǎo)進(jìn)行表達(dá)。隨著對植物分子方面研究的深入,目前已在245種植物中發(fā)現(xiàn)了不同數(shù)量的WRKY基因家族成員,探索出了其在植物中的作用。前期已經(jīng)有文章詳細(xì)敘述了自WRKY基因家族成員發(fā)現(xiàn)以來各個植物中鑒定出的WRKY基因及其數(shù)量,本文總結(jié)了近5年內(nèi)分析鑒定出的WRKY基因7-66(圖1)。在植物中,WRKYTFs作為激活或抑制因子,在各種同源或異源二聚體組合中形成一個TF網(wǎng)絡(luò),參與各種細(xì)胞質(zhì)和細(xì)胞核過程,包括從細(xì)胞器或細(xì)胞質(zhì)到細(xì)胞核的信號事件[5]。其中主要是WRKYTFs作為微生物或病原體相關(guān)分子模式觸發(fā)免疫,或其效應(yīng)物觸發(fā)免疫,以此來正向或負(fù)向調(diào)控植物先天免疫系統(tǒng)的各個方面[6],主要作用過程有如下2個方面,一方面是WRKYTFs通過與其他蛋白(如受體、激酶或其他的TFs)相互作用進(jìn)行交叉和自我調(diào)節(jié)[68-69],引起級聯(lián)反應(yīng);另一方面是與其他反式元件結(jié)合,形成動態(tài)蛋白復(fù)合物,增強(qiáng)轉(zhuǎn)錄活性[70]?;赪RKY基因家族成員在植物中的重要性,本文主要綜述了其結(jié)構(gòu)、分類,以及在生長發(fā)育、次生代謝物合成、生物和非生物脅迫下的功能,以此明確出WRKYTFs調(diào)控植物的機(jī)制,為植物WRKYTFs的進(jìn)一步研究提供參考。

    1植物WRKYTFs的結(jié)構(gòu)和分類

    WRKY蛋白具有長約6O個氨基酸的DNA結(jié)構(gòu)域(DNA-bindingdomain,DBD),該結(jié)構(gòu)域的特征是其由位于N端的高度保守WRKYGQK和位于C端 C2H2- 或 C2HC- 型鋅指基序組成[72],WRKYGQK中氨基酸W,K和Y是高度保守的,但少數(shù)氨基酸殘基被替換或丟失也存在于WRKYTFs的核心序列中[73-75]。WRKYTFs根據(jù)結(jié)構(gòu)域的數(shù)量及其鋅指基序的結(jié)構(gòu)特征將其家族成員一般分為3類(I—III(圖2):第I類具有兩個WRKY結(jié)構(gòu)域和一個 C2H2 鋅指基序 (C-X4-5-C-X22-23H-X1? H)[76-78] ,其中X可以是任何氨基酸;第Ⅱ類具有一個WRKY結(jié)構(gòu)域和一個 C2H2 鋅指基序,根據(jù)同源性可繼續(xù)分為5個亞類,分別是ⅡIa、IIb、ⅡIc、ⅡId和

    Ⅱe[79]。WRKYTFs中第II類非單系成員仍在進(jìn)化(如 C2H2 鋅指組織模式的改變),這些進(jìn)化出來的成員可以聚集到一個新的亞類(IIf)中[37.80]。第III類具有一個WRKY結(jié)構(gòu)域和一個 C2HC(C-X7 -C- ?X23 1H-X1. -C)鋅指基序[81]。WRKYTFs成員除了具有WRKY結(jié)構(gòu)域和鋅指結(jié)構(gòu)外,一些成員還包含其他結(jié)構(gòu),如亮氨酸拉鏈、核定位信號(NLS)、絲氨酸/蘇氨酸富集區(qū)、谷氨酰胺富集區(qū)、脯氨酸富集區(qū)、激酶結(jié)構(gòu)域等結(jié)構(gòu),這些結(jié)構(gòu)可能賦予WRKYTFs不同的轉(zhuǎn)錄調(diào)控功能[80.82-83]。植物進(jìn)化分析研究結(jié)果顯示,第I類WRKYTFs可能是先于第II和III類的WRKYTFs出現(xiàn)的,這主要是因?yàn)镮I類和III類WRKYTFs成員的C端結(jié)構(gòu)域與I類是共享的[69]WRKYTFs根據(jù)結(jié)構(gòu)域的系統(tǒng)發(fā)育情況、保守結(jié)構(gòu)域和內(nèi)含子的位置將其家族成員一般分為5組,分別是I組(I-N端和I-C端)Ia-IIb、Ic、IId-Ie和III組[83]。WRKYTFs根據(jù)內(nèi)含子插入位置將其家族成員分為2類,第1類是剪接位點(diǎn)位于精氨酸密碼子的2Gs之間,且含有R型內(nèi)含子的WRKYTFs(IIa和IIb亞型),第2類是剪接位點(diǎn)位于氨酸密碼子的前面,且含有V型內(nèi)含子的WRKYTFs[83]。

    WRKY結(jié)構(gòu)域中的七肽序列WRKYGQK雖然是高度保守的,但也存在氨基酸殘基被替代,或WRKY氨基酸被其他不同類型的氨基酸所替代,比如WRKYGQK中的“Q\"被“E\"“N\"\"H\"“K\"“R\"等替換[85],WRKY基序被WIKY,WRMC,WRIC,WKKY,WVKY,WKRY,WSKY,WRRY,WSK,WKRY,WVKY和WKKY所替代[86],WRKY金屬螯合鋅指基序中保守的His殘基被Cys殘基所取代[87]。另有研究發(fā)現(xiàn),在擬南芥(Arabidopsisthali-ana)、丹參(Saluiamiltiorrhiza)和菜豆(Phaseolusulgaris)中存在功能未知的HARF基序(RTGHARFRR(A/G)P),以及在擬南芥、水稻(OryzasativaL.)、栽培大豆(Giycinemax(L.)Merr.)、甘草(GlycyrrhizauralensisFisch.)等植物中發(fā)現(xiàn)存在coat家族基序(30個氨基酸)DivIVA超家族基序(63個氨基酸)和SerS超家族基序(61個氨基酸)[37]。同時在擬南芥WRKY家族成員中也報(bào)道了鈣調(diào)素(CaM)結(jié)構(gòu)域和WRKY家族IId亞類植物鋅簇(長42個氨基酸殘基)的序列存在差異。例如,已在擬南芥[88]、甘草[37]和麻風(fēng)樹(JatrophacurcasL.)[89上發(fā)現(xiàn)了位于WRKY結(jié)構(gòu)域N末端上游的鋅簇被鋅指基序取代。這些WRKY的特定特注:AvenasatiuaL.,燕麥;Ophiorrhizapumila,短小蛇根草;Siraitiasiamensis,翅子羅漢果;PinusmassonianaLamb.,馬尾松;Platy-codongrandiflorus,桔梗;Cynanchumthesioides,地梢瓜;Glycyrrhizaglabra,甘草;Eucalyptusglobulus,藍(lán)桉樹;MiscanthussinensisAnderss,芒莖;Citrussinensis,甜橙;Poncirustrifoliata,枸橘;CarthamustinctoriusL.,紅花;Dalbergiaodorifera,降香;Loropetalumchi-nensevar.rubrum,紅花木;Arachis hypogaea,花生;BetulaplatyphyllaSuk.,白樺;JuglansregiaL.,核桃;VacciniummyrtillusL.,黑果越橘;Akebiatrifoliata,三葉木通;Hordeumvulgaresubsp.Sponteneum,野生大麥;Hordeumvulgaresubsp.Vulgare,栽培大麥;Rhododendronsimsii,杜鵑花;Dendrobiumcatenatum,石斛蘭;Artemisiaannua,黃花蒿;Taraxacumantungense,丹東蒲公英;Jasminumsambac,茉莉花;Musaacuminata,香蕉;Passifloraedulis,雞蛋果;Corchoruscapsularis,黃麻;CaraganakorshinskiiKom.,檸條;AlliumsatiuumL.,大蒜;Calohypnumplumiforme,大灰蘚;Saccha-rumspontaneum,甘蔗;Petuniahybrida,矮牽牛;Forsythia suspensa(Thunb.)Vahl,連翹;Liliumregale,百合;Liriodendronchinense,鵝掌征序列在核苷酸水平甚至氨基酸水平上的差異增大,進(jìn)一步證實(shí)了WRKY超級家族的多樣性。蛋白質(zhì)的這種不斷變化和適應(yīng)性可能是為了有效地滿足因條件變化而產(chǎn)生的適應(yīng)現(xiàn)象,從而培育出具有頑強(qiáng)生命力的植物[80.90-91]。WRKY TFs是通過與靶基因啟動子區(qū)W-box(TTGAC(C/T))順式作用元件的特異性結(jié)合[92-93],以此調(diào)控WRKY靶基因的共表達(dá),另外還可以結(jié)合糖響應(yīng)元件SURE來調(diào)節(jié)轉(zhuǎn)錄表達(dá)[94],以上幾種方式的結(jié)合最終都能實(shí)現(xiàn)細(xì)胞內(nèi)穩(wěn)態(tài)[85],達(dá)到調(diào)節(jié)生理過程,發(fā)揮生物學(xué)功能[95]和應(yīng)對各種因素變化的作用[80]。有研究表明,植物中大量的WRKYTFs參與了多種分子調(diào)控網(wǎng)絡(luò),W-box序列的側(cè)翼與WRKYTFs的分子識別機(jī)制可能還有關(guān)聯(lián)[96],具體有待于進(jìn)一步的深入研究。楸;Gentianamacrophylla,大葉龍膽

    圖1 WRKYTFs及來源物種Fig.1 WRKY TFs and source species

    2 WRKY在調(diào)控植物生長發(fā)育中的功能

    近年來,隨著各個植物中WRKY基因被分離出來,以及對其功能和調(diào)控網(wǎng)絡(luò)的深入研究發(fā)現(xiàn),WRKYTFs不僅僅是在植物應(yīng)對各種環(huán)境刺激中特異性結(jié)合靶基因進(jìn)行調(diào)控,而且它在植物的生長發(fā)育過程中也發(fā)揮了重要的作用。種子休眠與萌發(fā)是植物生命周期中的重要時期,而WRKYTFs在這一過程中扮演著重要的角色。它們作為正調(diào)控或負(fù)調(diào)控因子,通過調(diào)控內(nèi)源激素代謝和信號轉(zhuǎn)導(dǎo)途徑,響應(yīng)溫度、光照、水分以及植物激素等內(nèi)外環(huán)境變化的信號,從而促進(jìn)植物的繁衍與生存[97]。當(dāng)植物進(jìn)入營養(yǎng)生長階段時,WRKYTFs同樣發(fā)揮著重要的調(diào)控作用。在這一階段,植物需要不斷地進(jìn)行細(xì)胞分裂和分化,以形成各種組織和器官。WRKYTFs通過調(diào)控相關(guān)基因的表達(dá),參與了下胚軸、根、莖、葉等多種組織和器官的發(fā)育過程[98-102]。例如,它們可以調(diào)控細(xì)胞分裂素等植物激素的合成和信號傳導(dǎo),從而影響細(xì)胞的分裂和分化速率;同時,它們還可以調(diào)控細(xì)胞壁的形成和細(xì)胞間的物質(zhì)運(yùn)輸?shù)冗^程,從而確保植物組織的正常發(fā)育和構(gòu)建。當(dāng)植物的營養(yǎng)生長達(dá)到一定階段,并積累充足的養(yǎng)分后,它們將進(jìn)入生殖生長階段。在這一階段,WRKYTFs同樣發(fā)揮著重要的調(diào)控作用。它們廣泛參與到開花誘導(dǎo)[103]、配子體發(fā)生[104]和種子發(fā)育[105]等過程中,確保植物能夠順利完成生殖生長并產(chǎn)生后代。例如,WRKYTFs可以通過調(diào)控開花相關(guān)基因的表達(dá),影響植物的開花時間和花器官的發(fā)育;同時,它們還可以調(diào)控種子發(fā)育過程中相關(guān)基因的表達(dá),從而影響種子的形態(tài)、大小和萌發(fā)能力等特性[106],具體WRKYTFs調(diào)控植物生長發(fā)育的功能見表1??傊?,通過WRKYTFs的精準(zhǔn)調(diào)控,實(shí)現(xiàn)了植物應(yīng)對各種環(huán)境刺激和生長發(fā)育之間的平衡。

    "

    3 WRKY在調(diào)控次生代謝物中的功能

    植物次生代謝產(chǎn)物在植物建立、生存,以及與其他物種之間的生態(tài)關(guān)聯(lián)中起著至關(guān)重要的作用。它們在特定發(fā)育階段的不同組織或器官中合成,不僅提供了許多有價值的天然產(chǎn)物之外[114],還對各種生物和非生物等環(huán)境刺激做出反應(yīng)[115]。比如,它們不僅在水果的氣味、味道、顏色以及花朵的顏色中發(fā)揮作用,而且也能作為種子傳播者和傳粉者的吸引物[116-117]。同時,次生代謝物還具有防御功能,可以作為抵御病原體入侵屏障和食草動物的威懾者,并能保護(hù)植物免受紫外光等非生物脅迫。另外,也可作為天然的藥物和香料,目前被人類廣泛利用[18-19]。WRKYTFs是許多次級代謝途徑的關(guān)鍵調(diào)控因子,參與調(diào)控次生代謝物的生物合成和積累[115]。如苯丙醇、生物堿、花青素、萜烯、茶醛素和植物醛素[120]。如 VqWRKY56 與VqbZIPC22的相互作用促進(jìn)了類黃酮途徑基因VuCHS3,VuLAR1和 的激活,導(dǎo)致原花青素的積累,原花青素積累介導(dǎo)葡萄對白粉病的防御反應(yīng)[121];OsMKK10-2-OsMPK3/6-OsWRKY31模塊參與水稻茶醛素生物合成,調(diào)節(jié)防御和生長[122];NaWRKY3通過調(diào)控植物抗菌素東茛巖堿和東茛蕓堿的生物合成,介導(dǎo)野生煙草侵染后的防御反應(yīng)[123];LrWRKY3/27在干旱脅迫和MeJA(一種茉莉酸甲酯)處理下介導(dǎo)石蒜天竺葵苷-3-O-葡萄糖苷-5-O-阿拉伯糖苷以及花青素-3-O-sambubio昔花青素等的積累[124];AsWRKY44通過直接結(jié)合到沉香倍半萜合成酶1(ASS1)基因的啟動子中來抑制其啟動子活性,是損傷誘導(dǎo)的ASS1轉(zhuǎn)錄的關(guān)鍵負(fù)調(diào)控因子,是沉香中倍半萜生物合成的關(guān)鍵核心[125]。

    4 WRKY在植物響應(yīng)生物和非生物脅迫中的功能

    在植物的生長發(fā)育過程中,它們要面臨各種生物和非生物脅迫,如病原體、害蟲、雜草、干旱、寒冷、高溫、鹽堿、重金屬等。這些脅迫不僅影響植物的代謝活動,還會限制其生長發(fā)育,甚至可能導(dǎo)致植物死亡[85]。然而,植物本身具有一種非凡的內(nèi)在能力,可以感知到各種各樣的環(huán)境信號,使它們能夠應(yīng)對各種各樣的壓力源[80]。因此,了解植物應(yīng)對以上脅迫的響應(yīng)機(jī)制以及如何適應(yīng)這些脅迫,對于植物的生長發(fā)育和繁衍至關(guān)重要。研究表明,在植物應(yīng)對各種生物和非生物脅迫的響應(yīng)中,WRKYTFs通過調(diào)節(jié)植物激素信號轉(zhuǎn)導(dǎo)通路,發(fā)揮了重要生物學(xué)功能和作用機(jī)制[86]

    植物在遭受生物脅迫時,其應(yīng)激感知就激活了激素(乙烯、茉莉酸和水楊酸(Salicylicacid,SA)等的信號通路,進(jìn)而改變相關(guān)基因的轉(zhuǎn)錄水平和蛋白質(zhì)表達(dá),從而響應(yīng)不同的生物脅迫。內(nèi)源性SA是由異氯酸鹽(底物)和苯丙氨酸解氨酶途徑合成的[126]。其中WRKYTFs調(diào)控與SA生物合成和SA信號通路相關(guān)的基因,比如,擬南芥中的WRKY28與IC合成酶1(ICS1)基因啟動子的直接結(jié)合激活了ICS1的表達(dá),這是SA生物合成的重要步驟[127]。菊花[Chry-santhemum x morifolium(Ramat.)Hemsl.]中的CmWRKY15-1與CmNPR1的互作可能激活下游PR1/2/10基因的表達(dá),從而增強(qiáng)對毛銹菌感染的抗性[128]。棉花(Gossypium hirsutum L.)中的GhWRKY7O通過上調(diào)與SA信號通路相關(guān)的PR1和NPR1基因的表達(dá),負(fù)向調(diào)節(jié)對大麗花黃萎病的防御反應(yīng)[129]。番茄中的SlWRKY8基因的過表達(dá)導(dǎo)致兩個病原體相關(guān)基因SlPRla1和SIPR7的轉(zhuǎn)錄水平升高。SWRKY8在植物對病原體感染的免疫反應(yīng)中起著積極的調(diào)節(jié)作用[130]。GmWRKY40在大豆疫霉菌侵染后均能強(qiáng)烈誘導(dǎo)表達(dá),沉默GmWRKY40基因使大豆疫霉菌的易感性增強(qiáng)。GmWRKY40在大豆植物對疫霉菌的反應(yīng)中可能起正調(diào)節(jié)作用[131]。楊樹中的 PsnWRKY70 過表達(dá),激活了 MAPK(PsnM2K4,PsnMPK3 和PsnM3K18)和CDPK(PsnCDPKL、PsnCDPKW、PsnCDPKS和PsnCDPKQ)級聯(lián)基因,增強(qiáng)對交替真菌的抗性[132]。

    植物在遭受非生物脅迫時,除了在表型(葉片衰老和脫落、芽和根生長抑制果實(shí)變色或損傷、植株可在短時間死亡)133]和生理生化(植物細(xì)胞膜和抗氧化系統(tǒng)被破壞,光合功能受到影響,滲透調(diào)節(jié)物質(zhì)的積累也會發(fā)生變化)[134]等方面發(fā)生一定程度的改變以應(yīng)對脅迫之外,還在分子水平上對這種脅迫做出響應(yīng)。植物通過自身復(fù)雜的調(diào)控機(jī)制來適應(yīng)不斷變化的外部環(huán)境。據(jù)報(bào)道,多種非生物因素可誘導(dǎo)WRKYTFs調(diào)控相關(guān)的基因來增加植物對脅迫的耐受性(圖3)。如Liu等[135]從葡萄中分離出的 VvWRKY28 基因轉(zhuǎn)入擬南芥后,大大提高了轉(zhuǎn)基因擬南芥對低溫和高鹽的耐受性。Huang等[136]從水稻中鑒定出的 OsWRKY54 基因缺失會導(dǎo)致水稻莖部Na積累增加,對鹽脅迫的敏感性增強(qiáng)。 wu 等[137]從云南楊樹中分離出的 PyWRKY75 基因過表達(dá)促進(jìn)了轉(zhuǎn)基因楊樹在自然條件和鎘(Cd)脅迫下的生長,保護(hù)了楊樹免受鎘中毒。Sheng等[138]從擬南芥中克隆的AtWRKY13基因功能缺失導(dǎo)致Cd積累和敏感性增加。Shu等[139]從黃豆(Glycinemax(L.)Merr.)中分離出的 GmWRKY81 在鋁脅迫下過表達(dá)后,其相對根伸長、根重、根深、根長、根尖體積、根尖數(shù)和過氧化物酶活性增加,表明大豆耐鋁能力增強(qiáng)。Han等[140]從蘋果中分離出的MxWRKY55 導(dǎo)入擬南芥中進(jìn)行過表達(dá),可顯著提高耐鐵性和耐鹽性。Zhu等[141]從耐鹽花生M34突變體中分離出 AhWRKY75 基因,鹽脅迫誘導(dǎo)這個基因過表達(dá),使得轉(zhuǎn)基因花生的耐鹽性增強(qiáng)。Hu等[142]從陸地棉花中鑒定出了作為干旱耐受性的轉(zhuǎn)錄正調(diào)節(jié)因子GhWRKY1-ike基因在擬南芥中過表達(dá),增強(qiáng)了抗旱能力。Liu等[143]從杜梨中鑒定出的 PbrWRKY53 基因在煙草和烏蘇梨中的異位表達(dá)增強(qiáng)了對干旱脅迫的耐受性。Lim等[144]從水稻中分離出的OsWRKY5基因在干旱脅迫、NaC1、甘露醇和ABA處理下降低了表達(dá),是一種干旱脅迫耐受性的負(fù)調(diào)節(jié)因子,其失活或?qū)sWRKY5關(guān)鍵靶點(diǎn)的操縱可能有助于提高水稻品種的抗旱性。Wu等[145]從百合(Lilium longiflorum)中鑒定并分離出的 LlWRKY22 在百合中過表達(dá)提高了耐熱性,是一個新的熱應(yīng)激反應(yīng)調(diào)節(jié)劑。總之,WRKYTFs通過調(diào)控與非生物脅迫響應(yīng)相關(guān)的基因表達(dá),觸發(fā)非生物脅迫的信號級聯(lián)網(wǎng)絡(luò),以及通過調(diào)控抗氧化酶的活性、活化轉(zhuǎn)運(yùn)蛋白等途徑對植物非生物脅迫的耐受性起到正向或負(fù)向的調(diào)控作用。

    圖3響應(yīng)非生物脅迫的WRKY基因Fig3WRKY genes in response to abiotic factor stresses

    5 總結(jié)與展望

    WRKY蛋白是植物中存在的一種轉(zhuǎn)錄因子,對植物的生長發(fā)育和抗環(huán)境刺激等方面起著雙向調(diào)控作用。迄今為止,研究人員已在多種植物中對不同的WRKY基因家族成員的結(jié)構(gòu)、功能、分類、調(diào)控機(jī)制進(jìn)行了深入研究。然而,目前仍有許多的WRKY基因家族成員未被分離出,其調(diào)控機(jī)制或功能也未被挖掘,這就需要進(jìn)一步對WRKY基因家族成員進(jìn)行探究。此外,由于這個龐大的WRKY基因家族成員在參與植物信號通路調(diào)控過程中存在重疊或串?dāng)_的現(xiàn)象,但這些調(diào)控機(jī)制尚不明了,需要進(jìn)一步進(jìn)行研究來明確。WRKY蛋白通常含有細(xì)胞核定位信號肽,能夠?qū)Π谢蚱鹫{(diào)控作用,但這種調(diào)控機(jī)制也仍然不清晰,需要深人研究。某些WRKY蛋白還具有亮氨酸拉鏈(Leucinezipper)等結(jié)構(gòu)域,能夠增強(qiáng)其和目標(biāo)基因啟動子中W-box的結(jié)合能力,未來需要對這些結(jié)構(gòu)進(jìn)行更深入的研究,以此更全面的理解WRKY蛋白與DNA的結(jié)合狀態(tài),理解WRKY的調(diào)控機(jī)制。大量的研究已經(jīng)表明,WRKY基因家族成員不僅參與植物的抗逆性響應(yīng),還介導(dǎo)植物的生長發(fā)育過程。例如調(diào)控種子休眠與萌發(fā)、幼苗形態(tài)發(fā)生、開花時間以及配子發(fā)育等。未來研究可以進(jìn)一步揭示更多WRKY基因家族成員在植物生長發(fā)育中的新功能,特別是與植物產(chǎn)量和品質(zhì)密切相關(guān)的方面。

    綜上所述,WRKY基因家族作為高等植物中重要的轉(zhuǎn)錄因子家族之一,在植物的生長發(fā)育、抗逆性等方面發(fā)揮著不可或缺的生物學(xué)功能。未來,我們期待通過深入研究WRKY家族中基因的結(jié)構(gòu)與功能、抗逆性機(jī)制、生長發(fā)育角色等方面的工作,為揭示植物生長發(fā)育和抗逆性的分子機(jī)理提供新的視角和方法。同時,這些研究也將為作物育種和農(nóng)業(yè)生產(chǎn)提供新的基因資源和技術(shù)參考。

    參考文獻(xiàn)

    [1]LINGJ,JIANGWJ,ZHANGY,etal.Genome-wide analysis ofWRKYgene family in Cucumis sativus[J].BMCGenomics, 2011,12:1-20

    [2] BEKIR U,SOMSSICH I E. WRKY transcription factors: fromDNA binding towards biological function[J].Current OpinioninPlantBiology,2004,7(5):491-498

    [3] SONGY,AICR,JING SJ,et al.Research progress on functional analysisof riceWRKY genes[J].Ricescience,2O10,17 (1):60-72

    [4] ZHOUX,JIANGYJ,YUDQ.WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis[J].Molecules and Cells,2011,3(4):303-313

    [5]BAKSHI M,OELMULLER R. WRKY transcription factors: Jack of many trades in plants[J].Plant Signalingamp;Behavior, 2014,9(2):e27700

    [6]SONG H,CAO Y P,ZHAO L G,et al. WRKY transcription factors:Understanding the functional divergence[J]. Plant Science,2023,334:111770

    [7]YEH,QIAO L Y,GUO HY,et al. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A isreferred to droughtand salt resistances[J].Frontiers in Plant Science,2021,12:663118

    [8] CHEN C H,CHEN XQ,HAN J,et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses[J].BMC Plant Biology,2020,20(1):1-19

    [9]MAO P,JIN X Y,BAO Q Y,et al. WRKY transcription factors in Medicago satiua L.:Genome-wide identification and expression analysis under abiotic stress[J].DNA and Cell Biology,2020,39(12):2212-2225

    [10]DIP,WANG P,YANM,et al. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng [J].BMC Genomics,2021,22(1):1-15

    [11]GUO HY,ZHANGYT,WANG Z,etal. Genome-wide identification of WRKY transcription factors in the Asteranae[J]. Plants,2019,8(10):393

    [12]WAQAS M,AZHAR M T,RANA I A,et al. Genome-wide identification and expression analyses of WRKY transcription factorfamily members from chickpea(Cicer arietinum L.) reveal their role in abiotic stress-responses[J].Genesamp; Genomics,2019,41:467-481

    [13]XIONG RQ,PENG ZH,ZHOU H,et al. Genome-wide identification,structural characterization and gene expression analysis of the WRKY transcription factor family in pea(Pisum sativum L.)[J].BMC Plant Biology,2024,24(1):113

    [14]LI J,XIONG Y C,LI Y,et al. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera[J]. International Journal of Molecular Sciences,2019, 20(20):5006

    [15]GARRIDO-GALA J,HIGUERA J J, RODRIGUEZ-FRANCO A,et al.A comprehensive study of the WRKY transcription factor family in strawberry[J].Plants,2022,11(12):1585

    [16]YUAN HM,GUO WD,ZHAOL J,et al. Genome-wide identification and expression analysis of the WRKY transcription factor family in flax(Linum usitatissimum L.)[J].BMC Genomics,2021,22(1):375

    [17]XU Y H,SUN PW,TANG X L,et al. Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis(Lour.) Gilg[J]. Scientific Reports,2020,10(1):3018

    [18]DING W J,OUYANG QX,LI YL,et al.Genome-wide investigation of WRKY transcription factors in sweet osmanthusand their potential regulation of aroma synthesis[J].Tree Physiology,2020,40(4):557-572

    [19]WANG F Q,LI X R,ZUO X,et al. Transcriptome-wide identification ofWRKY transcription factor and functional characterization of RgWRKY37 involved in Acteoside biosynthesis in Rehmanniaglutinosa[J].FrontiersinPlantScience,2O21,12:739853

    [20]QIN Z,HOU F Y,LI A X,et al. Transcriptome-wide identification of WRKY transcription factor and their expression pro filesunder salt stress in sweetpotato(Ipomoea batatasL.)[J]. Plant Biotechnology Reports,2020,14:599-611

    [21]CHEN H,WANG YF,LIU J,et al. Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L[J].Planta,2022,255:1-17

    [22]LEEFC,YEAP W C,APPLETON D R,et al. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments[J].BMC Genomics,2022,23(1):164

    [23] BAILLO E H,HANIF M S,GUO Y H,et al. Genome-wide Identification ofWRKY transcription factor familymembers in sorghum(Sorghumbicolor(L.)moench)[J].PloSOne, 2020,15(8):e0236651

    [24]LI JB,XIONG C W,RUAN D,et al. Identification of Camellia oleifera WRKY transcription factor genes and functional characterizationof CoWRKY78[J].Frontiersin PlantScience, 2023,14:1110366

    [25]LIU Z,SAIYINDULENG,CHANG QY,et al. Identification of yellowhorn (Xanthoceras sorbifolium) WRKY transcription factor family and analysis of abiotic stress response model[J]. Journal of Forestry Research,2021,32(3):987-1004

    [26] CHEN Y Y,JING X,WANG S S,et al. Genome-wide analysis of WRKY transcription factor family in melon(Cucumis MeloL.)and their response to powdery mildew[J]. Plant Molecular BiologyReporter,2021,39(4):686-699

    [27]CHANWALAJ,SATPATIS,DIXITA,etal.Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet(Pennisetum glaucum) under dehydration and salinity stress[J]. BMC Genomics,2020,21:1-16

    [28] ZHANG R R,CHEN Z Z,ZHANG L B,et al. Genomic char acterization of WRKY transcription factors related to andrographolide biosynthesis in Andrographis paniculata[J].Frontiers in Genetics,2021,11:601689

    [29]SUNWJ,MA Z T,CHEN H,et al. Genome-wide investigation of WRKY transcription factors in Tartary buckwheat (Fagopyrum tataricum)and their potential roles in regulating growth and development[J]. PeerJ,202O,8:e8727

    [30]FENG X,LIG H,WU W H,et al. Expansion and adaptive evolution of theWRKY transcription factor family inAvicennia mangrove trees[J]. Marine Life Science amp; Technology,2023, 5(2):155-168

    [31]LIU KQ,JU ZL,JIA ZF,et al. Genome-wide identification and characterization of the oat(Avena satiua L.)WRKY transcription factor family[J].Genes,2022,13(10):1918

    [32]WANG C,HAO XL,WANG Y,et al.Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorhiza pumila[J].Horticulture Research,2O22,9:uhac099

    [33]MUD T,CHEN WQ,SHAOYY,et al.Genome-wide identification and expression analysisofWRKY transcription factors in Siraitia siamensis[J].Plants,2023,12(2):288

    [34]YAO S,WU F,HAO QQ,et al. Transcriptome-wide identificationof WRKY transcription factors and their expression pro filesunder diffrent types of biological and abiotic stress in Pinusmassoniana lamb[J].Genes,202o,11(11):1386

    [35]LIJ,YUHW,LIU ML,et al.Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus[J]. Plant Signalingamp;Behavior,2022,17(1):2089473

    [36] CHANG X Y,YANG Z R, ZHANG X Y,et al. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different stress in Cynanchum thesioides[J].PeerJ,2022,10:e14436

    [37]GOYAL P,MANZOOR M M,VISHWAKARMA R A,et al. A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged inabiotic stress in Glycyrrhiza glabra[J]. Scientific Reports,2020,10(1):373

    [38]AGUAYO P,LAGOS C,CONEJERA D,et al. Transcriptome-wide identification of WRKY familygenes and their expression under cold acclimation in Eucalyptus globulus[J]. Trees,2019,33(5):1313-1327

    [39]YAN Y K,YAN Z Y,ZHAO GF. Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis(Miscanthus sinensis Anderss)[J]. Scientific Reports,2024,14(1):5522

    [40]DAI W S,PENG T,WANG M,et al. Genome-wide identification and comparative expression profiling of the WRKY transcription factor family in two Citrus species with different Candidatus Liberibacterasiaticus susceptibility[J].BMC Plant Biology,2023,23(1):159

    [41] SONG X M,HOU X F,ZENG Y L,et al. Genome-wide identification and comprehensive analysisof WRKY transcription factor family in safflower during drought stress[J]. Scientific Reports,2023,13(1):16955

    [42]ZHU Q,CHENFF,HU X,et al. Genome-wide identification of WRKY transcription factor familyand its expression patterns in Dalbergiaodorifera T.Chen[J].Agronomy,2023,13(10):2591

    [43]LIU Y,ZHANGYF,LIUY,et al.Genome-wide identification and characterization of WRKY transcription factors and theirexpressionprofile inLoropetalumchinensevar.rubrum [J].Plants,2023,12(11):2131

    [44] ZHAO N N,HE M J,LI L,et al. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaeaL.)[J].PLoS One,2020,15(4):e0231396

    [45]YU JJ,ZHANG X,CAO JY,et al. Genome-wide identification and characterization of WRKY transcription factors in betula platyphylla suk.and their responses to abiotic stresses[J]. International Journal ofMolecular Sciences,2023,24(19):15000

    [46]HAOF,YANGG,ZHOUHJ,etal.Genome-wide identificationand transcriptional expression profiles of transcription factor WRKY in common walnut(Juglans regia L.)[J].Genes, 2021,12(9): 1444

    [47]FELIPEZW,VILLAVICENCIOJ,NIZOLLIVO,etal. Genome-wide identification of bilberry WRKY transcription factors: go wild and duplicate[J]. Plants,2023,12(18):3176

    [48]ZHUJ,ZHONG SF,GUAN J,et al. Genome-Wide identification and expression analysis ofWRKY transcription factors inAkebiatrifoliata:Abioinformaticsstudy[J].Genes,2022,3(9)54

    [49]KANJH,GAOGQ,HEQ,etal.Genome-wide characterization of WRKY transcription factors revealed gene duplication and diversification in populations of wild to domesticated barley[J]. International Jourmal of Molecular Sciences,2021,22(10):5354

    [50] WANG C,YE D,LI Y,et al. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea(Rhododendronsimsii)[J].FrontiersinGenetics,2023,14:1172321

    [51] ZHANG T T,XU Y,DING Y D,et al. Identification and expressionanalysis ofWRKY gene family in response to abiotic stress in Dendrobium catenatum [J]. Frontiers in Genetics, 2022,13:800019

    [52] DE PAOLIS A,CARETTO S,QUARTA A,et al. Genomewide identification of WRKY genes in Artemisia annua:characterization of a putative ortholog of AtWRKY4O[J]. Plants, 2020,9(12):1669

    [53] LI L,LIU Q,LIU T Y,et al. Expression of putative luteolin biosynthesis genes and WRKY transcription factors in Taraxacum antungense kitag[J].Plant Cell,Tissue and Organ Culture,2021,145:649-665

    [54]LU ZG,WANG XW,MOSTAFA S,et al. WRKY transcriptionfactors in Jasminum sambac:An insight into the regulation of aroma synthesis[J].Biomolecules,2023,13(12):1679

    [55] JIA C H,WANG Z,Wang JY,et al. Genome-wide analysis of the banana WRKY transcription factor gene family closely related to fruit ripening and stress[J].Plants,2O22,11(5):662

    [56] MA F N,ZHOU H W,YANG H T,et al. WRKY transcription factors in passion fruit analysis reveals key PeWRKYs involved inabiotic stressand flavonoid biosynthesis[J].International Journalof Biological Macromolecules,2024,256:128063

    [57] ZHANG L L,WAN X B,XU Y,et al. De novo assembly of transcriptome and genome-wide identificationreveal GA3 stress-responsive WRKY transcription factors involved in fiber formation in jute(Corchoruscapsularis)[J].BMC Plant Biology,2020,20(1):1-15

    [58]LIU JH,LIG J,WANG RG,et al. Genome-wide analysis of WRKY Transcription Factors Involved in Abiotic Stress and ABA response in Caragana korshinskii[J]. International Jour nal of Molecular Sciences,2023,24(11):9519

    [59]YANGQQ,YANGF,ZHAOYQ,etal.Genome-wide identificationand functional characterizationofWRKY transcription factors involved in the response to salt and heat stress in garlic (Allium satioum L)[J].Biotechnology amp;Biotechnological Equipment,2021,35(1) :1956-1966

    [60]WANG Y,ZHU RY,SHI M,et al. Genome-wide identification and comparative analysis of WRKY transcription factors relatedtomomilactone biosynthesis incalohypnumplumiforme [J].Frontiers in Ecology and Evolution,2022,9:809729

    [61]LIZ,HUAXT,ZHONGWM,etal.Genome-Wide identification and expression profile analysis of WRKY family genes in theautopolyploid Saccharumspontaneum[J].Plant and Cell Physiology,2020,61(3):616-630

    [62] YAO H Y,YANG T Y,QIAN J,et al. Genome-wide analysis and exploration of WRKY transcription factor family involved in the regulation of shoot branching in petunia[J].Genes,2022, 13(5):855

    [63]YANG Y L,CUSHMAN S A,WANG S C,et al. Genomewide investigation of the WRKY transcription factor gene family in weeping forsythia:expression profile and cold and drought stress responses[J].Genetica,2023,151(2):153-165

    [64]LI S,LIUG Z,PUL M,et al. WRKY transcription factors actively respond to fusarium oxysporum in Lilium regale[J]. Phytopathology,2021,111(9):1625-1637

    [65]WU WH,ZHU S,XU L,et al. Genome-wide identification of theLiriodendronchinenseWRKY gene familyand itsdiverse roles in response to multiple abiotic stress[J].BMC Plant Biology,2022,22:1-27

    [66]YINYY,F(xiàn)UHH,MiFK,et al.Genomic characterization of WRKY transcription factors related to secoiridoid biosynthesis in Gentiana macrophylla[J].BMC Plant Biology,2024,24(1): 66

    [67]EULGEM T,SOMSSICHIE. Networks of WRKY transcription factors in defense signaling[J].Current Opinion in Plant Biology,2007,10(4):366-371

    [68]LIU ZQ,SHIL P,YANG S,et al. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper[J]. Molecular Plant Pathology,2021,22(1) :3-18

    [69]ChenXJ,LiC,WangH,etal.WRKY transcription factors: evolution,binding,and action[J].Phytopathology Research, 2019,1(1):1-15

    [70]PHUKAN U J,JEENA G S,SHUKLA R K. WRKY transcription factors:molecular regulation and stress responses in plants[J].Frontiers inPlant Science,2Ol6,7:760

    [71] SCHMUTZ J,CANNON S B,SCHLUETER J,et al. Genome sequence of the palaeopolyploid soybean[J].Nature, 2010,463(7278):178-183

    [72]XIE T,CHEN C J,LI C H,et al. Genome-wide investigation ofWRKY gene family in pineapple:evolution and expression profiles during development and stress [J]. BMC Genomics, 2018,19:1-18

    [73]洪克前,谷會,陳麗.香蕉MaWRKY1轉(zhuǎn)錄因子在果實(shí)和幼苗誘 導(dǎo)抗冷性中表達(dá)分析[J].熱帶作物學(xué)報(bào),2021,42(2):303-309

    [74]畢楚韻,黃小芳,王和壽,等.甘薯全基因組WRKY轉(zhuǎn)錄因子 的基因鑒定與逆境脅迫表達(dá)分析[J].西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版),2021,49(9):30-44

    [75]王永富,趙淑芳,茍秉調(diào),等.辣椒CaPIP5K基因家族的鑒定 與特異性表達(dá)分析(英文)[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2022,30 (4):641-655

    [76] CHEN H,LAI Z B,SHI J W,et al. Roles of Arabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J].BMC Plant Biology,2010,10:1-15

    [77]PARK C Y,LEEJH,YOO JH,et al. WRKY group Id transcription factors interact with calmodulin[J]. FEBS Letters, 2005,579(6):1545-1550

    [78]LIU L,WHITE M J,MACRAE T H. Transcription factors and their genes in higher plants:functional domains,evolution and regulation[J].European Journal of Biochemistry,1999,262 (2):247-257

    [79]RUSHTON P J,SOMSSICHIE,RINGLER P,et al. WRKY transcription factors[J]. Trends inPlantScience,20lo,15(5):247-258

    [80]GOYAL P,DEVI R,VERMA B,et al. WRKY transcription factors:Evolution,regulation,and functional diversity in plants [J].Protoplasma,2023,260(2):331-348

    [81]吳圳,張明英,閆鋒,等.掌葉大黃(Rheum palmatum L.) WRKY基因家族鑒定與分析[J].生物技術(shù)通報(bào),2024,40(1): 250-261

    [82]CHEN L G,SONG Y,LI S J,et al. The role of WRKY transcription factors in plant abiotic stresses[J].Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819 (2):120-128

    [83] ZHANG Y J, WANG L J. The WRKY transcription factor superfamily:itsorigin in eukaryotes and expansion inplants [J].BMC Evolutionary Biology,2005,5:1-12

    [84]RUSHTON P J,SOMSSICHIE,RINGLER P,et al. WRKY transcription factors[J].Trends Plant Science,2010, 15(5):247-258

    [85]WANI S H,ANAND S,SINGH B,et al. WRKY transcription factors and plant defense responses: latest discoveries and future prospects[J]. Plant Cel Reports,2021,40(7):1071-1085

    [86] JIANG JJ,MA S H,YE N H,et al. WRKY transcription factors in plant responses to stresses[J].Journal of Integrative Plant Biology,2017,59(2):86-101

    [87] ZHANG Y,F(xiàn)ENG JC.Identification and characterization of the grape WRKY family[J].BioMed Research International, 2014,2014(1):787680

    [88] JAIN M J,NAGAR P,GOEL P,et al. Second messengers: central regulators in plant abiotic stress response [M]// ZARHAR S, ZARGAR M. Abiotic Stress-Mediated Sensing and Signaling in Plants:An Omics Perspective. Singapore: Springer,2018:47-94

    [89] XIONG W D,XU X Q,ZHANG L,et al. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.)[J].Gene,2013,524(2): 124-132

    [90]KHUMAN A,ARORA S,MAKKAR H,et al. Extensive intragenic divergences amongst ancient WRKY transcription factorgene family is largely associated with their functional diversity in plants[J].Plant Gene,2O2O,22:100222

    [91]JIMMY JL,BABU S.Variations in the structure and evolution of rice WRKY genes in Indica and japonica genotypes and their co-expression network in mediating disease resistance[J]. Evolutionary Bioinformatics,2019,15:1176934319857720

    [92] BRAND L H,F(xiàn)ISCHER N M,HARTER K,et al. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamicsand in vitro binding assays[J]. Nucleic Acids Research,2013,41(21):9764-9778

    [93]EULGEM T,RUSHTON PJ,ROBATZEK S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206

    [94]SUNCX,PALMQVIST S,OLSSONH,etal.A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J].The Plant Cell,2003,15(9):2076-2092

    [95]RISHMAWI L,PESCH M, JUENGST C,et al. Non-cellautonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis[J].PlantPhysiology,2014,165(1):186-195

    [96]HSIN K T,HSIEHMC,LEEYH,et al. Insight into the phylogeny and binding ability of WRKY transcription factors[J]. InternationalJournalofMolecularSciences,2O22,23(5):2895

    [97]于文庚,劉磊,吳德鵬,等.脫落酸與赤霉素調(diào)控種子休眠萌發(fā) 的研究進(jìn)展[J].植物遺傳資源報(bào),2025,26(4):611-621

    [98] ZHOU H,HU W,Wang X C,et al. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis[J]. New Phytologist,2022, 235(1):111-125

    [99] JANG S,LI HY. Overexpression of OsAP2 and OsWRKY24 in Arabidopsis results in reduction of plant size[J]. Plant Biotechnology,2018,35(3):273-279

    [100]MIYAMOTO T,TAKADAR,TOBIMATSU Y,et al. Double knockout of Os WRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice[J]. Plant Science,2020,296:110466

    [101]LIW,TIAN Z X,YU DQ. WRKY13 acts in stem development in Arabidopsis thaliana[J].Plant Science,2O15,236: 205-213

    [102]LI C,LI K N,LIU X Y,et al.Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants[J].Frontiers in Plant Science,2021,12:700651

    [103]MA ZB,LI W,WANG HP,et al. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering[J]. Journal of Integrative Plant Biology,2020,62(11): 1659-1673

    [104]LEIRH,MA ZB,YUDQ.WRKY2/34- VQ20 modules in Arabidopsis thaliana negatively regulate expression of a trio of related MYB transcription factors during pollen development [J].Frontiers inPlant Science,2Ol8,9:331

    [105]ZHANG CQ,XUY,LUY,et al. The WRKY transcription factor Os WRKY78 regulates stem elongation and seed development in rice[J].Planta,2011,234(3):541-554

    [106]WANG H P,CHEN W Q,XU Z Y,et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science,2023,28(6):630-645

    [107]DING ZJ,YANJY,LIG X,et al. WRKY4l controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA[J]. The Plant Journal,2014,79 (5):810-823

    [108]LIQY,YIN M,LIY P,et al. Expression of Brassica napus TTG2,a regulator of trichome development,increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes[J].Journal of Experimental Botany,2015, 66(19):5821-5836

    [109]XIE L H,YAN T X,LI L,et al. The WRKY transcription factorAaGSW2 promotesglandulartrichomeinitiationinArtemisia annua[J]. Journal of Experimental Botany,2O21,72(5): 1691-1701

    [110]WANG SL,SUNQB,ZHANG M,et al. WRKY2 and WRKY10 regulate the circadian expression of PIF4 during the daythrough interactionswithCCA1/LHY and phyB[J].Plant Communications,2022,3(2):100265

    [111]CUIX,ZHAOPY,LiangWW,etal.ArapeseedWRKY transcription factor phosphorylated by CPK modulates cell death and leaf senescence by regulating the expression of ROS and SA-synthesis-related genes[J]. Journal of Agricultural and Food Chemistry,2020,68(28):7348-7359

    [112]JIANG W B,Yu DQ. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of developmentby abscisic acid[J].BMC Plant Biology,2009,9:1-14

    [113]GU LJ,DOU L L,GUO Y N,et al. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton(Gossypium hirsutum L.)[J].BMC Plant Biology,2019,19(1):1-14

    [114] JAN R,ASAf S,NUMAN M,et al. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions[J].Agronomy,2021,11 (5):968

    [115]YANG CQ,F(xiàn)ANG X,WU XM,et al. Transcriptional regulation of plant secondary metabolism[J].Journal of Integrative Plant Biology,2012,54(10):703-712

    [116]VOGT T.Phenylpropanoid biosynthesis[J].Molecular Plant, 2010,3(1):2-20

    [117]VRANOVA E,COMAN D,GRUISSEM W. Structure and dynamics of the isoprenoid pathway network[J].Molecular Plant,2012,5(2):318-333

    [118]HE J,GIUSTI M M. Anthocyanins:natural colorants with health-promoting properties[J]. Annual Review of Food Science and Technology,2010,1(1):163-187

    [119]DUANLX,CHEN TL,LIM,et al.Use of the metabolomics approach to characterize Chinesemedicinal material Huangqi [J].Molecular Plant,2012,5(2):376-386

    [120]JAVED T,GAO S J. WRKY transcription factors in plant defense[J]. Trends in Genetics,2023,39(1O):787-801

    [121]WANGY,WANGXH,F(xiàn)ANGJH,etal.VqWRKY56inter acts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew[J]. New Phytologist,2023,237(5):1856-1875

    [122]WANG S,HAN S Y,ZHOU XG,et al. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2- mediated defense responses in rice[J].ThePlant Cell,2023,35 (6):2391-2412

    [123]XU Z,ZHANG S T,WUJS. NaWRKY3 isa master transcriptional regulator of the defense network against brown spot disease in wild tobacco[J].Journal of Experimental Botany, 2023,74(14):4169-4188

    [124]WANG N,SONG G W,ZHANG F J,et al. Characterization of the WRKY gene family related to anthocyanin biosynthesis and the regulation mechanism under drought stress and methyl jasmonate treatmentinLycorisradiata[J].International Journal of Molecular Sciences,2023,24(3):2423

    [125]SUN P W,XU Y H,YU C C,et al. WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in Aquilaria sinensis[J].Journal of Experimental Botany,2020,71(3):1128-1138

    [126]DING P T,DING YL.Stories of salicylic acid:a plant defense hormone[J]. Trends in Plant Science,2O2o,25(6): 549-565

    [127]VAN VERK MC,BOL JF,LINTHORST HJM. WRKY transcription factorsinvolved in activation of SA biosynthesis genes[J]. BMC Plant Biology,20l1,11:1-12

    [128]GAO G,JIN RB,LIU D,et al.CmWRKY15-1 promotes resistance to Chrysanthemum white rust by regulating CmNPR1 expression[J].Frontiers in Plant Science,2022,13:865607

    [129]XIONG XP,SUN SC,LI Y J,et al. The cotton WRKY transcription factor GhWRKY7Onegatively regulatesthedefense response against Verticillum dahliae[J]. The Crop Journal, 2019,7(3):393-402

    [130]GAO YF,LIUJK,YangF M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J].Physiologia Plantarum,2020,168(1):98-117

    [131]CUIXX,YANQ,GANSP,etal.GmWRKY40,amember of the WRKY transcription factor genes identified from Glycine maxL.,enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biology,2019,19(1) :1-15

    [132]WANG W,BAI X D,CHEN K,et al. Role of PsnWRKY70 in regulatory network response to infection with Alternaria alternata(Fr.)keissl in Populus[J]. International Journal of Molecular Sciences,2022,23(14):7537

    [133]GORAYAGK.KAURB.ASTHIRB.etal.Ranid iniuriesnf high temperature in plants LJ」. Journal ol Plant Biology,ZU17,

    60(4):298-305 [134]GANAPATIRK,NAVEED SA,ZAFARS,et al. Salinealkali tolerance in rice:Physiological response,molecular mechanism,and QTL identification and application to breeding[J]. RiceScience,2022,29(5):412-434 [135]LIU W,LIANGXQ,CAI WJ,et al. Isolation and functional analysis of VoWRKY28,a Vitis vinifera WRKY transcription factor gene,with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana[J]. International Journal of MolecularSciences,2022,23(21):13418 [136]HUANG JJ,LIU F H,CHAO D,et al. The WRKY transcription factor OsWRKY54is involved in salt tolerance in rice[J]. Intemational Joumal of Molecular Sciences,2O22,23(19):11999 [137] WU X L,CHEN Q,CHEN L L,et al. A WRKY transcription factor,PyWRKY75,enhanced cadmium accumulation and toler ance in poplar[J].Ecotoxicology and Environmental Safety,

    2022 239:113630 [138]SHENG YB,YAN X X,HUANG Y,et al. The WRKY transcription factor,WRKY13,activates PDR8 expression to positivelyregulate cadmium tolerance in Arabidopsis[J].Plant, Cellamp;Environment,2019,42(3):891-903 [139]SHUWJ,ZHOUQH,XIANPQ,etal.GmWRKY81 encodingaWRKY transcription factor enhancesaluminum tolerance in soybean[J]. International Journal of Molecular Sciences,2022,23(12):6518 [140]HAN D G,ZHOU ZY,DU MD,et al.Overexpression of a Malusxiaojinensis WRKYtranscriptionfactorgene (MxWRKY55)increased iron and high salinity stress tolerance inArabidopsisthaliana[J].InVitroCellularamp;Developmental Biology-Plant,2020,56(5):600-609 [141]ZHU H,JIANG Y N,GUO Y,et al. A novel salt inducible WRKY transcription factor gene,AhWRKY75,confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry,2021,160:175-183 [142]HUQ,AOCW,WangXR,etal.GhWRKY1-like,a WRKY transcription factor,mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis[J].BMC Plant Biology,2021,21:1-13 [143]LIUY,YANGTY,LINZK,etal.AWRKY transcription factorPbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation[J]. Plant Biotechnology Journal,2019,17(9):1770-1787 [144]LIM C,KANG K,SHIM Y,et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J].Plant Physiology,2021,188(4):1900-1916 [145]WUZ,LI T,CAO X,et al. LilyWRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B[J].Horticulture Research,2022,9:uhac186

    (責(zé)任編輯付宸)

    猜你喜歡
    基序擬南芥結(jié)構(gòu)域
    氧化應(yīng)激在射血分?jǐn)?shù)保留的心力衰竭中的作用與相關(guān)治療的研究進(jìn)展
    抗菌肽MaSAMP的生信分析、基因克隆及遺傳轉(zhuǎn)化
    植物根向水性研究進(jìn)展
    137Cs-γ輻照對擬南芥子一代的影響研究
    GhALMT10在干旱脅迫下的功能鑒定
    山茶WRKY基因家族鑒定及其在花色形成中的表達(dá)分析
    蘋果屬垂絲海棠鉀轉(zhuǎn)運(yùn)基因MhHAK5的克隆及耐低鉀功能鑒定
    大豆 ADF 基因家族的全基因組鑒定及生物信息學(xué)分析
    亚洲男人天堂网一区| 一进一出好大好爽视频| 亚洲乱码一区二区免费版| 1024香蕉在线观看| 亚洲黑人精品在线| 亚洲精品国产一区二区精华液| 9191精品国产免费久久| 亚洲电影在线观看av| 国产又色又爽无遮挡免费看| 露出奶头的视频| 男人的好看免费观看在线视频 | 美女大奶头视频| 国产亚洲欧美在线一区二区| 久久久久九九精品影院| 制服人妻中文乱码| 亚洲欧美日韩东京热| 小说图片视频综合网站| 国产精品久久电影中文字幕| 成人国产一区最新在线观看| 2021天堂中文幕一二区在线观| 欧美日韩精品网址| 窝窝影院91人妻| 国产人伦9x9x在线观看| 很黄的视频免费| 色精品久久人妻99蜜桃| 18禁观看日本| 91大片在线观看| 国产成人啪精品午夜网站| 99精品久久久久人妻精品| 久久天躁狠狠躁夜夜2o2o| 日韩av在线大香蕉| 十八禁人妻一区二区| 久9热在线精品视频| 精品无人区乱码1区二区| 中出人妻视频一区二区| 成人18禁在线播放| 久久久精品大字幕| 韩国av一区二区三区四区| 久久精品亚洲精品国产色婷小说| 特级一级黄色大片| 女同久久另类99精品国产91| 久久婷婷人人爽人人干人人爱| 亚洲av熟女| 又爽又黄无遮挡网站| 日韩欧美在线乱码| 欧美av亚洲av综合av国产av| 岛国在线免费视频观看| 日本在线视频免费播放| 精品国产超薄肉色丝袜足j| 丰满的人妻完整版| tocl精华| 国产激情偷乱视频一区二区| 午夜福利在线在线| av在线天堂中文字幕| 国产成人aa在线观看| 日韩大尺度精品在线看网址| 大型黄色视频在线免费观看| 亚洲性夜色夜夜综合| 99久久国产精品久久久| 国产熟女xx| 亚洲 国产 在线| 麻豆国产97在线/欧美 | 看免费av毛片| www.自偷自拍.com| 午夜亚洲福利在线播放| 国产精品亚洲av一区麻豆| 亚洲av片天天在线观看| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 精品日产1卡2卡| 欧美绝顶高潮抽搐喷水| 啦啦啦免费观看视频1| 日韩欧美免费精品| 亚洲国产中文字幕在线视频| 曰老女人黄片| 黄片小视频在线播放| 十八禁人妻一区二区| 一本精品99久久精品77| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 99久久国产精品久久久| 成人永久免费在线观看视频| 亚洲成人精品中文字幕电影| 色精品久久人妻99蜜桃| 欧美国产日韩亚洲一区| 欧美性长视频在线观看| 草草在线视频免费看| 欧美在线一区亚洲| 亚洲国产精品久久男人天堂| 精品福利观看| 草草在线视频免费看| av在线天堂中文字幕| 国模一区二区三区四区视频 | 欧美日韩黄片免| 校园春色视频在线观看| 嫩草影院精品99| 久久久久久人人人人人| 国产av麻豆久久久久久久| 黄色a级毛片大全视频| 亚洲av电影不卡..在线观看| 婷婷丁香在线五月| 免费在线观看日本一区| 日本熟妇午夜| 少妇粗大呻吟视频| 国产主播在线观看一区二区| 变态另类丝袜制服| 九九热线精品视视频播放| 狠狠狠狠99中文字幕| 男插女下体视频免费在线播放| 夜夜夜夜夜久久久久| 淫妇啪啪啪对白视频| 日韩欧美在线乱码| 久热爱精品视频在线9| 精品高清国产在线一区| 日本黄大片高清| 午夜影院日韩av| 身体一侧抽搐| 久久久久亚洲av毛片大全| 国产精品亚洲美女久久久| 欧美3d第一页| 国产精品av久久久久免费| 亚洲精品一区av在线观看| 老司机深夜福利视频在线观看| 国产伦在线观看视频一区| 丁香六月欧美| 国产黄片美女视频| 国产精品影院久久| www.999成人在线观看| 毛片女人毛片| 伦理电影免费视频| 又紧又爽又黄一区二区| 国产av一区二区精品久久| 两个人视频免费观看高清| 国产视频内射| 女人爽到高潮嗷嗷叫在线视频| 97碰自拍视频| 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 欧美成人午夜精品| 无遮挡黄片免费观看| 亚洲av电影在线进入| 午夜精品久久久久久毛片777| 久久热在线av| 老司机在亚洲福利影院| 欧美一区二区精品小视频在线| 国产精品av视频在线免费观看| 91av网站免费观看| 亚洲人成电影免费在线| 久久久久久久久免费视频了| 国产精品免费视频内射| 久久精品aⅴ一区二区三区四区| 日日干狠狠操夜夜爽| 国产日本99.免费观看| 亚洲精品av麻豆狂野| 悠悠久久av| 亚洲国产欧洲综合997久久,| 男插女下体视频免费在线播放| 日本撒尿小便嘘嘘汇集6| 日韩欧美在线二视频| 中文字幕久久专区| 18禁美女被吸乳视频| 啪啪无遮挡十八禁网站| 国产熟女午夜一区二区三区| 久久人妻av系列| 精品不卡国产一区二区三区| 色哟哟哟哟哟哟| 亚洲国产看品久久| 国产91精品成人一区二区三区| 免费人成视频x8x8入口观看| 国产麻豆成人av免费视频| 日本在线视频免费播放| 日日爽夜夜爽网站| 手机成人av网站| 老汉色∧v一级毛片| 国产亚洲精品第一综合不卡| 欧美午夜高清在线| 亚洲精品久久成人aⅴ小说| 欧美在线黄色| 变态另类丝袜制服| 亚洲av电影在线进入| 国产一区二区三区在线臀色熟女| 久久久久久久精品吃奶| 搡老妇女老女人老熟妇| 香蕉国产在线看| 成年女人毛片免费观看观看9| 欧洲精品卡2卡3卡4卡5卡区| 一卡2卡三卡四卡精品乱码亚洲| 欧美最黄视频在线播放免费| 少妇熟女aⅴ在线视频| 国产高清视频在线播放一区| 19禁男女啪啪无遮挡网站| 成人手机av| 精品日产1卡2卡| 中文字幕高清在线视频| 午夜两性在线视频| 午夜影院日韩av| 十八禁网站免费在线| 国产精品久久视频播放| 人妻久久中文字幕网| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久电影中文字幕| 久久精品亚洲精品国产色婷小说| 欧美又色又爽又黄视频| 国产精品日韩av在线免费观看| x7x7x7水蜜桃| 国产午夜福利久久久久久| 国产精品爽爽va在线观看网站| 亚洲av电影不卡..在线观看| 神马国产精品三级电影在线观看 | 欧美三级亚洲精品| 国产高清有码在线观看视频 | avwww免费| 久久久国产成人免费| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 欧美激情久久久久久爽电影| 久久国产乱子伦精品免费另类| 村上凉子中文字幕在线| 一区二区三区国产精品乱码| 夜夜躁狠狠躁天天躁| a在线观看视频网站| 最新在线观看一区二区三区| 国产av麻豆久久久久久久| 三级男女做爰猛烈吃奶摸视频| 大型黄色视频在线免费观看| 亚洲精品国产精品久久久不卡| 少妇熟女aⅴ在线视频| 国产在线观看jvid| 一夜夜www| 亚洲成a人片在线一区二区| 一区二区三区国产精品乱码| 97碰自拍视频| 亚洲av电影在线进入| 欧美色欧美亚洲另类二区| 午夜日韩欧美国产| 人人妻,人人澡人人爽秒播| 欧美黑人欧美精品刺激| 午夜精品在线福利| 中文资源天堂在线| 19禁男女啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 免费在线观看日本一区| 国产av一区二区精品久久| 很黄的视频免费| 一边摸一边做爽爽视频免费| 人成视频在线观看免费观看| 欧美日本视频| 老汉色av国产亚洲站长工具| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| 日韩高清综合在线| 亚洲一区中文字幕在线| 天天添夜夜摸| 淫妇啪啪啪对白视频| 啦啦啦免费观看视频1| 亚洲一卡2卡3卡4卡5卡精品中文| 又紧又爽又黄一区二区| 日本a在线网址| 怎么达到女性高潮| 免费电影在线观看免费观看| 国产激情久久老熟女| 一区二区三区高清视频在线| 欧美在线一区亚洲| 91九色精品人成在线观看| 日韩欧美三级三区| 黄色丝袜av网址大全| 久久人人精品亚洲av| 一本一本综合久久| 国产亚洲精品久久久久久毛片| 久久人妻福利社区极品人妻图片| 中文字幕av在线有码专区| 国产精品久久久人人做人人爽| 欧美色欧美亚洲另类二区| 精品一区二区三区视频在线观看免费| 色精品久久人妻99蜜桃| 无限看片的www在线观看| 天堂√8在线中文| 久久伊人香网站| 亚洲乱码一区二区免费版| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 一个人免费在线观看电影 | 欧美高清成人免费视频www| 国产精品,欧美在线| 亚洲欧美精品综合久久99| 国产精品一区二区精品视频观看| 长腿黑丝高跟| 亚洲在线自拍视频| 99热只有精品国产| 伦理电影免费视频| 黄色女人牲交| 亚洲avbb在线观看| 欧美在线黄色| 欧美一级毛片孕妇| 欧美av亚洲av综合av国产av| 免费在线观看成人毛片| 黄色 视频免费看| 欧美成人一区二区免费高清观看 | 一级a爱片免费观看的视频| 99久久国产精品久久久| 999久久久国产精品视频| 又大又爽又粗| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 国产精品电影一区二区三区| 免费高清视频大片| 国产精品一区二区免费欧美| 99久久精品热视频| 精品欧美一区二区三区在线| 美女免费视频网站| 欧美一级毛片孕妇| www日本黄色视频网| 国产视频内射| 日韩免费av在线播放| 青草久久国产| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 夜夜爽天天搞| 国产黄片美女视频| 欧美黑人巨大hd| 亚洲最大成人中文| 国产亚洲精品久久久久5区| 亚洲av片天天在线观看| 午夜福利免费观看在线| 国产探花在线观看一区二区| 亚洲18禁久久av| 国产人伦9x9x在线观看| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 成人三级黄色视频| 成年女人毛片免费观看观看9| 午夜免费成人在线视频| 国产日本99.免费观看| 天天躁夜夜躁狠狠躁躁| 国产精品美女特级片免费视频播放器 | 国产一区二区三区视频了| 精品久久久久久久末码| 又紧又爽又黄一区二区| 久久久久九九精品影院| 动漫黄色视频在线观看| 午夜精品在线福利| 12—13女人毛片做爰片一| 欧美乱妇无乱码| 又紧又爽又黄一区二区| 国产成人影院久久av| 亚洲av五月六月丁香网| 久久亚洲真实| 三级男女做爰猛烈吃奶摸视频| 亚洲黑人精品在线| 亚洲国产精品合色在线| 夜夜爽天天搞| 又紧又爽又黄一区二区| 国产精品久久视频播放| 亚洲成人免费电影在线观看| 91国产中文字幕| 亚洲熟女毛片儿| 一边摸一边抽搐一进一小说| 国产亚洲精品久久久久久毛片| 18美女黄网站色大片免费观看| 老司机在亚洲福利影院| 中国美女看黄片| 国产乱人伦免费视频| 两个人视频免费观看高清| 日本熟妇午夜| 久久亚洲真实| 国产精品一区二区精品视频观看| 亚洲精品久久国产高清桃花| 精品国产超薄肉色丝袜足j| 十八禁人妻一区二区| 国产视频一区二区在线看| www.www免费av| 一二三四在线观看免费中文在| a级毛片在线看网站| 欧美日韩精品网址| 18禁裸乳无遮挡免费网站照片| 久热爱精品视频在线9| 麻豆av在线久日| 午夜激情av网站| 国产精品爽爽va在线观看网站| 中文在线观看免费www的网站 | 亚洲va日本ⅴa欧美va伊人久久| 久久久国产欧美日韩av| 亚洲五月天丁香| 国产激情欧美一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 日韩大码丰满熟妇| 韩国av一区二区三区四区| 黄片小视频在线播放| 性欧美人与动物交配| 日韩中文字幕欧美一区二区| 日本免费a在线| 99精品在免费线老司机午夜| 久久精品aⅴ一区二区三区四区| 啦啦啦韩国在线观看视频| avwww免费| 精品一区二区三区四区五区乱码| av福利片在线观看| 99国产综合亚洲精品| 精品一区二区三区av网在线观看| 美女大奶头视频| 国产成人aa在线观看| 天天躁夜夜躁狠狠躁躁| 成年免费大片在线观看| 色噜噜av男人的天堂激情| 色av中文字幕| 久久精品国产清高在天天线| 亚洲欧美日韩高清在线视频| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 亚洲黑人精品在线| 亚洲中文字幕日韩| 亚洲人成电影免费在线| 男女午夜视频在线观看| 女人被狂操c到高潮| 美女大奶头视频| 亚洲avbb在线观看| 少妇被粗大的猛进出69影院| 黑人欧美特级aaaaaa片| 九色成人免费人妻av| 精品久久久久久久人妻蜜臀av| 精品久久久久久久毛片微露脸| 91九色精品人成在线观看| 国产黄色小视频在线观看| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 精品国产超薄肉色丝袜足j| 欧美色视频一区免费| 又粗又爽又猛毛片免费看| e午夜精品久久久久久久| 在线视频色国产色| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 久久 成人 亚洲| 亚洲人成77777在线视频| 特级一级黄色大片| 久久天躁狠狠躁夜夜2o2o| 亚洲国产高清在线一区二区三| 欧美人与性动交α欧美精品济南到| 天天躁夜夜躁狠狠躁躁| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 精品久久久久久久久久久久久| 国产高清视频在线观看网站| netflix在线观看网站| 亚洲欧美一区二区三区黑人| 在线观看免费视频日本深夜| 好男人在线观看高清免费视频| 国产三级中文精品| 精品午夜福利视频在线观看一区| 狠狠狠狠99中文字幕| 日本熟妇午夜| 日本 欧美在线| 国产99白浆流出| 国产欧美日韩一区二区精品| 亚洲乱码一区二区免费版| 精品久久久久久成人av| 中文字幕人妻丝袜一区二区| 免费在线观看日本一区| 十八禁网站免费在线| 亚洲av成人精品一区久久| 亚洲无线在线观看| 757午夜福利合集在线观看| 亚洲精品久久国产高清桃花| 日本免费一区二区三区高清不卡| 亚洲免费av在线视频| 欧美黑人精品巨大| 精品国产乱子伦一区二区三区| 91成年电影在线观看| 天天一区二区日本电影三级| 亚洲五月婷婷丁香| 99国产极品粉嫩在线观看| 久久久久国产一级毛片高清牌| 免费av毛片视频| 国产av麻豆久久久久久久| 午夜亚洲福利在线播放| 亚洲成人免费电影在线观看| 99热6这里只有精品| 巨乳人妻的诱惑在线观看| 法律面前人人平等表现在哪些方面| 久久久久久久久久黄片| 欧美日本视频| 欧美黑人巨大hd| 日韩欧美 国产精品| 国产视频内射| 久久天堂一区二区三区四区| 黄色毛片三级朝国网站| 大型av网站在线播放| 精品国产亚洲在线| 欧美色欧美亚洲另类二区| 国产主播在线观看一区二区| 国产激情欧美一区二区| 两个人视频免费观看高清| 动漫黄色视频在线观看| 亚洲免费av在线视频| 在线永久观看黄色视频| 亚洲中文日韩欧美视频| 母亲3免费完整高清在线观看| 两个人的视频大全免费| 成年女人毛片免费观看观看9| 丰满人妻一区二区三区视频av | 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 国产成人av激情在线播放| 欧美日韩亚洲综合一区二区三区_| 变态另类成人亚洲欧美熟女| 国产麻豆成人av免费视频| 在线观看一区二区三区| 亚洲精品av麻豆狂野| 免费看美女性在线毛片视频| 国产亚洲av高清不卡| 亚洲人与动物交配视频| 日韩成人在线观看一区二区三区| 日韩欧美国产在线观看| 亚洲性夜色夜夜综合| 欧美不卡视频在线免费观看 | 国产男靠女视频免费网站| 亚洲男人的天堂狠狠| 国产午夜精品久久久久久| 日韩国内少妇激情av| 嫁个100分男人电影在线观看| 此物有八面人人有两片| 国产精品久久电影中文字幕| 国产黄a三级三级三级人| 一本大道久久a久久精品| 日韩大码丰满熟妇| 2021天堂中文幕一二区在线观| 国内久久婷婷六月综合欲色啪| 麻豆国产97在线/欧美 | 99国产综合亚洲精品| 国产精品1区2区在线观看.| 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 在线播放国产精品三级| 午夜福利免费观看在线| 黑人巨大精品欧美一区二区mp4| 国产麻豆成人av免费视频| 草草在线视频免费看| 免费在线观看日本一区| 欧美成人性av电影在线观看| 身体一侧抽搐| 少妇的丰满在线观看| 亚洲精品色激情综合| 国产伦一二天堂av在线观看| 午夜精品在线福利| 成人三级黄色视频| 最新美女视频免费是黄的| 五月玫瑰六月丁香| 脱女人内裤的视频| 国产精品日韩av在线免费观看| 观看免费一级毛片| 国产亚洲欧美在线一区二区| 国产亚洲精品综合一区在线观看 | 国产亚洲精品一区二区www| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 久久性视频一级片| 亚洲成人免费电影在线观看| 午夜精品久久久久久毛片777| 2021天堂中文幕一二区在线观| 精品久久蜜臀av无| 男人舔女人下体高潮全视频| 日本在线视频免费播放| 国产免费av片在线观看野外av| 亚洲第一电影网av| 1024香蕉在线观看| 国产成人av激情在线播放| 天堂√8在线中文| 国产成人精品久久二区二区免费| 久久久久久国产a免费观看| 亚洲av成人一区二区三| 香蕉丝袜av| 欧美日韩精品网址| 18禁裸乳无遮挡免费网站照片| 亚洲人成网站在线播放欧美日韩| 麻豆国产av国片精品| 好男人电影高清在线观看| 99久久精品国产亚洲精品| 国产不卡一卡二| 精品欧美一区二区三区在线| 日本 av在线| 欧美大码av| 亚洲精品美女久久久久99蜜臀| 99精品在免费线老司机午夜| av在线天堂中文字幕| 99国产精品一区二区三区| 亚洲五月天丁香| 人妻夜夜爽99麻豆av| 久久久精品国产亚洲av高清涩受| 久久国产乱子伦精品免费另类| 国产高清videossex| 极品教师在线免费播放| 精品一区二区三区视频在线观看免费| 人妻久久中文字幕网| 国产一区二区激情短视频| 国产精品国产高清国产av| 国产熟女午夜一区二区三区| avwww免费| 亚洲成人国产一区在线观看| 国产免费男女视频| 精品熟女少妇八av免费久了| 国产精品久久久人人做人人爽| 特级一级黄色大片| 久久香蕉激情| 一进一出好大好爽视频| 无限看片的www在线观看| 久99久视频精品免费| 一进一出好大好爽视频| 欧美性长视频在线观看| 国产精品美女特级片免费视频播放器 | 亚洲激情在线av|