中圖分類號:Q943.2 文獻(xiàn)標(biāo)識碼:A 文章編號:1007-0435(2025)07-2059-11
doi:10.11733/j.issn.1007-0435.2025.07.002
引用格式:,等.WRKY基因家族在植物中的研究進(jìn)展[J].草地學(xué)報(bào),2025,33(7):2059—2069 CHEN Cai-jin,MA Lin,BAOMing-fang,etal.Research Progress ontheRoleof WRKYFamily Genes inPlants[J]. Acta Agrestia Sinica,2025,33(7) :2059—2069
ResearchProgressontheRoleofWRKYFamilyGenesinPlants
CHEN Cai-jin 1,2,3. ,MA Lin1, BAO Ming-fang2,3, JIANG Qing-xue1, ZHANG Guo-hui3, ZHANG Shang-pei,GAO Ting4,LIU Wen-hui2*,WANG Xue-min1* (1.InstituteofAnimalScince,ChineseAcadeyfAgriculturalSiences,BeijingO93,hina;2.AcademyofAnimalieea
VeterinaryMedicineofQinghaiUniversityXining,QinghaiProvince86,hina;3.GuyuanBranchingxiaAcadeyofAgltural
andForestrySieces,Guyanngia56ona;4Isituteofimalience,ngiaAcadeyfgriculturadt Sciences,Yinchuan,Ningxia 75Ooo2,China)
Abstract:WRKY proteins are one of the largest families of transcription factors(TFs) found in plants.Mem bers of this family play important bidirectional regulatory roles in plant growth and development,biomass formation,secondary metabolite synthesis,and response to biotic or abiotic stresses.This paper provided acomprehensive review of the structural features and classification of WRKY TFs in plants,as well as their biological functions in plant growth and development,secondary metabolite synthesis,and biotic and abiotic stresses unearthed in the last five years,and also provided an outlook on the subsequent related studies of WRKY family members,aiming to provide technical references for further excavation of plant WRKY family members and their biological function studies.
Key Words: WRKY;Growth and development;Secondary metabolism; Biotic stress;Abiotic stress
近年來,隨著分子生物學(xué)在農(nóng)業(yè)科學(xué)研究領(lǐng)域中的滲透和深入,人們對植物基因家族的關(guān)注越來越多,研究的深度和廣度也逐漸增加。在高等植物中,WRKY蛋白作為一種最大的轉(zhuǎn)錄因子(Transcriptionfactor,TF)家族之一,廣泛參與許多生物信號網(wǎng)絡(luò)的調(diào)控,如植物生長、防御、攻擊、代謝、毛狀體和胚胎的形態(tài)發(fā)生、葉片衰老、生物量形成,以及對生物和非生物脅迫的響應(yīng)等方面[1-5]。WRKY基因家族成員SPF1最初發(fā)現(xiàn)于甘薯[Ipomoeabatatas(L.)Lam.]中,并且受聚谷氨酸(Polyglutamicacid,PGA)和蔗糖的誘導(dǎo)進(jìn)行表達(dá)。隨著對植物分子方面研究的深入,目前已在245種植物中發(fā)現(xiàn)了不同數(shù)量的WRKY基因家族成員,探索出了其在植物中的作用。前期已經(jīng)有文章詳細(xì)敘述了自WRKY基因家族成員發(fā)現(xiàn)以來各個植物中鑒定出的WRKY基因及其數(shù)量,本文總結(jié)了近5年內(nèi)分析鑒定出的WRKY基因7-66(圖1)。在植物中,WRKYTFs作為激活或抑制因子,在各種同源或異源二聚體組合中形成一個TF網(wǎng)絡(luò),參與各種細(xì)胞質(zhì)和細(xì)胞核過程,包括從細(xì)胞器或細(xì)胞質(zhì)到細(xì)胞核的信號事件[5]。其中主要是WRKYTFs作為微生物或病原體相關(guān)分子模式觸發(fā)免疫,或其效應(yīng)物觸發(fā)免疫,以此來正向或負(fù)向調(diào)控植物先天免疫系統(tǒng)的各個方面[6],主要作用過程有如下2個方面,一方面是WRKYTFs通過與其他蛋白(如受體、激酶或其他的TFs)相互作用進(jìn)行交叉和自我調(diào)節(jié)[68-69],引起級聯(lián)反應(yīng);另一方面是與其他反式元件結(jié)合,形成動態(tài)蛋白復(fù)合物,增強(qiáng)轉(zhuǎn)錄活性[70]?;赪RKY基因家族成員在植物中的重要性,本文主要綜述了其結(jié)構(gòu)、分類,以及在生長發(fā)育、次生代謝物合成、生物和非生物脅迫下的功能,以此明確出WRKYTFs調(diào)控植物的機(jī)制,為植物WRKYTFs的進(jìn)一步研究提供參考。
1植物WRKYTFs的結(jié)構(gòu)和分類
WRKY蛋白具有長約6O個氨基酸的DNA結(jié)構(gòu)域(DNA-bindingdomain,DBD),該結(jié)構(gòu)域的特征是其由位于N端的高度保守WRKYGQK和位于C端 C2H2- 或 C2HC- 型鋅指基序組成[72],WRKYGQK中氨基酸W,K和Y是高度保守的,但少數(shù)氨基酸殘基被替換或丟失也存在于WRKYTFs的核心序列中[73-75]。WRKYTFs根據(jù)結(jié)構(gòu)域的數(shù)量及其鋅指基序的結(jié)構(gòu)特征將其家族成員一般分為3類(I—III(圖2):第I類具有兩個WRKY結(jié)構(gòu)域和一個 C2H2 鋅指基序 (C-X4-5-C-X22-23H-X1? H)[76-78] ,其中X可以是任何氨基酸;第Ⅱ類具有一個WRKY結(jié)構(gòu)域和一個 C2H2 鋅指基序,根據(jù)同源性可繼續(xù)分為5個亞類,分別是ⅡIa、IIb、ⅡIc、ⅡId和
Ⅱe[79]。WRKYTFs中第II類非單系成員仍在進(jìn)化(如 C2H2 鋅指組織模式的改變),這些進(jìn)化出來的成員可以聚集到一個新的亞類(IIf)中[37.80]。第III類具有一個WRKY結(jié)構(gòu)域和一個 C2HC(C-X7 -C- ?X23 1H-X1. -C)鋅指基序[81]。WRKYTFs成員除了具有WRKY結(jié)構(gòu)域和鋅指結(jié)構(gòu)外,一些成員還包含其他結(jié)構(gòu),如亮氨酸拉鏈、核定位信號(NLS)、絲氨酸/蘇氨酸富集區(qū)、谷氨酰胺富集區(qū)、脯氨酸富集區(qū)、激酶結(jié)構(gòu)域等結(jié)構(gòu),這些結(jié)構(gòu)可能賦予WRKYTFs不同的轉(zhuǎn)錄調(diào)控功能[80.82-83]。植物進(jìn)化分析研究結(jié)果顯示,第I類WRKYTFs可能是先于第II和III類的WRKYTFs出現(xiàn)的,這主要是因?yàn)镮I類和III類WRKYTFs成員的C端結(jié)構(gòu)域與I類是共享的[69]WRKYTFs根據(jù)結(jié)構(gòu)域的系統(tǒng)發(fā)育情況、保守結(jié)構(gòu)域和內(nèi)含子的位置將其家族成員一般分為5組,分別是I組(I-N端和I-C端)Ia-IIb、Ic、IId-Ie和III組[83]。WRKYTFs根據(jù)內(nèi)含子插入位置將其家族成員分為2類,第1類是剪接位點(diǎn)位于精氨酸密碼子的2Gs之間,且含有R型內(nèi)含子的WRKYTFs(IIa和IIb亞型),第2類是剪接位點(diǎn)位于氨酸密碼子的前面,且含有V型內(nèi)含子的WRKYTFs[83]。
WRKY結(jié)構(gòu)域中的七肽序列WRKYGQK雖然是高度保守的,但也存在氨基酸殘基被替代,或WRKY氨基酸被其他不同類型的氨基酸所替代,比如WRKYGQK中的“Q\"被“E\"“N\"\"H\"“K\"“R\"等替換[85],WRKY基序被WIKY,WRMC,WRIC,WKKY,WVKY,WKRY,WSKY,WRRY,WSK,WKRY,WVKY和WKKY所替代[86],WRKY金屬螯合鋅指基序中保守的His殘基被Cys殘基所取代[87]。另有研究發(fā)現(xiàn),在擬南芥(Arabidopsisthali-ana)、丹參(Saluiamiltiorrhiza)和菜豆(Phaseolusulgaris)中存在功能未知的HARF基序(RTGHARFRR(A/G)P),以及在擬南芥、水稻(OryzasativaL.)、栽培大豆(Giycinemax(L.)Merr.)、甘草(GlycyrrhizauralensisFisch.)等植物中發(fā)現(xiàn)存在coat家族基序(30個氨基酸)DivIVA超家族基序(63個氨基酸)和SerS超家族基序(61個氨基酸)[37]。同時在擬南芥WRKY家族成員中也報(bào)道了鈣調(diào)素(CaM)結(jié)構(gòu)域和WRKY家族IId亞類植物鋅簇(長42個氨基酸殘基)的序列存在差異。例如,已在擬南芥[88]、甘草[37]和麻風(fēng)樹(JatrophacurcasL.)[89上發(fā)現(xiàn)了位于WRKY結(jié)構(gòu)域N末端上游的鋅簇被鋅指基序取代。這些WRKY的特定特注:AvenasatiuaL.,燕麥;Ophiorrhizapumila,短小蛇根草;Siraitiasiamensis,翅子羅漢果;PinusmassonianaLamb.,馬尾松;Platy-codongrandiflorus,桔梗;Cynanchumthesioides,地梢瓜;Glycyrrhizaglabra,甘草;Eucalyptusglobulus,藍(lán)桉樹;MiscanthussinensisAnderss,芒莖;Citrussinensis,甜橙;Poncirustrifoliata,枸橘;CarthamustinctoriusL.,紅花;Dalbergiaodorifera,降香;Loropetalumchi-nensevar.rubrum,紅花木;Arachis hypogaea,花生;BetulaplatyphyllaSuk.,白樺;JuglansregiaL.,核桃;VacciniummyrtillusL.,黑果越橘;Akebiatrifoliata,三葉木通;Hordeumvulgaresubsp.Sponteneum,野生大麥;Hordeumvulgaresubsp.Vulgare,栽培大麥;Rhododendronsimsii,杜鵑花;Dendrobiumcatenatum,石斛蘭;Artemisiaannua,黃花蒿;Taraxacumantungense,丹東蒲公英;Jasminumsambac,茉莉花;Musaacuminata,香蕉;Passifloraedulis,雞蛋果;Corchoruscapsularis,黃麻;CaraganakorshinskiiKom.,檸條;AlliumsatiuumL.,大蒜;Calohypnumplumiforme,大灰蘚;Saccha-rumspontaneum,甘蔗;Petuniahybrida,矮牽牛;Forsythia suspensa(Thunb.)Vahl,連翹;Liliumregale,百合;Liriodendronchinense,鵝掌征序列在核苷酸水平甚至氨基酸水平上的差異增大,進(jìn)一步證實(shí)了WRKY超級家族的多樣性。蛋白質(zhì)的這種不斷變化和適應(yīng)性可能是為了有效地滿足因條件變化而產(chǎn)生的適應(yīng)現(xiàn)象,從而培育出具有頑強(qiáng)生命力的植物[80.90-91]。WRKY TFs是通過與靶基因啟動子區(qū)W-box(TTGAC(C/T))順式作用元件的特異性結(jié)合[92-93],以此調(diào)控WRKY靶基因的共表達(dá),另外還可以結(jié)合糖響應(yīng)元件SURE來調(diào)節(jié)轉(zhuǎn)錄表達(dá)[94],以上幾種方式的結(jié)合最終都能實(shí)現(xiàn)細(xì)胞內(nèi)穩(wěn)態(tài)[85],達(dá)到調(diào)節(jié)生理過程,發(fā)揮生物學(xué)功能[95]和應(yīng)對各種因素變化的作用[80]。有研究表明,植物中大量的WRKYTFs參與了多種分子調(diào)控網(wǎng)絡(luò),W-box序列的側(cè)翼與WRKYTFs的分子識別機(jī)制可能還有關(guān)聯(lián)[96],具體有待于進(jìn)一步的深入研究。楸;Gentianamacrophylla,大葉龍膽
2 WRKY在調(diào)控植物生長發(fā)育中的功能
近年來,隨著各個植物中WRKY基因被分離出來,以及對其功能和調(diào)控網(wǎng)絡(luò)的深入研究發(fā)現(xiàn),WRKYTFs不僅僅是在植物應(yīng)對各種環(huán)境刺激中特異性結(jié)合靶基因進(jìn)行調(diào)控,而且它在植物的生長發(fā)育過程中也發(fā)揮了重要的作用。種子休眠與萌發(fā)是植物生命周期中的重要時期,而WRKYTFs在這一過程中扮演著重要的角色。它們作為正調(diào)控或負(fù)調(diào)控因子,通過調(diào)控內(nèi)源激素代謝和信號轉(zhuǎn)導(dǎo)途徑,響應(yīng)溫度、光照、水分以及植物激素等內(nèi)外環(huán)境變化的信號,從而促進(jìn)植物的繁衍與生存[97]。當(dāng)植物進(jìn)入營養(yǎng)生長階段時,WRKYTFs同樣發(fā)揮著重要的調(diào)控作用。在這一階段,植物需要不斷地進(jìn)行細(xì)胞分裂和分化,以形成各種組織和器官。WRKYTFs通過調(diào)控相關(guān)基因的表達(dá),參與了下胚軸、根、莖、葉等多種組織和器官的發(fā)育過程[98-102]。例如,它們可以調(diào)控細(xì)胞分裂素等植物激素的合成和信號傳導(dǎo),從而影響細(xì)胞的分裂和分化速率;同時,它們還可以調(diào)控細(xì)胞壁的形成和細(xì)胞間的物質(zhì)運(yùn)輸?shù)冗^程,從而確保植物組織的正常發(fā)育和構(gòu)建。當(dāng)植物的營養(yǎng)生長達(dá)到一定階段,并積累充足的養(yǎng)分后,它們將進(jìn)入生殖生長階段。在這一階段,WRKYTFs同樣發(fā)揮著重要的調(diào)控作用。它們廣泛參與到開花誘導(dǎo)[103]、配子體發(fā)生[104]和種子發(fā)育[105]等過程中,確保植物能夠順利完成生殖生長并產(chǎn)生后代。例如,WRKYTFs可以通過調(diào)控開花相關(guān)基因的表達(dá),影響植物的開花時間和花器官的發(fā)育;同時,它們還可以調(diào)控種子發(fā)育過程中相關(guān)基因的表達(dá),從而影響種子的形態(tài)、大小和萌發(fā)能力等特性[106],具體WRKYTFs調(diào)控植物生長發(fā)育的功能見表1??傊?,通過WRKYTFs的精準(zhǔn)調(diào)控,實(shí)現(xiàn)了植物應(yīng)對各種環(huán)境刺激和生長發(fā)育之間的平衡。
3 WRKY在調(diào)控次生代謝物中的功能
植物次生代謝產(chǎn)物在植物建立、生存,以及與其他物種之間的生態(tài)關(guān)聯(lián)中起著至關(guān)重要的作用。它們在特定發(fā)育階段的不同組織或器官中合成,不僅提供了許多有價值的天然產(chǎn)物之外[114],還對各種生物和非生物等環(huán)境刺激做出反應(yīng)[115]。比如,它們不僅在水果的氣味、味道、顏色以及花朵的顏色中發(fā)揮作用,而且也能作為種子傳播者和傳粉者的吸引物[116-117]。同時,次生代謝物還具有防御功能,可以作為抵御病原體入侵屏障和食草動物的威懾者,并能保護(hù)植物免受紫外光等非生物脅迫。另外,也可作為天然的藥物和香料,目前被人類廣泛利用[18-19]。WRKYTFs是許多次級代謝途徑的關(guān)鍵調(diào)控因子,參與調(diào)控次生代謝物的生物合成和積累[115]。如苯丙醇、生物堿、花青素、萜烯、茶醛素和植物醛素[120]。如 VqWRKY56 與VqbZIPC22的相互作用促進(jìn)了類黃酮途徑基因VuCHS3,VuLAR1和 的激活,導(dǎo)致原花青素的積累,原花青素積累介導(dǎo)葡萄對白粉病的防御反應(yīng)[121];OsMKK10-2-OsMPK3/6-OsWRKY31模塊參與水稻茶醛素生物合成,調(diào)節(jié)防御和生長[122];NaWRKY3通過調(diào)控植物抗菌素東茛巖堿和東茛蕓堿的生物合成,介導(dǎo)野生煙草侵染后的防御反應(yīng)[123];LrWRKY3/27在干旱脅迫和MeJA(一種茉莉酸甲酯)處理下介導(dǎo)石蒜天竺葵苷-3-O-葡萄糖苷-5-O-阿拉伯糖苷以及花青素-3-O-sambubio昔花青素等的積累[124];AsWRKY44通過直接結(jié)合到沉香倍半萜合成酶1(ASS1)基因的啟動子中來抑制其啟動子活性,是損傷誘導(dǎo)的ASS1轉(zhuǎn)錄的關(guān)鍵負(fù)調(diào)控因子,是沉香中倍半萜生物合成的關(guān)鍵核心[125]。
4 WRKY在植物響應(yīng)生物和非生物脅迫中的功能
在植物的生長發(fā)育過程中,它們要面臨各種生物和非生物脅迫,如病原體、害蟲、雜草、干旱、寒冷、高溫、鹽堿、重金屬等。這些脅迫不僅影響植物的代謝活動,還會限制其生長發(fā)育,甚至可能導(dǎo)致植物死亡[85]。然而,植物本身具有一種非凡的內(nèi)在能力,可以感知到各種各樣的環(huán)境信號,使它們能夠應(yīng)對各種各樣的壓力源[80]。因此,了解植物應(yīng)對以上脅迫的響應(yīng)機(jī)制以及如何適應(yīng)這些脅迫,對于植物的生長發(fā)育和繁衍至關(guān)重要。研究表明,在植物應(yīng)對各種生物和非生物脅迫的響應(yīng)中,WRKYTFs通過調(diào)節(jié)植物激素信號轉(zhuǎn)導(dǎo)通路,發(fā)揮了重要生物學(xué)功能和作用機(jī)制[86]
植物在遭受生物脅迫時,其應(yīng)激感知就激活了激素(乙烯、茉莉酸和水楊酸(Salicylicacid,SA)等的信號通路,進(jìn)而改變相關(guān)基因的轉(zhuǎn)錄水平和蛋白質(zhì)表達(dá),從而響應(yīng)不同的生物脅迫。內(nèi)源性SA是由異氯酸鹽(底物)和苯丙氨酸解氨酶途徑合成的[126]。其中WRKYTFs調(diào)控與SA生物合成和SA信號通路相關(guān)的基因,比如,擬南芥中的WRKY28與IC合成酶1(ICS1)基因啟動子的直接結(jié)合激活了ICS1的表達(dá),這是SA生物合成的重要步驟[127]。菊花[Chry-santhemum x morifolium(Ramat.)Hemsl.]中的CmWRKY15-1與CmNPR1的互作可能激活下游PR1/2/10基因的表達(dá),從而增強(qiáng)對毛銹菌感染的抗性[128]。棉花(Gossypium hirsutum L.)中的GhWRKY7O通過上調(diào)與SA信號通路相關(guān)的PR1和NPR1基因的表達(dá),負(fù)向調(diào)節(jié)對大麗花黃萎病的防御反應(yīng)[129]。番茄中的SlWRKY8基因的過表達(dá)導(dǎo)致兩個病原體相關(guān)基因SlPRla1和SIPR7的轉(zhuǎn)錄水平升高。SWRKY8在植物對病原體感染的免疫反應(yīng)中起著積極的調(diào)節(jié)作用[130]。GmWRKY40在大豆疫霉菌侵染后均能強(qiáng)烈誘導(dǎo)表達(dá),沉默GmWRKY40基因使大豆疫霉菌的易感性增強(qiáng)。GmWRKY40在大豆植物對疫霉菌的反應(yīng)中可能起正調(diào)節(jié)作用[131]。楊樹中的 PsnWRKY70 過表達(dá),激活了 MAPK(PsnM2K4,PsnMPK3 和PsnM3K18)和CDPK(PsnCDPKL、PsnCDPKW、PsnCDPKS和PsnCDPKQ)級聯(lián)基因,增強(qiáng)對交替真菌的抗性[132]。
植物在遭受非生物脅迫時,除了在表型(葉片衰老和脫落、芽和根生長抑制果實(shí)變色或損傷、植株可在短時間死亡)133]和生理生化(植物細(xì)胞膜和抗氧化系統(tǒng)被破壞,光合功能受到影響,滲透調(diào)節(jié)物質(zhì)的積累也會發(fā)生變化)[134]等方面發(fā)生一定程度的改變以應(yīng)對脅迫之外,還在分子水平上對這種脅迫做出響應(yīng)。植物通過自身復(fù)雜的調(diào)控機(jī)制來適應(yīng)不斷變化的外部環(huán)境。據(jù)報(bào)道,多種非生物因素可誘導(dǎo)WRKYTFs調(diào)控相關(guān)的基因來增加植物對脅迫的耐受性(圖3)。如Liu等[135]從葡萄中分離出的 VvWRKY28 基因轉(zhuǎn)入擬南芥后,大大提高了轉(zhuǎn)基因擬南芥對低溫和高鹽的耐受性。Huang等[136]從水稻中鑒定出的 OsWRKY54 基因缺失會導(dǎo)致水稻莖部Na積累增加,對鹽脅迫的敏感性增強(qiáng)。 wu 等[137]從云南楊樹中分離出的 PyWRKY75 基因過表達(dá)促進(jìn)了轉(zhuǎn)基因楊樹在自然條件和鎘(Cd)脅迫下的生長,保護(hù)了楊樹免受鎘中毒。Sheng等[138]從擬南芥中克隆的AtWRKY13基因功能缺失導(dǎo)致Cd積累和敏感性增加。Shu等[139]從黃豆(Glycinemax(L.)Merr.)中分離出的 GmWRKY81 在鋁脅迫下過表達(dá)后,其相對根伸長、根重、根深、根長、根尖體積、根尖數(shù)和過氧化物酶活性增加,表明大豆耐鋁能力增強(qiáng)。Han等[140]從蘋果中分離出的MxWRKY55 導(dǎo)入擬南芥中進(jìn)行過表達(dá),可顯著提高耐鐵性和耐鹽性。Zhu等[141]從耐鹽花生M34突變體中分離出 AhWRKY75 基因,鹽脅迫誘導(dǎo)這個基因過表達(dá),使得轉(zhuǎn)基因花生的耐鹽性增強(qiáng)。Hu等[142]從陸地棉花中鑒定出了作為干旱耐受性的轉(zhuǎn)錄正調(diào)節(jié)因子GhWRKY1-ike基因在擬南芥中過表達(dá),增強(qiáng)了抗旱能力。Liu等[143]從杜梨中鑒定出的 PbrWRKY53 基因在煙草和烏蘇梨中的異位表達(dá)增強(qiáng)了對干旱脅迫的耐受性。Lim等[144]從水稻中分離出的OsWRKY5基因在干旱脅迫、NaC1、甘露醇和ABA處理下降低了表達(dá),是一種干旱脅迫耐受性的負(fù)調(diào)節(jié)因子,其失活或?qū)sWRKY5關(guān)鍵靶點(diǎn)的操縱可能有助于提高水稻品種的抗旱性。Wu等[145]從百合(Lilium longiflorum)中鑒定并分離出的 LlWRKY22 在百合中過表達(dá)提高了耐熱性,是一個新的熱應(yīng)激反應(yīng)調(diào)節(jié)劑。總之,WRKYTFs通過調(diào)控與非生物脅迫響應(yīng)相關(guān)的基因表達(dá),觸發(fā)非生物脅迫的信號級聯(lián)網(wǎng)絡(luò),以及通過調(diào)控抗氧化酶的活性、活化轉(zhuǎn)運(yùn)蛋白等途徑對植物非生物脅迫的耐受性起到正向或負(fù)向的調(diào)控作用。
5 總結(jié)與展望
WRKY蛋白是植物中存在的一種轉(zhuǎn)錄因子,對植物的生長發(fā)育和抗環(huán)境刺激等方面起著雙向調(diào)控作用。迄今為止,研究人員已在多種植物中對不同的WRKY基因家族成員的結(jié)構(gòu)、功能、分類、調(diào)控機(jī)制進(jìn)行了深入研究。然而,目前仍有許多的WRKY基因家族成員未被分離出,其調(diào)控機(jī)制或功能也未被挖掘,這就需要進(jìn)一步對WRKY基因家族成員進(jìn)行探究。此外,由于這個龐大的WRKY基因家族成員在參與植物信號通路調(diào)控過程中存在重疊或串?dāng)_的現(xiàn)象,但這些調(diào)控機(jī)制尚不明了,需要進(jìn)一步進(jìn)行研究來明確。WRKY蛋白通常含有細(xì)胞核定位信號肽,能夠?qū)Π谢蚱鹫{(diào)控作用,但這種調(diào)控機(jī)制也仍然不清晰,需要深人研究。某些WRKY蛋白還具有亮氨酸拉鏈(Leucinezipper)等結(jié)構(gòu)域,能夠增強(qiáng)其和目標(biāo)基因啟動子中W-box的結(jié)合能力,未來需要對這些結(jié)構(gòu)進(jìn)行更深入的研究,以此更全面的理解WRKY蛋白與DNA的結(jié)合狀態(tài),理解WRKY的調(diào)控機(jī)制。大量的研究已經(jīng)表明,WRKY基因家族成員不僅參與植物的抗逆性響應(yīng),還介導(dǎo)植物的生長發(fā)育過程。例如調(diào)控種子休眠與萌發(fā)、幼苗形態(tài)發(fā)生、開花時間以及配子發(fā)育等。未來研究可以進(jìn)一步揭示更多WRKY基因家族成員在植物生長發(fā)育中的新功能,特別是與植物產(chǎn)量和品質(zhì)密切相關(guān)的方面。
綜上所述,WRKY基因家族作為高等植物中重要的轉(zhuǎn)錄因子家族之一,在植物的生長發(fā)育、抗逆性等方面發(fā)揮著不可或缺的生物學(xué)功能。未來,我們期待通過深入研究WRKY家族中基因的結(jié)構(gòu)與功能、抗逆性機(jī)制、生長發(fā)育角色等方面的工作,為揭示植物生長發(fā)育和抗逆性的分子機(jī)理提供新的視角和方法。同時,這些研究也將為作物育種和農(nóng)業(yè)生產(chǎn)提供新的基因資源和技術(shù)參考。
參考文獻(xiàn)
[1]LINGJ,JIANGWJ,ZHANGY,etal.Genome-wide analysis ofWRKYgene family in Cucumis sativus[J].BMCGenomics, 2011,12:1-20
[2] BEKIR U,SOMSSICH I E. WRKY transcription factors: fromDNA binding towards biological function[J].Current OpinioninPlantBiology,2004,7(5):491-498
[3] SONGY,AICR,JING SJ,et al.Research progress on functional analysisof riceWRKY genes[J].Ricescience,2O10,17 (1):60-72
[4] ZHOUX,JIANGYJ,YUDQ.WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis[J].Molecules and Cells,2011,3(4):303-313
[5]BAKSHI M,OELMULLER R. WRKY transcription factors: Jack of many trades in plants[J].Plant Signalingamp;Behavior, 2014,9(2):e27700
[6]SONG H,CAO Y P,ZHAO L G,et al. WRKY transcription factors:Understanding the functional divergence[J]. Plant Science,2023,334:111770
[7]YEH,QIAO L Y,GUO HY,et al. Genome-wide identification of wheat WRKY gene family reveals that TaWRKY75-A isreferred to droughtand salt resistances[J].Frontiers in Plant Science,2021,12:663118
[8] CHEN C H,CHEN XQ,HAN J,et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses[J].BMC Plant Biology,2020,20(1):1-19
[9]MAO P,JIN X Y,BAO Q Y,et al. WRKY transcription factors in Medicago satiua L.:Genome-wide identification and expression analysis under abiotic stress[J].DNA and Cell Biology,2020,39(12):2212-2225
[10]DIP,WANG P,YANM,et al. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng [J].BMC Genomics,2021,22(1):1-15
[11]GUO HY,ZHANGYT,WANG Z,etal. Genome-wide identification of WRKY transcription factors in the Asteranae[J]. Plants,2019,8(10):393
[12]WAQAS M,AZHAR M T,RANA I A,et al. Genome-wide identification and expression analyses of WRKY transcription factorfamily members from chickpea(Cicer arietinum L.) reveal their role in abiotic stress-responses[J].Genesamp; Genomics,2019,41:467-481
[13]XIONG RQ,PENG ZH,ZHOU H,et al. Genome-wide identification,structural characterization and gene expression analysis of the WRKY transcription factor family in pea(Pisum sativum L.)[J].BMC Plant Biology,2024,24(1):113
[14]LI J,XIONG Y C,LI Y,et al. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera[J]. International Journal of Molecular Sciences,2019, 20(20):5006
[15]GARRIDO-GALA J,HIGUERA J J, RODRIGUEZ-FRANCO A,et al.A comprehensive study of the WRKY transcription factor family in strawberry[J].Plants,2022,11(12):1585
[16]YUAN HM,GUO WD,ZHAOL J,et al. Genome-wide identification and expression analysis of the WRKY transcription factor family in flax(Linum usitatissimum L.)[J].BMC Genomics,2021,22(1):375
[17]XU Y H,SUN PW,TANG X L,et al. Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis(Lour.) Gilg[J]. Scientific Reports,2020,10(1):3018
[18]DING W J,OUYANG QX,LI YL,et al.Genome-wide investigation of WRKY transcription factors in sweet osmanthusand their potential regulation of aroma synthesis[J].Tree Physiology,2020,40(4):557-572
[19]WANG F Q,LI X R,ZUO X,et al. Transcriptome-wide identification ofWRKY transcription factor and functional characterization of RgWRKY37 involved in Acteoside biosynthesis in Rehmanniaglutinosa[J].FrontiersinPlantScience,2O21,12:739853
[20]QIN Z,HOU F Y,LI A X,et al. Transcriptome-wide identification of WRKY transcription factor and their expression pro filesunder salt stress in sweetpotato(Ipomoea batatasL.)[J]. Plant Biotechnology Reports,2020,14:599-611
[21]CHEN H,WANG YF,LIU J,et al. Identification of WRKY transcription factors responding to abiotic stresses in Brassica napus L[J].Planta,2022,255:1-17
[22]LEEFC,YEAP W C,APPLETON D R,et al. Identification of drought responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments[J].BMC Genomics,2022,23(1):164
[23] BAILLO E H,HANIF M S,GUO Y H,et al. Genome-wide Identification ofWRKY transcription factor familymembers in sorghum(Sorghumbicolor(L.)moench)[J].PloSOne, 2020,15(8):e0236651
[24]LI JB,XIONG C W,RUAN D,et al. Identification of Camellia oleifera WRKY transcription factor genes and functional characterizationof CoWRKY78[J].Frontiersin PlantScience, 2023,14:1110366
[25]LIU Z,SAIYINDULENG,CHANG QY,et al. Identification of yellowhorn (Xanthoceras sorbifolium) WRKY transcription factor family and analysis of abiotic stress response model[J]. Journal of Forestry Research,2021,32(3):987-1004
[26] CHEN Y Y,JING X,WANG S S,et al. Genome-wide analysis of WRKY transcription factor family in melon(Cucumis MeloL.)and their response to powdery mildew[J]. Plant Molecular BiologyReporter,2021,39(4):686-699
[27]CHANWALAJ,SATPATIS,DIXITA,etal.Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet(Pennisetum glaucum) under dehydration and salinity stress[J]. BMC Genomics,2020,21:1-16
[28] ZHANG R R,CHEN Z Z,ZHANG L B,et al. Genomic char acterization of WRKY transcription factors related to andrographolide biosynthesis in Andrographis paniculata[J].Frontiers in Genetics,2021,11:601689
[29]SUNWJ,MA Z T,CHEN H,et al. Genome-wide investigation of WRKY transcription factors in Tartary buckwheat (Fagopyrum tataricum)and their potential roles in regulating growth and development[J]. PeerJ,202O,8:e8727
[30]FENG X,LIG H,WU W H,et al. Expansion and adaptive evolution of theWRKY transcription factor family inAvicennia mangrove trees[J]. Marine Life Science amp; Technology,2023, 5(2):155-168
[31]LIU KQ,JU ZL,JIA ZF,et al. Genome-wide identification and characterization of the oat(Avena satiua L.)WRKY transcription factor family[J].Genes,2022,13(10):1918
[32]WANG C,HAO XL,WANG Y,et al.Identification of WRKY transcription factors involved in regulating the biosynthesis of the anti-cancer drug camptothecin in Ophiorhiza pumila[J].Horticulture Research,2O22,9:uhac099
[33]MUD T,CHEN WQ,SHAOYY,et al.Genome-wide identification and expression analysisofWRKY transcription factors in Siraitia siamensis[J].Plants,2023,12(2):288
[34]YAO S,WU F,HAO QQ,et al. Transcriptome-wide identificationof WRKY transcription factors and their expression pro filesunder diffrent types of biological and abiotic stress in Pinusmassoniana lamb[J].Genes,202o,11(11):1386
[35]LIJ,YUHW,LIU ML,et al.Transcriptome-wide identification of WRKY transcription factors and their expression profiles in response to methyl jasmonate in Platycodon grandiflorus[J]. Plant Signalingamp;Behavior,2022,17(1):2089473
[36] CHANG X Y,YANG Z R, ZHANG X Y,et al. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different stress in Cynanchum thesioides[J].PeerJ,2022,10:e14436
[37]GOYAL P,MANZOOR M M,VISHWAKARMA R A,et al. A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged inabiotic stress in Glycyrrhiza glabra[J]. Scientific Reports,2020,10(1):373
[38]AGUAYO P,LAGOS C,CONEJERA D,et al. Transcriptome-wide identification of WRKY familygenes and their expression under cold acclimation in Eucalyptus globulus[J]. Trees,2019,33(5):1313-1327
[39]YAN Y K,YAN Z Y,ZHAO GF. Genome-wide identification of WRKY transcription factor family members in Miscanthus sinensis(Miscanthus sinensis Anderss)[J]. Scientific Reports,2024,14(1):5522
[40]DAI W S,PENG T,WANG M,et al. Genome-wide identification and comparative expression profiling of the WRKY transcription factor family in two Citrus species with different Candidatus Liberibacterasiaticus susceptibility[J].BMC Plant Biology,2023,23(1):159
[41] SONG X M,HOU X F,ZENG Y L,et al. Genome-wide identification and comprehensive analysisof WRKY transcription factor family in safflower during drought stress[J]. Scientific Reports,2023,13(1):16955
[42]ZHU Q,CHENFF,HU X,et al. Genome-wide identification of WRKY transcription factor familyand its expression patterns in Dalbergiaodorifera T.Chen[J].Agronomy,2023,13(10):2591
[43]LIU Y,ZHANGYF,LIUY,et al.Genome-wide identification and characterization of WRKY transcription factors and theirexpressionprofile inLoropetalumchinensevar.rubrum [J].Plants,2023,12(11):2131
[44] ZHAO N N,HE M J,LI L,et al. Identification and expression analysis of WRKY gene family under drought stress in peanut (Arachis hypogaeaL.)[J].PLoS One,2020,15(4):e0231396
[45]YU JJ,ZHANG X,CAO JY,et al. Genome-wide identification and characterization of WRKY transcription factors in betula platyphylla suk.and their responses to abiotic stresses[J]. International Journal ofMolecular Sciences,2023,24(19):15000
[46]HAOF,YANGG,ZHOUHJ,etal.Genome-wide identificationand transcriptional expression profiles of transcription factor WRKY in common walnut(Juglans regia L.)[J].Genes, 2021,12(9): 1444
[47]FELIPEZW,VILLAVICENCIOJ,NIZOLLIVO,etal. Genome-wide identification of bilberry WRKY transcription factors: go wild and duplicate[J]. Plants,2023,12(18):3176
[48]ZHUJ,ZHONG SF,GUAN J,et al. Genome-Wide identification and expression analysis ofWRKY transcription factors inAkebiatrifoliata:Abioinformaticsstudy[J].Genes,2022,3(9)54
[49]KANJH,GAOGQ,HEQ,etal.Genome-wide characterization of WRKY transcription factors revealed gene duplication and diversification in populations of wild to domesticated barley[J]. International Jourmal of Molecular Sciences,2021,22(10):5354
[50] WANG C,YE D,LI Y,et al. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea(Rhododendronsimsii)[J].FrontiersinGenetics,2023,14:1172321
[51] ZHANG T T,XU Y,DING Y D,et al. Identification and expressionanalysis ofWRKY gene family in response to abiotic stress in Dendrobium catenatum [J]. Frontiers in Genetics, 2022,13:800019
[52] DE PAOLIS A,CARETTO S,QUARTA A,et al. Genomewide identification of WRKY genes in Artemisia annua:characterization of a putative ortholog of AtWRKY4O[J]. Plants, 2020,9(12):1669
[53] LI L,LIU Q,LIU T Y,et al. Expression of putative luteolin biosynthesis genes and WRKY transcription factors in Taraxacum antungense kitag[J].Plant Cell,Tissue and Organ Culture,2021,145:649-665
[54]LU ZG,WANG XW,MOSTAFA S,et al. WRKY transcriptionfactors in Jasminum sambac:An insight into the regulation of aroma synthesis[J].Biomolecules,2023,13(12):1679
[55] JIA C H,WANG Z,Wang JY,et al. Genome-wide analysis of the banana WRKY transcription factor gene family closely related to fruit ripening and stress[J].Plants,2O22,11(5):662
[56] MA F N,ZHOU H W,YANG H T,et al. WRKY transcription factors in passion fruit analysis reveals key PeWRKYs involved inabiotic stressand flavonoid biosynthesis[J].International Journalof Biological Macromolecules,2024,256:128063
[57] ZHANG L L,WAN X B,XU Y,et al. De novo assembly of transcriptome and genome-wide identificationreveal GA3 stress-responsive WRKY transcription factors involved in fiber formation in jute(Corchoruscapsularis)[J].BMC Plant Biology,2020,20(1):1-15
[58]LIU JH,LIG J,WANG RG,et al. Genome-wide analysis of WRKY Transcription Factors Involved in Abiotic Stress and ABA response in Caragana korshinskii[J]. International Jour nal of Molecular Sciences,2023,24(11):9519
[59]YANGQQ,YANGF,ZHAOYQ,etal.Genome-wide identificationand functional characterizationofWRKY transcription factors involved in the response to salt and heat stress in garlic (Allium satioum L)[J].Biotechnology amp;Biotechnological Equipment,2021,35(1) :1956-1966
[60]WANG Y,ZHU RY,SHI M,et al. Genome-wide identification and comparative analysis of WRKY transcription factors relatedtomomilactone biosynthesis incalohypnumplumiforme [J].Frontiers in Ecology and Evolution,2022,9:809729
[61]LIZ,HUAXT,ZHONGWM,etal.Genome-Wide identification and expression profile analysis of WRKY family genes in theautopolyploid Saccharumspontaneum[J].Plant and Cell Physiology,2020,61(3):616-630
[62] YAO H Y,YANG T Y,QIAN J,et al. Genome-wide analysis and exploration of WRKY transcription factor family involved in the regulation of shoot branching in petunia[J].Genes,2022, 13(5):855
[63]YANG Y L,CUSHMAN S A,WANG S C,et al. Genomewide investigation of the WRKY transcription factor gene family in weeping forsythia:expression profile and cold and drought stress responses[J].Genetica,2023,151(2):153-165
[64]LI S,LIUG Z,PUL M,et al. WRKY transcription factors actively respond to fusarium oxysporum in Lilium regale[J]. Phytopathology,2021,111(9):1625-1637
[65]WU WH,ZHU S,XU L,et al. Genome-wide identification of theLiriodendronchinenseWRKY gene familyand itsdiverse roles in response to multiple abiotic stress[J].BMC Plant Biology,2022,22:1-27
[66]YINYY,F(xiàn)UHH,MiFK,et al.Genomic characterization of WRKY transcription factors related to secoiridoid biosynthesis in Gentiana macrophylla[J].BMC Plant Biology,2024,24(1): 66
[67]EULGEM T,SOMSSICHIE. Networks of WRKY transcription factors in defense signaling[J].Current Opinion in Plant Biology,2007,10(4):366-371
[68]LIU ZQ,SHIL P,YANG S,et al. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper[J]. Molecular Plant Pathology,2021,22(1) :3-18
[69]ChenXJ,LiC,WangH,etal.WRKY transcription factors: evolution,binding,and action[J].Phytopathology Research, 2019,1(1):1-15
[70]PHUKAN U J,JEENA G S,SHUKLA R K. WRKY transcription factors:molecular regulation and stress responses in plants[J].Frontiers inPlant Science,2Ol6,7:760
[71] SCHMUTZ J,CANNON S B,SCHLUETER J,et al. Genome sequence of the palaeopolyploid soybean[J].Nature, 2010,463(7278):178-183
[72]XIE T,CHEN C J,LI C H,et al. Genome-wide investigation ofWRKY gene family in pineapple:evolution and expression profiles during development and stress [J]. BMC Genomics, 2018,19:1-18
[73]洪克前,谷會,陳麗.香蕉MaWRKY1轉(zhuǎn)錄因子在果實(shí)和幼苗誘 導(dǎo)抗冷性中表達(dá)分析[J].熱帶作物學(xué)報(bào),2021,42(2):303-309
[74]畢楚韻,黃小芳,王和壽,等.甘薯全基因組WRKY轉(zhuǎn)錄因子 的基因鑒定與逆境脅迫表達(dá)分析[J].西北農(nóng)林科技大學(xué)學(xué)報(bào) (自然科學(xué)版),2021,49(9):30-44
[75]王永富,趙淑芳,茍秉調(diào),等.辣椒CaPIP5K基因家族的鑒定 與特異性表達(dá)分析(英文)[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2022,30 (4):641-655
[76] CHEN H,LAI Z B,SHI J W,et al. Roles of Arabidopsis WRKY18,WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress[J].BMC Plant Biology,2010,10:1-15
[77]PARK C Y,LEEJH,YOO JH,et al. WRKY group Id transcription factors interact with calmodulin[J]. FEBS Letters, 2005,579(6):1545-1550
[78]LIU L,WHITE M J,MACRAE T H. Transcription factors and their genes in higher plants:functional domains,evolution and regulation[J].European Journal of Biochemistry,1999,262 (2):247-257
[79]RUSHTON P J,SOMSSICHIE,RINGLER P,et al. WRKY transcription factors[J]. Trends inPlantScience,20lo,15(5):247-258
[80]GOYAL P,DEVI R,VERMA B,et al. WRKY transcription factors:Evolution,regulation,and functional diversity in plants [J].Protoplasma,2023,260(2):331-348
[81]吳圳,張明英,閆鋒,等.掌葉大黃(Rheum palmatum L.) WRKY基因家族鑒定與分析[J].生物技術(shù)通報(bào),2024,40(1): 250-261
[82]CHEN L G,SONG Y,LI S J,et al. The role of WRKY transcription factors in plant abiotic stresses[J].Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2012,1819 (2):120-128
[83] ZHANG Y J, WANG L J. The WRKY transcription factor superfamily:itsorigin in eukaryotes and expansion inplants [J].BMC Evolutionary Biology,2005,5:1-12
[84]RUSHTON P J,SOMSSICHIE,RINGLER P,et al. WRKY transcription factors[J].Trends Plant Science,2010, 15(5):247-258
[85]WANI S H,ANAND S,SINGH B,et al. WRKY transcription factors and plant defense responses: latest discoveries and future prospects[J]. Plant Cel Reports,2021,40(7):1071-1085
[86] JIANG JJ,MA S H,YE N H,et al. WRKY transcription factors in plant responses to stresses[J].Journal of Integrative Plant Biology,2017,59(2):86-101
[87] ZHANG Y,F(xiàn)ENG JC.Identification and characterization of the grape WRKY family[J].BioMed Research International, 2014,2014(1):787680
[88] JAIN M J,NAGAR P,GOEL P,et al. Second messengers: central regulators in plant abiotic stress response [M]// ZARHAR S, ZARGAR M. Abiotic Stress-Mediated Sensing and Signaling in Plants:An Omics Perspective. Singapore: Springer,2018:47-94
[89] XIONG W D,XU X Q,ZHANG L,et al. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.)[J].Gene,2013,524(2): 124-132
[90]KHUMAN A,ARORA S,MAKKAR H,et al. Extensive intragenic divergences amongst ancient WRKY transcription factorgene family is largely associated with their functional diversity in plants[J].Plant Gene,2O2O,22:100222
[91]JIMMY JL,BABU S.Variations in the structure and evolution of rice WRKY genes in Indica and japonica genotypes and their co-expression network in mediating disease resistance[J]. Evolutionary Bioinformatics,2019,15:1176934319857720
[92] BRAND L H,F(xiàn)ISCHER N M,HARTER K,et al. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamicsand in vitro binding assays[J]. Nucleic Acids Research,2013,41(21):9764-9778
[93]EULGEM T,RUSHTON PJ,ROBATZEK S,et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science,2000,5(5):199-206
[94]SUNCX,PALMQVIST S,OLSSONH,etal.A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter[J].The Plant Cell,2003,15(9):2076-2092
[95]RISHMAWI L,PESCH M, JUENGST C,et al. Non-cellautonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis[J].PlantPhysiology,2014,165(1):186-195
[96]HSIN K T,HSIEHMC,LEEYH,et al. Insight into the phylogeny and binding ability of WRKY transcription factors[J]. InternationalJournalofMolecularSciences,2O22,23(5):2895
[97]于文庚,劉磊,吳德鵬,等.脫落酸與赤霉素調(diào)控種子休眠萌發(fā) 的研究進(jìn)展[J].植物遺傳資源報(bào),2025,26(4):611-621
[98] ZHOU H,HU W,Wang X C,et al. A missense mutation in WRKY32 converts its function from a positive regulator to a repressor of photomorphogenesis[J]. New Phytologist,2022, 235(1):111-125
[99] JANG S,LI HY. Overexpression of OsAP2 and OsWRKY24 in Arabidopsis results in reduction of plant size[J]. Plant Biotechnology,2018,35(3):273-279
[100]MIYAMOTO T,TAKADAR,TOBIMATSU Y,et al. Double knockout of Os WRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice[J]. Plant Science,2020,296:110466
[101]LIW,TIAN Z X,YU DQ. WRKY13 acts in stem development in Arabidopsis thaliana[J].Plant Science,2O15,236: 205-213
[102]LI C,LI K N,LIU X Y,et al.Transcription factor GmWRKY46 enhanced phosphate starvation tolerance and root development in transgenic plants[J].Frontiers in Plant Science,2021,12:700651
[103]MA ZB,LI W,WANG HP,et al. WRKY transcription factors WRKY12 and WRKY13 interact with SPL10 to modulate age-mediated flowering[J]. Journal of Integrative Plant Biology,2020,62(11): 1659-1673
[104]LEIRH,MA ZB,YUDQ.WRKY2/34- VQ20 modules in Arabidopsis thaliana negatively regulate expression of a trio of related MYB transcription factors during pollen development [J].Frontiers inPlant Science,2Ol8,9:331
[105]ZHANG CQ,XUY,LUY,et al. The WRKY transcription factor Os WRKY78 regulates stem elongation and seed development in rice[J].Planta,2011,234(3):541-554
[106]WANG H P,CHEN W Q,XU Z Y,et al. Functions of WRKYs in plant growth and development[J]. Trends in Plant Science,2023,28(6):630-645
[107]DING ZJ,YANJY,LIG X,et al. WRKY4l controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA[J]. The Plant Journal,2014,79 (5):810-823
[108]LIQY,YIN M,LIY P,et al. Expression of Brassica napus TTG2,a regulator of trichome development,increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes[J].Journal of Experimental Botany,2015, 66(19):5821-5836
[109]XIE L H,YAN T X,LI L,et al. The WRKY transcription factorAaGSW2 promotesglandulartrichomeinitiationinArtemisia annua[J]. Journal of Experimental Botany,2O21,72(5): 1691-1701
[110]WANG SL,SUNQB,ZHANG M,et al. WRKY2 and WRKY10 regulate the circadian expression of PIF4 during the daythrough interactionswithCCA1/LHY and phyB[J].Plant Communications,2022,3(2):100265
[111]CUIX,ZHAOPY,LiangWW,etal.ArapeseedWRKY transcription factor phosphorylated by CPK modulates cell death and leaf senescence by regulating the expression of ROS and SA-synthesis-related genes[J]. Journal of Agricultural and Food Chemistry,2020,68(28):7348-7359
[112]JIANG W B,Yu DQ. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of developmentby abscisic acid[J].BMC Plant Biology,2009,9:1-14
[113]GU LJ,DOU L L,GUO Y N,et al. The WRKY transcription factor GhWRKY27 coordinates the senescence regulatory pathway in upland cotton(Gossypium hirsutum L.)[J].BMC Plant Biology,2019,19(1):1-14
[114] JAN R,ASAf S,NUMAN M,et al. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions[J].Agronomy,2021,11 (5):968
[115]YANG CQ,F(xiàn)ANG X,WU XM,et al. Transcriptional regulation of plant secondary metabolism[J].Journal of Integrative Plant Biology,2012,54(10):703-712
[116]VOGT T.Phenylpropanoid biosynthesis[J].Molecular Plant, 2010,3(1):2-20
[117]VRANOVA E,COMAN D,GRUISSEM W. Structure and dynamics of the isoprenoid pathway network[J].Molecular Plant,2012,5(2):318-333
[118]HE J,GIUSTI M M. Anthocyanins:natural colorants with health-promoting properties[J]. Annual Review of Food Science and Technology,2010,1(1):163-187
[119]DUANLX,CHEN TL,LIM,et al.Use of the metabolomics approach to characterize Chinesemedicinal material Huangqi [J].Molecular Plant,2012,5(2):376-386
[120]JAVED T,GAO S J. WRKY transcription factors in plant defense[J]. Trends in Genetics,2023,39(1O):787-801
[121]WANGY,WANGXH,F(xiàn)ANGJH,etal.VqWRKY56inter acts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew[J]. New Phytologist,2023,237(5):1856-1875
[122]WANG S,HAN S Y,ZHOU XG,et al. Phosphorylation and ubiquitination of OsWRKY31 are integral to OsMKK10-2- mediated defense responses in rice[J].ThePlant Cell,2023,35 (6):2391-2412
[123]XU Z,ZHANG S T,WUJS. NaWRKY3 isa master transcriptional regulator of the defense network against brown spot disease in wild tobacco[J].Journal of Experimental Botany, 2023,74(14):4169-4188
[124]WANG N,SONG G W,ZHANG F J,et al. Characterization of the WRKY gene family related to anthocyanin biosynthesis and the regulation mechanism under drought stress and methyl jasmonate treatmentinLycorisradiata[J].International Journal of Molecular Sciences,2023,24(3):2423
[125]SUN P W,XU Y H,YU C C,et al. WRKY44 represses expression of the wound-induced sesquiterpene biosynthetic gene ASS1 in Aquilaria sinensis[J].Journal of Experimental Botany,2020,71(3):1128-1138
[126]DING P T,DING YL.Stories of salicylic acid:a plant defense hormone[J]. Trends in Plant Science,2O2o,25(6): 549-565
[127]VAN VERK MC,BOL JF,LINTHORST HJM. WRKY transcription factorsinvolved in activation of SA biosynthesis genes[J]. BMC Plant Biology,20l1,11:1-12
[128]GAO G,JIN RB,LIU D,et al.CmWRKY15-1 promotes resistance to Chrysanthemum white rust by regulating CmNPR1 expression[J].Frontiers in Plant Science,2022,13:865607
[129]XIONG XP,SUN SC,LI Y J,et al. The cotton WRKY transcription factor GhWRKY7Onegatively regulatesthedefense response against Verticillum dahliae[J]. The Crop Journal, 2019,7(3):393-402
[130]GAO YF,LIUJK,YangF M,et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J].Physiologia Plantarum,2020,168(1):98-117
[131]CUIXX,YANQ,GANSP,etal.GmWRKY40,amember of the WRKY transcription factor genes identified from Glycine maxL.,enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biology,2019,19(1) :1-15
[132]WANG W,BAI X D,CHEN K,et al. Role of PsnWRKY70 in regulatory network response to infection with Alternaria alternata(Fr.)keissl in Populus[J]. International Journal of Molecular Sciences,2022,23(14):7537
[133]GORAYAGK.KAURB.ASTHIRB.etal.Ranid iniuriesnf high temperature in plants LJ」. Journal ol Plant Biology,ZU17,
60(4):298-305 [134]GANAPATIRK,NAVEED SA,ZAFARS,et al. Salinealkali tolerance in rice:Physiological response,molecular mechanism,and QTL identification and application to breeding[J]. RiceScience,2022,29(5):412-434 [135]LIU W,LIANGXQ,CAI WJ,et al. Isolation and functional analysis of VoWRKY28,a Vitis vinifera WRKY transcription factor gene,with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana[J]. International Journal of MolecularSciences,2022,23(21):13418 [136]HUANG JJ,LIU F H,CHAO D,et al. The WRKY transcription factor OsWRKY54is involved in salt tolerance in rice[J]. Intemational Joumal of Molecular Sciences,2O22,23(19):11999 [137] WU X L,CHEN Q,CHEN L L,et al. A WRKY transcription factor,PyWRKY75,enhanced cadmium accumulation and toler ance in poplar[J].Ecotoxicology and Environmental Safety,
2022 239:113630 [138]SHENG YB,YAN X X,HUANG Y,et al. The WRKY transcription factor,WRKY13,activates PDR8 expression to positivelyregulate cadmium tolerance in Arabidopsis[J].Plant, Cellamp;Environment,2019,42(3):891-903 [139]SHUWJ,ZHOUQH,XIANPQ,etal.GmWRKY81 encodingaWRKY transcription factor enhancesaluminum tolerance in soybean[J]. International Journal of Molecular Sciences,2022,23(12):6518 [140]HAN D G,ZHOU ZY,DU MD,et al.Overexpression of a Malusxiaojinensis WRKYtranscriptionfactorgene (MxWRKY55)increased iron and high salinity stress tolerance inArabidopsisthaliana[J].InVitroCellularamp;Developmental Biology-Plant,2020,56(5):600-609 [141]ZHU H,JIANG Y N,GUO Y,et al. A novel salt inducible WRKY transcription factor gene,AhWRKY75,confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry,2021,160:175-183 [142]HUQ,AOCW,WangXR,etal.GhWRKY1-like,a WRKY transcription factor,mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis[J].BMC Plant Biology,2021,21:1-13 [143]LIUY,YANGTY,LINZK,etal.AWRKY transcription factorPbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation[J]. Plant Biotechnology Journal,2019,17(9):1770-1787 [144]LIM C,KANG K,SHIM Y,et al. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways[J].Plant Physiology,2021,188(4):1900-1916 [145]WUZ,LI T,CAO X,et al. LilyWRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B[J].Horticulture Research,2022,9:uhac186
(責(zé)任編輯付宸)