摘" 要:植物根尖感知水分梯度并向高水勢(shì)區(qū)域彎曲生長(zhǎng)的生物學(xué)特性稱為向水性。向水性是植物響應(yīng)動(dòng)態(tài)水分環(huán)境的重要適應(yīng)策略,驅(qū)動(dòng)根系主動(dòng)趨近水源以優(yōu)化水分獲取。向水性調(diào)控機(jī)制涉及第二信使(活性氧與鈣離子)、植物激素(脫落酸、生長(zhǎng)素與細(xì)胞分裂素)及MIZ1等關(guān)鍵調(diào)節(jié)因子協(xié)同介導(dǎo)。植物通過(guò)整合水分梯度感知、信號(hào)傳導(dǎo)及激素不對(duì)稱分布等過(guò)程實(shí)現(xiàn)對(duì)水分脅迫的適應(yīng)性響應(yīng),但不同物種間向水性調(diào)控機(jī)制及其與向重力性、向光性、向觸性等其他向性的互作關(guān)系存在顯著差異。解析向水性核心調(diào)控因子及其信號(hào)網(wǎng)絡(luò)互作模式,可為作物水分高效利用的遺傳改良及農(nóng)業(yè)可持續(xù)發(fā)展提供理論依據(jù)。
關(guān)鍵詞:根;向水性;非生物脅迫;鈣信號(hào);活性氧;脫落酸;生長(zhǎng)素;細(xì)胞分裂素中圖分類號(hào):S184 """""文獻(xiàn)標(biāo)志碼:A
Progress in Hydrotropism of Plant Roots
LIU Yuxiao1, DAI Shiwen1*, WANG Xi2, PEI Songyu1, ZOU Xuexiao1**, YUAN Fang1**
1. College of Horticulture, Hunan Agriculture University, Changsha, Hunan 410125, China; 2. College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
Abstract: The biological property by which plant root tips perceive moisture gradients and bend toward regions of higher water potential is termed hydrotropism. As a critical adaptive strategy for plants to respond to dynamic water environments, hydrotropism drives roots to actively navigate toward water sources, optimizing water acquisition. The regulatory mechanism of hydrotropism involves the coordinated mediation of second messengers (reactive oxygen species and calcium ions), phytohormones (abscisic acid, auxin and cytokinin), and key regulators such as MIZ1. Plants achieve adaptive responses to water stress through integrating processes of moisture gradient perception, signal transduction, and asymmetric hormone distribution. However, significant differences exist in hydrotropic regulatory mechanisms among species, and in the interactions with other tropisms (gravitropism, phototropism, and thigmotropism). Elucidating the core regulatory factors of hydrotropism and the interaction patterns of the signaling networks would provide a theoretical basis for genetic improvement of water-use efficiency in crops and sustainable agricultural development.
Keywords: roots; hydrotropism; abiotic stress; calcium signal; reactive oxygen species; abscisic acid; auxin; cytokinin
DOI: 10.3969/j.issn.1000-2561.2025.08.016
作為固著生物,植物在生長(zhǎng)發(fā)育中必須持續(xù)應(yīng)對(duì)復(fù)雜多變的生物與非生物脅迫環(huán)境。其中,干旱脅迫作為限制作物生產(chǎn)力的關(guān)鍵環(huán)境因子,嚴(yán)重威脅全球糧食安全;而氣候變化引發(fā)的干旱頻發(fā)與持續(xù)時(shí)間延長(zhǎng),將進(jìn)一步加劇其對(duì)農(nóng)業(yè)生態(tài)系統(tǒng)的負(fù)面影響。控制水分的吸收與利用是植物應(yīng)對(duì)干旱脅迫的重要措施。在此背景下,闡明植物根系通過(guò)水分吸收與利用以應(yīng)對(duì)干旱脅迫的分子基礎(chǔ),尤其是根向水性的調(diào)控網(wǎng)絡(luò),對(duì)于提升作物抗旱能力、實(shí)現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展具有重要意義[1]。
當(dāng)土壤水分呈現(xiàn)空間異質(zhì)性分布時(shí),植物根系通過(guò)動(dòng)態(tài)調(diào)整生長(zhǎng)方向與速率響應(yīng)局部水分梯度變化[2],優(yōu)先向高水勢(shì)區(qū)域定向延伸,這一適應(yīng)性策略被稱為向水性反應(yīng)[3]。TAKAHASHI等[4]建立了根向水性研究模型(圖1),如圖1所示,擬南芥幼苗垂直放置在固定于密閉丙烯酸室內(nèi)側(cè)壁1%(w/V)的瓊脂平板上,使每個(gè)根尖從瓊脂邊緣自由懸浮在周圍空氣中。瓊脂平板與密閉丙烯酸室內(nèi)放置的飽和鹽溶液之間建立穩(wěn)定的水分梯度。擬南芥在該系統(tǒng)中對(duì)水分梯度表現(xiàn)出明顯的彎曲反應(yīng)。近年研究表明,擬南芥根的向水性反應(yīng)由多重因子協(xié)同調(diào)控,包括根伸長(zhǎng)區(qū)皮層細(xì)胞中MIZ1(MIZU- KUSSEI 1)[5]蛋白的功能、脫落酸(ABA)[6]信號(hào)通路、根彎曲部位活性氧(ROS)的時(shí)空積累[7],以及包括根冠與伸長(zhǎng)區(qū)中柱在內(nèi)的整個(gè)根尖細(xì)胞質(zhì)Ca2+濃度的動(dòng)態(tài)變化[8]。然而,不同植物物種間向水性的調(diào)控機(jī)制存在顯著差異,且其與向重力性的互作模式亦呈現(xiàn)物種特異性[9](表1)。目前,根系水勢(shì)梯度感知的分子機(jī)制、向水性信號(hào)傳導(dǎo)路徑及其與向重力性等其他向性的交互作用仍亟待解析[10-11]。此外,由于向重力性、向光性與向觸性等多元向性的信號(hào)干擾,實(shí)驗(yàn)室條件下根系向水性的獨(dú)立觀測(cè)仍面臨技術(shù)挑戰(zhàn)[12]。無(wú)向性或向性表型改變突變體的篩選與功能解析,不僅推動(dòng)了向水性核心調(diào)控元件的鑒定,更揭示了該機(jī)制在物種間的演化多樣性(表1)。
本文綜述了植物根感知水勢(shì)梯度的關(guān)鍵部位,并重點(diǎn)討論參與向水性調(diào)控的次級(jí)信使系統(tǒng)(鈣離子與活性氧)、激素信號(hào)網(wǎng)絡(luò)(脫落酸、生長(zhǎng)素與細(xì)胞分裂素)及向水性與其他向性信號(hào)通路的交互作用。
早期研究表明,根冠在植物向水性感知中發(fā)揮核心作用。例如,玉米根冠的移除可顯著抑制其向水性反應(yīng),提示根冠是水分梯度感知的關(guān)鍵部位[13]。后續(xù)研究通過(guò)激光消融等現(xiàn)代技術(shù)進(jìn)一步證實(shí),根冠在擬南芥、玉米和豌豆等物種的水勢(shì)梯度感知中具有保守功能[14-17]。然而,物種間存在顯著差異:玉米根尖雖對(duì)水勢(shì)梯度最敏感,但其伸長(zhǎng)區(qū)皮層細(xì)胞亦可獨(dú)立感知水分信號(hào)[17];而黃瓜和水稻根冠則對(duì)向水性具有抑制作用,去
除根冠后其向水反應(yīng)得以恢復(fù)[18-19]。值得注意的是,擬南芥分生組織與根冠的激光消融試驗(yàn)研究表明,即使缺乏根冠,其伸長(zhǎng)區(qū)皮層細(xì)胞仍能驅(qū)動(dòng)向水彎曲[5]。由于傳統(tǒng)根冠去除方法常伴隨根系生長(zhǎng)損傷,向水性減弱可能源于生長(zhǎng)受限而非感知機(jī)制缺失[20]。植物水分感知部位具有物種特異性,可能涉及根冠柱細(xì)胞、伸長(zhǎng)區(qū)皮層細(xì)胞或二者的協(xié)同作用(表1)。然而,不同植物感知水勢(shì)梯度的差異程度及其具體的分子機(jī)制仍需深入解析。
根系構(gòu)型特征是決定向水性效率的關(guān)鍵因素。研究表明,大豆根系在局部供水條件下通過(guò)調(diào)整根系發(fā)育方向優(yōu)先向土壤濕潤(rùn)區(qū)域延伸,凸顯向水性對(duì)根系形態(tài)可塑性的主導(dǎo)作用[21]。EAPEN等[22]通過(guò)田間試驗(yàn)發(fā)現(xiàn),強(qiáng)向水性玉米雜交種在3種處理(正常灌溉、局部側(cè)位灌溉、干旱脅迫)下表現(xiàn)出顯著優(yōu)勢(shì):其根系投影面積、中位寬度與根深骨架化程度等形態(tài)參數(shù)均優(yōu)于弱響應(yīng)品種,且莖粗與產(chǎn)量顯著提升。此類構(gòu)型特征通過(guò)增強(qiáng)深層土壤水分獲取能力,賦予植物干旱適應(yīng)性[23-25]。例如,水稻深層根系通過(guò)提取深層水分緩解干旱脅迫,其根系構(gòu)型改良已被證實(shí)可增強(qiáng)抗旱性[26]。DEEPER ROOTING 1(DRO1)基因通過(guò)調(diào)控根生長(zhǎng)角度與深根性顯著提升干旱條件下的水稻產(chǎn)量[27-29]。因此,解析根系構(gòu)型對(duì)水分梯度的響應(yīng)規(guī)律,可為抗旱品種選育提供理論依據(jù)。
2.1 "鈣(Ca2+)信號(hào)
Ca2+是植物生長(zhǎng)發(fā)育和逆境響應(yīng)的核心調(diào)控因子,也是真核生物中普遍的第二信使[39-40]。膜滲透性Ca2+螯合劑BAPTA-AM能夠減輕擬南芥根的向水性[8],鈣螯合劑乙二醇-雙-(β-氨基乙基醚)-N,N,N′,N′-四乙酸(EGTA)對(duì)豌豆根的向水性也存在抑制作用[34]。同樣,鈣通道阻滯劑鑭(LaCl3)抑制了無(wú)向重力性豌豆突變體ageotr-o-pum的向水性反應(yīng),而鈣離子載體A23187的應(yīng)用顯著增強(qiáng)了豌豆根的向水彎曲[41],表明質(zhì)外體鈣及其通過(guò)質(zhì)膜的流入?yún)⑴c了向水性的誘導(dǎo)。SHKOLNIK等[8]發(fā)現(xiàn)施加在擬南芥根尖上的水勢(shì)梯度會(huì)在韌皮部產(chǎn)生緩慢、長(zhǎng)距離及不對(duì)稱的細(xì)胞質(zhì)Ca2+信號(hào)并在伸長(zhǎng)區(qū)達(dá)到峰值,Ca2+信號(hào)通過(guò)伸長(zhǎng)區(qū)的微管細(xì)胞逐漸傳遞到外圍細(xì)胞,進(jìn)而導(dǎo)致細(xì)胞差異生長(zhǎng)并向更高水勢(shì)彎曲。MIZU-KU-SS-EI 1(MIZ1)編碼一個(gè)功能未知的內(nèi)質(zhì)網(wǎng)(ER)膜定位蛋白[42],MIZ1蛋白是擬南芥根向水彎曲時(shí)產(chǎn)生緩慢、長(zhǎng)距離Ca2+信號(hào)所必需的[8],miz1突變體對(duì)向水刺激不敏感,表明MIZ1蛋白在根向水性中具有重要作用。ECA1是一種將胞內(nèi)Ca2+導(dǎo)入ER腔的泵[43],通過(guò)生化和遺傳手段提高細(xì)胞質(zhì)Ca2+水平,包括內(nèi)質(zhì)網(wǎng)Ca2+-ATP酶亞型ECA1突變體eca1,能夠增強(qiáng)根的向水性反應(yīng)[8]。最近研究表明,水分脅迫下MIZ1通過(guò)直接與ECA1結(jié)合抑制其轉(zhuǎn)運(yùn)活性,為向水性產(chǎn)生必要的鈣信號(hào),進(jìn)而導(dǎo)致根向高水勢(shì)彎曲生長(zhǎng)[44]。水分脅迫后期,由滲透脅迫感受器OSCA1.1[45]介導(dǎo)的胞質(zhì)Ca2+增加[46]被鈣依賴性蛋白激酶(CPK4/ 5/6/11)感知并對(duì)MIZ1進(jìn)行磷酸化修飾,從而減輕MIZ1對(duì)ECA1的抑制作用[44]。這種負(fù)反饋調(diào)節(jié)導(dǎo)致細(xì)胞質(zhì)Ca2+流入內(nèi)質(zhì)網(wǎng),細(xì)胞質(zhì)Ca2+的濃度降低減弱了根的向水性[44]。當(dāng)細(xì)胞質(zhì)Ca2+的積累超過(guò)生理耐受閾值時(shí),細(xì)胞質(zhì)Ca2+的增加會(huì)產(chǎn)生促進(jìn)或抑制向水反應(yīng)的雙重作用,以維持營(yíng)養(yǎng)吸收與生長(zhǎng)平衡[44]。目前,尚不清楚Ca2+信號(hào)如何從根尖傳遞到伸長(zhǎng)區(qū)以促進(jìn)跨根的細(xì)胞差異生長(zhǎng)和隨后的向水彎曲,以及Ca2+信號(hào)傳導(dǎo)是否與激素信號(hào)通路相互作用。
2.2" 活性氧(ROS)
ROS在植物生物學(xué)中具有雙重作用。ROS不僅介導(dǎo)生長(zhǎng)發(fā)育所需的信號(hào)反應(yīng),也會(huì)觸發(fā)生理或程序性細(xì)胞死亡[47]。植物在應(yīng)對(duì)不同生物和非生物脅迫時(shí)會(huì)促使ROS的產(chǎn)生,ROS是各種復(fù)雜信號(hào)通路的樞紐[48]。植物NADPH氧化酶被稱為Rboh(respiratory burst oxidase homologue),是動(dòng)物巨噬細(xì)胞NADPH氧化酶主要功能亞基gp91phox的同源物,負(fù)責(zé)催化質(zhì)外體超氧化物的產(chǎn)生,超氧化物自發(fā)或通過(guò)超氧化物歧化酶轉(zhuǎn)化為過(guò)氧化氫(H2O2),進(jìn)一步介導(dǎo)ROS的信號(hào)傳導(dǎo)[49]。擬南芥根的向重力反應(yīng)過(guò)程中,ROS在根伸長(zhǎng)區(qū)呈現(xiàn)短暫的不對(duì)稱分布,而在向水性中未觀察到ROS的瞬時(shí)不對(duì)稱分布,且用氧化脅迫誘導(dǎo)劑甲基紫精處理擬南芥幼苗不會(huì)影響根的向水性[50-51],ROS(推測(cè)是H2O2)可能通過(guò)促進(jìn)向重力性和負(fù)向調(diào)節(jié)向水性來(lái)調(diào)節(jié)根的向性反應(yīng)[50]。使用抗氧化劑抗壞血酸或ROS產(chǎn)生抑制劑二苯基氯化碘鹽(DPI)會(huì)降低ROS水平,進(jìn)而減輕根的向重力性、增強(qiáng)向水性,缺乏抗壞血酸過(guò)氧化物酶1的擬南芥突變體apx1表現(xiàn)出減弱的向水彎曲[50]。同樣,研究表明RBOH C的活性是負(fù)向調(diào)控向水性所必需的,因?yàn)?em>rbohC突變體表現(xiàn)出增強(qiáng)的向水彎曲及根尖較低水平的H2O2[50]。此外,NADPH氧化酶激活產(chǎn)生的質(zhì)外體ROS可以觸發(fā)允許Ca2+流入質(zhì)膜的通道,由此導(dǎo)致的細(xì)胞質(zhì)Ca2+增加可能通過(guò)RBOH激活的前饋調(diào)節(jié)被放大,進(jìn)一步觸發(fā)Ca2+內(nèi)流循環(huán)并傳播到相鄰細(xì)胞[52]。ROS誘導(dǎo)的Ca2+波和Ca2+誘導(dǎo)的ROS波可能參與向性彎曲的長(zhǎng)距離信號(hào)轉(zhuǎn)導(dǎo)。這種信號(hào)轉(zhuǎn)導(dǎo)機(jī)制是否涉及基于膜電位的電信號(hào)傳導(dǎo)仍待進(jìn)一步研究[53]。
3.1 "脫落酸(ABA)
ABA信號(hào)轉(zhuǎn)導(dǎo)途徑是植物滲透脅迫的核心[54]。植物根中ABA的生物合成是對(duì)環(huán)境缺水的早期反應(yīng)[55]。與野生型相比,ABA缺陷突變體aba1-1和abi2-1的向水性顯著減弱(表2),外源添加ABA完全恢復(fù)了aba1-1對(duì)水勢(shì)梯度的響應(yīng),表明ABA參與了向水性反應(yīng)[4]。已鑒定的ABA信號(hào)通路的核心成分包括STARTT蛋白結(jié)構(gòu)域的PYR/PYL/RCAR(Pyrabactin Resistance/Pyrabactin Resistance-Like/Regulatory Component of ABA Receptor, PYR/PYL/RCAR)、蛋白磷酸酶2C(Type 2C protein phosphatases, PP2Cs)和亞類ⅢSNF1相關(guān)激酶(SNF1-related kinase 2, SnRK2)[56]。ABA通過(guò)與PYR/PYL/RCAR蛋白相互作用,阻止PP2C介導(dǎo)的SnRK2s去磷酸化,導(dǎo)致SnRK2激酶的激活、ABA反應(yīng)啟動(dòng)子元件的磷酸化及ABA相關(guān)基因的表達(dá)[57-58]。擬南芥中,ABA超敏pp2c四重突變體和ABA不敏感六重pyr/pyl突變體分別表現(xiàn)出增強(qiáng)和減弱的向水性,表明PYR/PYL對(duì)PP2Cs的ABA依賴性抑制在根響應(yīng)向水刺激中具有重要作用[59]。擬南芥snrk2.2 snrk2.3雙突變體的向水性反應(yīng)明顯降低(表2),但在SnRK2.2自身啟動(dòng)子或皮層特異性啟動(dòng)子下表達(dá)SnRK2.2基因的snrk2.2 snrk2.3雙突變體中恢復(fù),根皮層特異性表達(dá)ABA關(guān)鍵信號(hào)轉(zhuǎn)導(dǎo)成分SnRK2.2似乎是根產(chǎn)生向水性反應(yīng)所必需的[5]。ABA-INSENSITIVE1(ABI1)是ABA信號(hào)轉(zhuǎn)導(dǎo)中的關(guān)鍵PP2C,其直接與擬南芥質(zhì)膜H+依賴性腺苷三磷酸酶2(AHA2)的C末端相互作用并對(duì)其倒數(shù)第二個(gè)蘇氨酸殘基(Thr947)去磷酸化而負(fù)向調(diào)節(jié)AHA2,破壞根伸長(zhǎng)區(qū)H+的不對(duì)稱外流,從而抑制根的生長(zhǎng)和向水彎曲。研究表明,低濃度ABA通過(guò)緩解ABI1介導(dǎo)的質(zhì)膜H+- ATPase 2抑制作用來(lái)促進(jìn)根的生長(zhǎng)和向水性[60]。此外,油菜素內(nèi)酯(BRs)受體油菜素內(nèi)酯不敏感1(BRI1)與AHA2對(duì)H+外流的高度協(xié)同在擬南芥根的向水性中具有重要作用,水勢(shì)梯度下BR不敏感突變體bri1-5根的生長(zhǎng)和向水彎曲受到明顯抑制[61]。最近報(bào)道,向水刺激下水勢(shì)較低側(cè)番茄根中ABA相關(guān)基因表達(dá)量增加,ABA調(diào)節(jié)的根尖不對(duì)稱H+外排促進(jìn)細(xì)胞伸長(zhǎng)生長(zhǎng),進(jìn)而導(dǎo)致向水彎曲[37]。
擬南芥PYR/PYL家族成員在調(diào)節(jié)ABA敏感性方面存在部分功能冗余,盡管每個(gè)PYL可能擁有獨(dú)特的生化性質(zhì)和表達(dá)模式[59]。擬南芥三重突變系(pyr1 pyl1 pyl4)與四重突變系(pyr1 pyl1 pyl2 pyl4)才表現(xiàn)出明顯的ABA不敏感性[62]。pyr1 pyl1 pyl2 pyl4 pyl5 pyl8六重突變體(112458)對(duì)ABA不敏感性至少比pyr1 pyl1 pyl2 pyl4四重突變體(1124)高1個(gè)數(shù)量級(jí)[63]。有趣的是,PYL8在調(diào)節(jié)根對(duì)ABA的敏感性方面表現(xiàn)非冗余性,9個(gè)pyr/pyl突變體(pyr1、pyl1、pyl2、pyl4、pyl5、pyl6、pyl7、pyl8和 pyl9)中只有pyl8單敲突變體對(duì)ABA介導(dǎo)的根的生長(zhǎng)抑制敏感性降低,推測(cè)PYL8的表達(dá)模式相對(duì)于其他PYR/PYL受體具有特異性[59]。
3.2 "生長(zhǎng)素(auxin)
許多研究表明,生長(zhǎng)素再分配參與植物根的向重力性[81-83]。然而,向水性中根的生長(zhǎng)素再分配一直存在爭(zhēng)議[84]。擬南芥中,無(wú)論是否存在生長(zhǎng)素極性運(yùn)輸抑制劑,均未觀察到根向水性反應(yīng)中生長(zhǎng)素的再分布,但非特異性生長(zhǎng)素拮抗劑氯苯氧異丁酸(PCIB)可顯著抑制向水性,而特異性拮抗劑反而增強(qiáng)該反應(yīng)[30, 33]。同樣,對(duì)重力和生長(zhǎng)素反應(yīng)降低的突變體axr1-3和axr2-1表現(xiàn)出比野生型更強(qiáng)的向水性[4](表2),通過(guò)阻斷生長(zhǎng)素受體TIR依賴的生長(zhǎng)素信號(hào)傳導(dǎo)可加速根的向水彎曲[33]。另一方面,向水刺激前2"h內(nèi)未檢測(cè)到擬南芥根中生長(zhǎng)素的差異分布,但6 h以后發(fā)現(xiàn)根尖凸側(cè)生長(zhǎng)素水平較高,這種晚期生長(zhǎng)素再分布可能是根向水彎曲后受到重力刺激的結(jié)果[33]。這些結(jié)果表明,擬南芥根的向水性可能是由不同于重力依賴性生長(zhǎng)素再分配機(jī)制介導(dǎo)的,或者生長(zhǎng)素不參與擬南芥根的向水性[33]。微重力條件下黃瓜根對(duì)向水刺激更敏感,而生長(zhǎng)素轉(zhuǎn)運(yùn)抑制劑顯著降低了向水性反應(yīng),黃瓜根向水性和向重力性間的干擾或相互作用可能是由于響應(yīng)濕度梯度和重力而建立的競(jìng)爭(zhēng)性生長(zhǎng)素動(dòng)力學(xué)差異造成的[36, 85]。此外,生長(zhǎng)素合成、轉(zhuǎn)運(yùn)或反應(yīng)抑制劑的施用降低了水稻、豌豆[19]與黃瓜根[18]的向水性,而光葉百脈根的向水性只受到生長(zhǎng)素合成的影響,不需要生長(zhǎng)素的運(yùn)輸與反應(yīng)[19](表1)。因此,生長(zhǎng)素在根向水性中的調(diào)節(jié)機(jī)制可能不同于向重力性[30],其參與向水性的方式因植物物種而異[88]。
3.3" 細(xì)胞分裂素(cytokinin)
細(xì)胞分裂素是在水分脅迫條件下影響根系生長(zhǎng)方向的關(guān)鍵信號(hào)分子[32]。向水性改變突變體1(ahr1)在細(xì)胞分裂素存在的條件下,表現(xiàn)出與野生型相似的向水性反應(yīng)[76]。外源激動(dòng)素的應(yīng)用恢復(fù)了無(wú)向水性突變體1(nhr1)的向水性[76]。相對(duì)于高水勢(shì)側(cè),擬南芥根尖低水勢(shì)側(cè)表現(xiàn)出更多的細(xì)胞分裂素反應(yīng);2種細(xì)胞分裂素下游A型反應(yīng)調(diào)節(jié)因子ARR16和ARR17在較低水勢(shì)側(cè)上調(diào),導(dǎo)致該側(cè)分生組織區(qū)細(xì)胞分裂增加,根向較高水勢(shì)側(cè)彎曲;各種細(xì)胞分裂素生物合成和信號(hào)轉(zhuǎn)導(dǎo)突變體,包括arr16 arr17雙突變體,向水反應(yīng)明顯降低,表明分生組織區(qū)細(xì)胞分裂素不對(duì)稱分布是細(xì)胞分裂不均和隨后根向水彎曲的重要因素[32]。細(xì)胞分裂素的不對(duì)稱分布依賴于功能性MIZ1,因?yàn)橄蛩碳は?em>miz1-2突變體中ARR16和ARR17的表達(dá)仍然很低,而ARR16或ARR17的單側(cè)表達(dá)均可有效誘導(dǎo)miz1-2根的向水彎曲[32]。此外,MIZ1的表達(dá)模式不受向水刺激或外源細(xì)胞分裂素應(yīng)用的調(diào)節(jié)[32]。但MIZ1調(diào)控細(xì)胞分裂素的具體分子機(jī)制仍尚不清楚。MIZ1蛋白含有一個(gè)功能未知的結(jié)構(gòu)域(DUF617,即MIZ結(jié)構(gòu)域)。該結(jié)構(gòu)域在陸生植物(如苔蘚、擬南芥)中高度保守,但在藻類或動(dòng)物中未發(fā)現(xiàn),暗示其可能通過(guò)特定分子界面參與細(xì)胞分裂素信號(hào)通路的調(diào)控[72, 86]。例如,MIZ結(jié)構(gòu)域的缺失可能影響MIZ1與細(xì)胞分裂素響應(yīng)因子(如ARR16/ARR17)的相互作用,進(jìn)而破壞根尖細(xì)胞分裂素的不對(duì)稱分布[32]。
除了向水性調(diào)控機(jī)制外,植物根的向水性也會(huì)受到其他環(huán)境信號(hào)的影響。地球正常重力下,向重力性會(huì)干擾各種植物根系對(duì)水勢(shì)梯度的響應(yīng)[87]。向水性與向重力性相互影響的程度取決于刺激閾值與物種敏感性差異,根對(duì)水勢(shì)梯度的反應(yīng)根據(jù)重力刺激角度而變化[88]。豌豆失重力突變體ageotropum因向重力性缺陷,其根系向水性反應(yīng)顯著強(qiáng)于野生型[34],通過(guò)回轉(zhuǎn)器消除重力向量后,可恢復(fù)根的向水彎曲能力[89]。類似現(xiàn)象在黃瓜、小麥和玉米中均被證實(shí):重力信號(hào)的減弱(如雙軸旋轉(zhuǎn)或傾斜生長(zhǎng))可顯著增強(qiáng)根系向水性[90];小麥和玉米的根中也存在向水性和向重力性的相互作用[91-92]。傾斜方向上,擬南芥向重力性缺陷突變體aux1的向水性增強(qiáng),而向水性缺陷突變體miz1的向水性反應(yīng)則被抑制,雙突變體miz1 aux1的表型恢復(fù)表明重力阻礙了根在傾斜方向的向水響應(yīng)[93]。
光環(huán)境通過(guò)光敏色素(phyA/phyB)及下游轉(zhuǎn)錄因子HY5精細(xì)調(diào)節(jié)根系向水性。藍(lán)光誘導(dǎo)的MIZ1表達(dá)是擬南芥向水性與向光性共享的關(guān)鍵節(jié)點(diǎn):HY5缺失突變體hy5的向水性減弱可通過(guò)外源ABA處理恢復(fù),但ABA合成抑制劑abam-in-e SG則加劇其表型,表明光信號(hào)與ABA通路獨(dú)立調(diào)控MIZ1的表達(dá),或者MIZ1通過(guò)整合ABA與光等環(huán)境信號(hào)調(diào)節(jié)根的向水性[6, 9]。值得注意的是,MIZ1的表達(dá)不完全依賴光或ABA信號(hào),表明光或ABA信號(hào)傳導(dǎo)之外可能還存在其他影響MIZ1表達(dá)與向水性的途徑[6]。
根波浪形生長(zhǎng)(向觸性)與向水性可能也存在部分共享的調(diào)控網(wǎng)絡(luò)[4]。擬南芥向觸性缺陷突變體wav2-1和wav3-1對(duì)向水刺激的敏感性增強(qiáng),而向水性突變體nhr1則表現(xiàn)出超敏的向觸反應(yīng)[4, 94]。由于wav2-1和wav3-1的向水響應(yīng)增強(qiáng),向水性關(guān)鍵基因MIZ1可能參與根波浪形生長(zhǎng)[72]。此外,向水性缺陷突變體miz1和miz2的向光性降低、向觸性反應(yīng)發(fā)生改變[72, 95],而光形態(tài)建成突變體hy5表現(xiàn)出減弱的向水性[6]與波浪形生長(zhǎng)[96],提示光-觸-水多向性調(diào)控存在高階整合機(jī)制。
這些結(jié)果表明,MIZ1可能在幾種向性生長(zhǎng)機(jī)制中發(fā)揮不同的作用[72]。MIZ1的進(jìn)化保守性進(jìn)一步支持其多功能性。MIZ結(jié)構(gòu)域(DUF617)在陸生植物中廣泛存在(包括苔蘚和被子植物),但在非陸生生物中缺失,表明其可能是在植物適應(yīng)陸地環(huán)境過(guò)程中演化出的關(guān)鍵調(diào)控模塊[72, 97]。例如,MIZ1不僅通過(guò)整合ABA和光信號(hào)調(diào)控向水性,還可能通過(guò)與其他向性相關(guān)蛋白(如光敏色素PHYB)互作,協(xié)調(diào)根系對(duì)復(fù)合環(huán)境刺激的響應(yīng)[6, 9]。而不同向性反應(yīng)是直接影響植物根的生長(zhǎng)模式還是通過(guò)影響向重力性進(jìn)行間接調(diào)節(jié),仍待進(jìn)一步研究[87]。事實(shí)上,向水性或其他向性反應(yīng)基本都涉及到ABA、ROS和Ca2+脅迫信號(hào),其他信號(hào)包括但不限于NO、生長(zhǎng)素、脂質(zhì)分子,但不同向性及不同植物間脅迫信號(hào)的產(chǎn)生與傳導(dǎo)機(jī)制有所差異。
植物根系通過(guò)多向性協(xié)同網(wǎng)絡(luò)(如向地性、向水性、向光性及向觸性)動(dòng)態(tài)優(yōu)化其空間構(gòu)型,這一特性是其應(yīng)對(duì)干旱、弱光及機(jī)械脅迫等復(fù)雜環(huán)境的核心生存策略[85-86]。其中,向水性通過(guò)驅(qū)動(dòng)根系沿水分梯度定向延伸,顯著提升深層土壤水分獲取效率,已被證實(shí)為關(guān)鍵抗旱機(jī)制[85-86, 98]。因此,解析作物向水性調(diào)控通路并開發(fā)靶向育種技術(shù)(如CRISPR編輯MIZ1或SnRK2.2),可顯著增強(qiáng)根系在干旱脅迫下的水分勘探能力,為氣候變化背景下作物穩(wěn)產(chǎn)提供創(chuàng)新解決方案。
研究植物根的向水性,分離并鑒定不同向性突變體及其相關(guān)基因仍是重要且極具挑戰(zhàn)性的目標(biāo)?;蚪M關(guān)聯(lián)分析與基因功能缺失技術(shù)的運(yùn)用,有助于克服傳統(tǒng)EMS誘變篩選向性突變體的局限性。目前,各類向性突變基因?qū)Ω瞪L(zhǎng)方向的調(diào)控效應(yīng)逐步明晰,為揭示根響應(yīng)環(huán)境信號(hào)的分子機(jī)制提供了突破口。盡管根尖感知與整合多重環(huán)境刺激的精確機(jī)制尚未完全闡明,但對(duì)向性突變相關(guān)基因的挖掘仍能深化對(duì)根系非生物脅迫感知-響應(yīng)網(wǎng)絡(luò)的理解。鑒于向性反應(yīng)對(duì)根系發(fā)育與形態(tài)建成的關(guān)鍵調(diào)控作用[21],深入探究脅迫信號(hào)、激素通路、調(diào)控因子與發(fā)育進(jìn)程間的動(dòng)態(tài)互作關(guān)系具有重要科學(xué)價(jià)值。同時(shí),應(yīng)加強(qiáng)向水性在自然生態(tài)系統(tǒng)中的功能解析及其與其他向性互作機(jī)制的研究。當(dāng)前多數(shù)成果源于實(shí)驗(yàn)室可控條件,而自然環(huán)境中根系同時(shí)受光信號(hào)、機(jī)械障礙及化學(xué)梯度等多因素影響,這些環(huán)境要素可能通過(guò)調(diào)控網(wǎng)絡(luò)交叉節(jié)點(diǎn)參與向水性反應(yīng)。例如,玉米強(qiáng)向水性響應(yīng)雜交種在干旱與局部側(cè)位灌溉條件下表現(xiàn)出根冠生物量與籽粒產(chǎn)量的顯著正相關(guān)[22],而沿海沙丘灌木幼苗在田間模擬條件下未顯現(xiàn)明確的向水性生態(tài)適應(yīng)特征[99],表明物種特性與環(huán)境互作的復(fù)雜性。系統(tǒng)闡明不同植物中多向性協(xié)同調(diào)控根系水分脅迫響應(yīng)的機(jī)制,不僅能提升植物水分利用效率,還可揭示向水性機(jī)制的演化多樣性,從而為作物抗逆穩(wěn)產(chǎn)提供理論支撐。
參考文獻(xiàn)
[1]"""""" GARCIA-MAQUILON I, LOZANO-JUSTE J, ALREFAEI A F, RODRIGUEZ P L. Hydrotropism: analysis of the root response to a moisture gradient[J]. Methods in Molecular Biology (Clifton, NJ), 2022, 2494: 17-24.
[2]"""""" UZILDAY B, TAKAHASHI K, KOBAYASHI A, UZIL-D-AY R O, FUJII N, TAKAHASHI H, TURKAN I. Role of abscisic acid, reactive oxygen species, and Ca2+ signaling in hydrotropism—drought avoidance-associated response of roots[J]. Plants, 2024, 13(9): 1220.
[3]"""""" KNIGHT T A. On the causes which influence the direction of the growth of roots[J]. Philosophical Transactions of the Royal Society of London, 1811(10): 209-219.
[4]"""""" TAKAHASHI N, GOTO N, OKADA K, TAKAHASHI H. Hydrotropism in abscisic acid, wavy, and gravitropic mutants of Arabidopsis thaliana[J]. Planta, 2002, 216(2): 203- 11.
[5]"""""" DIETRICH D, PANG L, KOBAYASHI A, FOZARD J A, BOUDOLF V, BHOSALE R, ANTONI R, NGUYEN T, HIRATSUKA S, FUJII N. Root hydrotropism is controlled via a cortex-specific growth mechanism[J]. Nature Plants, 2017, 3(6): 1-8.
[6]"""""" MORIWAKI T, MIYAZAWA Y, FUJII N, TAKAHASHI H. Light and abscisic acid signalling are integrated by MIZ1 gene expression and regulate hydrotropic response in roots of Arabidopsis thaliana[J]. Plant, Cell amp; Environment, 2012, 35(8): 1359-68.
[7]"""""" JIMENEZ-NOPALA G, SALGADO-ESCOBAR A E, CEVAL-LOS-PORTA D, CARDENAS L, SEPULV-EDA-JI-ME-N-EZ G, CASSAB G, PORTA H. Autophagy mediates hydrotropic response in Arabidopsis thaliana roots[J]. Plant Science, 2018, 272: 1-13.
[8]"""""" SHKOLNIK D, NURIEL R, BONZA M C, COSTA A, FROMM H. MIZ1 regulates ECA1 to generate a slow, long-distance phloem-transmitted Ca2+ signal essential for root water tracking in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2018, 115(31): 8031-8036.
[9]"""""" MIYAZAWA Y, TAKAHASHI H. Molecular mechanisms mediating root hydrotropism: what we have observed since the rediscovery of hydrotropism[J]. Journal of Plant Research, 2020, 133(1): 3-14.
[10]""" FROMM H. Root plasticity in the pursuit of water[J]. Plants, 2019, 8(7): 236.
[11]""" GUL M U, PAUL A, CHEHRI A. Hydrotropism: understanding the impact of water on plant movement and adaptation[J]. Water, 2023, 15(3): 567.
[12]""" ROY R, BASSHAM D C. Root growth movements: waving and skewing[J]. Plant Science, 2014(221/222): 42-47.
[13]""" DARWIN C, DARWIN F E. The power of movement in plants[M]. Cambridge: Cambridge University Press, 1888.
[14]""" MIYAZAWA Y, SAKASHITA T, FUNAYAMA T, HAMADA N, NEGISHI H, KOBAYASHI A, KANEYASU T, OOBA A, MOROHASHI K, KAKIZAKI T. Effects of locally targeted heavy-ion and laser microbeam on root hydrotropism in Arabidopsis thaliana[J]. Journal of Radiation Research, 2008, 49(4): 373-379.
[15]""" TAKAHASHI H, SCOTT T. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap[J]. Plant, Cell amp; Environment, 1993, 16(1): 99-103.
[16]""" JAFFE M, TAKAHASHI H, BIRO R. A pea mutant for the study of hydrotropism in roots[J]. Science, 1985, 230(4724): 445-447.
[17]""" WANG Y, AFEWORKI Y, GENG S, KANCHUPATI P, GU M, MARTINS C, RUDE B, TEFERA H, KIM Y, GE X. Hydrotropism in the primary roots of maize[J]. New Phytologist, 2020, 226(6): 1796-1808.
[18]""" FUJII N, MIYABAYASHI S, SUGITA T, KOBAYASHI A, YAMA-ZAKI C, MIYAZAWA Y, KAMADA M, KASAH-A-RA H, OSADA I, SHIMAZU T. Root-tip-mediated inhibition of hydrotropism is accompanied with the suppression of asymmetric expression of auxin-inducible genes in response to moisture gradients in cucumber roots[J]. PLoS One, 2018, 13(1): e0189827.
[19]""" NAKAJIMA Y, NARA Y, KOBAYASHI A, SUGITA T, MIYAZAWA Y, FUJII N, TAKAHASHI H. Auxin transport and response requirements for root hydrotropism differ between plant species[J]. Journal of Experimental Botany, 2017, 68(13): 3441-3456.
[20]""" WEXLER Y, SCHROEDER J I, SHKOLNIK D. Hydrotropism mechanisms and their interplay with gravitropism[J]. The Plant Journal, 2024, 18(6): 1732-1746.
[21]""" TSUTSUMI D, KOSUGI K I, MIZUYAMA T. Effect of hydrotropism on root system development in soybean (Glycine max): growth experiments and a model simulation[J]. Journal of Plant Growth Regulation, 2002, 21: 441-458.
[22]""" EAPEN D, MARTíNEZ-GUADARRAMA J, HERNáNDE-Z-B-R-UNO O, FLORES L, NIETO-SOTELO J, CASSAB G I. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance[J]. Plant Science, 2017, 265: 87-99.
[23]""" MOROKE T, SCHWARTZ R, BROWN K, JUO A. Soil wa-ter depletion and root distribution of three dryland crops[J]. Soil Science Society of America Journal, 2005, 69(1): 197- 205.
[24]""" SCHENK H J, JACKSON R B. Mapping the global distribution of deep roots in relation to climate and soil characteristics[J]. Geoderma, 2005, 126(1/2): 129-140.
[25]""" MORISON J, BAKER N, MULLINEAUX P, DAVIES W. Improving water use in crop production[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363(1491): 639-658.
[26]""" GOWDA V R, HENRY A, YAMAUCHI A, SHASHIDHAR H, SERRAJ R. Root biology and genetic improvement for drought avoidance in rice[J]. Field Crops Research, 2011, 122(1): 1-13.
[27]""" UGA Y, OKUNO K, YANO M. Dro1, a major QTL inv-ol-ved in deep rooting of rice under upland field conditions[J]. Journal of Experimental Botany, 2011, 62(8): 2485- 2494.
[28]""" UGA Y, SUGIMOTO K, OGAWA S, RANE J, ISHITANI M, HARA N, KITOMI Y, INUKAI Y, ONO K, KANNO N. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics, 2013, 45(9): 1097-1102.
[29]""" ARAI-SANOH Y, TAKAI T, YOSHINAGA S, NAKANO H, KOJIMA M, SAKAKIBARA H, KONDO M, UGA Y. Deep rooting conferred by DEEPER ROOTING 1 enhances rice yield in paddy fields[J]. Scientific Reports, 2014, 4(1): 5563.
[30]""" KANEYASU T, KOBAYASHI A, NAKAYAMA M, TUJII N, TAKAHASHI H, MIYAZAWA Y. Auxin response, but not its polar transport, plays a role in hydrotropism of Arabidopsis roots[J]. Journal of Experimental Botany, 2007, 58(5): 1143-1150.
[31]""" YUSUKE N, YOSHITAKA N, AKIE K, TOMOKI S, YUTAKA M. Auxin transport and response requirements for root hydrotropism differ between plant species[J]. Journal of Experimental Botany, 2017, 68(13): 3441-3456.
[32]""" CHANG J, LI X, FU W, WANG J, YONG Y, SHI H, DING Z, KUI H, GOU X, HE K. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thali-ana[J]. Cell Research, 2019, 29(12): 984-993.
[33]""" SHKOLNIK D, KRIEGER G, NURIEL R, FROMM H. Hydrotropism: root bending does not require auxin redistribution[J]. Molecular Plant, 2016, 9(5): 757-759.
[34]""" TAKAHASHI H, SUGE H. Root hydrotropism of an agravit-ropic pea mutant, ageotropum[J]. Physiologia Plantarum, 1991, 82(1): 24-31.
[35]""" WANG Y, AFEWORKI Y, GENG S, KANCHUPATI P, WU Y. Hydrotropism in the primary roots of maize[J]. New Phytologist, 2020, 226(6): 1796-1808.
[36]""" MOROHASHI K, OKAMOTO M, YAMAZAKI C, FUJII N, TAKAHASHI H. Gravitropism interferes with hydrotropism via counteracting auxin dynamics in cucumber roots: clinorotation and spaceflight experiments[J]. New Phytologist, 2017, 215(4): 1476-1489.
[37]""" LI Y, CHEN Y, JIANG S, DAI H, XU W, ZHANG Q, ZH-A-NG J, DODD I C, YUAN W. ABA is required for differen-t-ial cell wall acidification associated with root hydrotropic bending in tomato[J]. Plant, Cell amp; Environment, 2024, 47(1): 38-48.
[38]""" WEXLER Y, KIERE Y, SOBOL G, NURIEL R, AZO-UL-AY-PORTAL S, COHEN A, TOPORIK H, PASM-AN-IK- CHOR M, FINKLER A, SHKOLNIK D. Modulation of root hydrotropism and recovery from drought by MIZ1-like genes in tomato[J]. Plant, Cell amp; Environment, 2024, 48(4): 2739- 2754.
[39]""" KUDLA J, BECKER D, GRILL E, HEDRICH R, HIPPLER M, KUMMER U, PARNISKE M, ROMEIS T, SCHUMAC-H-ER K. Advances and current challenges in calcium signaling[J]. New Phytologist, 2018, 218(2): 414-431.
[40]""" BERRIDGE M J, LIPP P, BOOTMAN M D. The versatility and universality of calcium signalling[J]. Nature Reviews Molecular Cell Biology, 2000, 1(1): 11-21.
[41]""" TAKANO M, TAKAHASHI H, SUGE H. Calcium requirement for the induction of hydrotropism and enhancement of calcium-induced curvature by water stress in primary roots of pea, Pisum sativum L[J]. Plant and Cell Physiology, 1997, 38(4): 385-391.
[42]""" YAMAZAKI T, MIYAZAWA Y, KOBAYASHI A, MOR-IWAKI T, FUJII N, TAKAHASHI H. MIZ1, an essential pro-tein for root hydrotropism, is associated with the cytopla-smic face of the endoplasmic reticulum membrane in Arabidopsis root cells[J]. FEBS Letters, 2012, 586(4): 398-402.
[43]""" LIANG F, SZE H. A high-affinity Ca2+ pump, ECA1, from the endoplasmic reticulum is inhibited by cyclopiazonic acid but not by thapsigargin[J]. Plant Physiology, 1998, 118(3): 817-825.
[44]""" JU C, JAVED L, FANG Y, ZHAO Y, CAO C, DENG Y, GAO Y, SUN L, WANG C. Arabidopsis calcium-dependent protein kinase 4/5/6/11 negatively regulate hydrotropism via phosphorylation of MIZU-KUSSEI1[J]. The Plant Cell, 2024, 37(1): koae279.
[45]""" YUAN F, YANG H, XUE Y, KONG D, YE R, LI C, ZHANG J, THEPRUNGSIRIKUL L, SHRIFT T, KRICH-IL-SKY B. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis[J]. Nature, 2014, 514(7522): 367-371.
[46]""" AKITA K, MIYAZAWA Y. The mechanosensitive Ca2+ channel, OSCA1.1, modulates root hydrotropic bending in Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2022, 197: 104825.
[47]""" MITTLER R. ROS are good[J]. Trends in Plant Science, 2017, 22(1): 11-9.
[48]""" SEWELAM N, KAZAN K, SCHENK P M. Global plant stress signaling: reactive oxygen species at the cross-road[J]. Frontiers in Plant Science, 2016, 7: 187.
[49]""" SAGI M, FLUHR R. Production of reactive oxygen species by plant NADPH oxidases[J]. Plant Physiology, 2006, 141(2): 336-40.
[50]""" KRIEGER G, SHKOLNIK D, MILLER G, FROMM H. Reactive oxygen species tune root tropic responses[J]. Plant Physiology, 2016, 172(2): 1209-1220.
[51]""" PONCE G, CORKIDI G, EAPEN D, LLEDíAS F, CARDE-N-AS L, CASSAB G. Root hydrotropism and thigmotropism in Arabidopsis thaliana are differentially controlled by redox status[J]. Plant Signaling amp; Behavior, 2017, 12(4): e1305536.
[52]""" GILROY S, BIA?ASEK M, SUZUKI N, GORECKA M, DEVIREDDY A R, KARPINSKI S, MITTLER R. ROS, cal-c--i-um, and electric signals: key mediators of rapid systemic signaling in plants[J]. Plant Physiology, 2016, 171(3): 1606- 1615.
[53]""" ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
[54]""" ZHU J K. Salt and drought stress signal transduction in pla-nts[J]. Annual Review of Plant Biology, 2002, 53(1): 247- 273.
[55]""" SCHACHTMAN D P, GOODGER J Q. Chemical root to shoot signaling under drought[J]. Trends in Plant Science, 2008, 13(6): 281-287.
[56]""" CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, ABRAMS S R. Abscisic acid: emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61(1): 651-679.
[57]""" FUJII H, CHINNUSAMY V, RODRIGUES A, RUBIO S, ANTONI R, PARK S Y, CUTLER S R, SHEEN J, RODRI-GU-EZ P L, ZHU J K. In vitro reconstitution of an abscisic acid signalling pathway[J]. Nature, 2009, 462(7273): 660- 664.
[58]""" MA Y, SZOSTKIEWICZ I, KORTE A, MOES D, YANG Y, CHRISTMANN A, GRILL E. Regulators of PP2C phosphatase activity function as abscisic acid sensors[J]. Science, 2009, 324(5930): 1064-1068.
[59]""" ANTONI R, GONZALEZ-GUZMAN M, RODRIGUEZ L, PEIRATS-LLOBET M, PIZZIO G A, FERNANDEZ M A, DE WINNE N, DE JAEGER G, DIETRICH D, BENNETT M J. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root[J]. Plant Physiology, 2013, 161(2): 931-941.
[60]""" MIAO R, YUAN W, WANG Y, GARCIA-MAQUILON I, DANG X, LI Y, ZHANG J, ZHU Y, RODRIGUEZ P L, XU W. Low ABA concentration promotes root growth and hydrot-ropism through relief of ABA INSENSITIVE 1-med-ia-ted inhibition of plasma membrane H+-ATPase 2[J]. Science Advances, 2021, 7(12): eabd4113.
[61]""" MIAO R, WANG M, YUAN W, REN Y, LI Y, ZHANG N, ZHANG J, KRONZUCKER H J, XU W. Comparative analysis of Arabidopsis ecotypes reveals a role for brassinosteroids in root hydrotropism[J]. Plant Physiology, 2018, 176(4): 2720-2736.
[62]""" PARK S Y, FUNG P, NISHIMURA N, JENSEN D R, FUJII H, ZHAO Y, LUMBA S, SANTIAGO J, RODRIGUES A, CHOW T F F. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071.
[63]""" GONZALEZ-GUZMAN M, PIZZIO G A, ANTONI R, VERA-SIRERA F, MERILO E, BASSEL G W, FERNA-N-DEZ M A, HOLDSWORTH M J, PEREZ-AMADOR M A, KOLLIST H. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid[J]. The Plant Cell, 2012, 24(6): 2483-2496.
[64]""" CHEN R, HILSON P, SEDBROOK J, ROSEN E, MASSON C P H. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 15112-15117.
[65]""" MARCHANT A, KARGUL J, MAY S T, MULLER P, DELBARRE A, PERROT-RECHENMANN C, BENNETT M J. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues[J]. The EMBO Journal, 1999, 18(8): 2066-2073.
[66]""" MOCHIZUKI S. The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli[J]. Plant Cell, 2005, 17(2): 537-547.
[67]""" SAKAI T, MOCHIZUKI S, HAGA K, UEHARA Y, SUZUKI A, HARADA A, WADA T, ISHIGURO S, OKADA K. The WAVY GROWTH 3 E3 ligase family controls the gravitropic response in Arabidopsis roots[J]. Plant Journal, 2012, 70(2): 303-314.
[68]""" ANTONI R, GONZALEZ-GUZMAN M, RODRIGUEZ L, PEIRATS-LLOBET M, RODRIGUEZ P L. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root[J]. Plant Physiology, 2013, 161(2): 931-941.
[69]""" EAPEN D, BARROSO M L, CAMPOS M E, PONCE G, COR-KIDI G, DUBROVSKY J G, CASSAB G I. A no hydr-o-t-r-o-pic response root mutant that responds positively to gravitropism in Arabidopsis[J]. Plant Physiology, 2003, 131(2): 536-546.
[70]""" PONCE G, RASGADO F A, CASSAB G I. Roles of amyloplasts and water deficit in root tropisms[J]. Plant, Cell amp; Environment, 2008, 31(2): 205-217.
[71]""" TAKAHASHI N. Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish[J]. Plant Physiology, 2003, 132(2): 805-810.
[72]""" KOBAYASHI A, TAKAHASHI A, KAKIMOTO Y, MIYA-Z-AWA Y, FUJII N, HIGASHITANI A, TAKAHASHI H. A gene essential for hydrotropism in roots[J]. Proceedings of the National Academy of Sciences, 2007, 104(11): 4724- 4729.
[73]""" LI G, XUE H W. Arabidopsis PLD ζ2 regulates vesicle trafficking and is required for auxin response[J]. The Plant Cell, 2007, 19(1): 281-295.
[74]""" TANIGUCHI Y Y, TANIGUCHI M, TSUGE T, OKA A, AOYAMA T. Involvement of Arabidopsis thaliana phospholipase D ζ2 in root hydrotropism through the suppression of root gravitropism[J]. Planta, 2010, 231: 491-497.
[75]""" MIYAZAWA Y, TAKAHASHI A, KOBAYASHI A, KANEYASU T, TAKAHASHI H. GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Ara-b-i-dopsis roots[J]. Plant Physiology, 2009, 149(2): 835-840.
[76]""" SAUCEDO M, PONCE G, CAMPOS M E, EAPEN D, GARCíA E, LUJAN R, SANCHEZ Y, CASSAB G I. An altered hydrotropic response (ahr1) mutant of Arabidopsis recovers root hydrotropism with cytokinin[J]. Journal of Experimental Botany, 2012, 63(10): 3587-3601.
[77]""" TANAKA-TAKADA N, KOBAYASHI A, TAKAHASHI H, KAMIYA T, KINOSHITA T, MAESHIMA M. Plasma membrane-associated Ca2+-binding protein PCaP1 is involved in root hydrotropism of Arabidopsis thaliana[J]. Plant amp; Cell Physiology, 2019, 60(6): 1331-1341.
[78]""" MIAO R, SIAO W, ZHANG N, LEI Z, LIN D, BHALERAO R P, LU C, XU W. Katanin-dependent microtubule ordering in association with ABA is important for root hydrotropism[J]. International Journal of Molecular Sciences, 2022, 23(7): 3846.
[79]""" LIU Z, CHEN Y, LIU S, JIANG S, WANG L, HONG Y, YAO Z, HU X, LI Y. MIZ1 acts downstream of PGM1 in regulating root hydrotropism[J]. Biochemical and Biophysical Research Communications, 2023, 679: 175-178.
[80]""" CHANG J, LI X, SHEN J, HU J, WU L, ZHANG X, LI J. Defects in the cell wall and its deposition caused by loss-of- function of three RLKs alter root hydrotropism in Arabidopsis thaliana[J]. Nature Communications, 2024, 15(1): 2648.
[81]""" MCCLURE B A, GUILFOYLE T. Rapid redistribution of auxin-rregulated RNAs during gravitropism[J]. Science, 1989, 243(4887): 91-93.
[82]""" KLEINE-VEHN J, DING Z, JONES A R, TASAKA M, MORITA M T, FRIML J. Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells[J]. Proceedings of the National Academy of Sciences, 2010, 107(51): 22344-22349.
[83]""" RAHMAN A, TAKAHASHI M, SHIBASAKI K, WU S, INABA T, TSURUMI S, BASKIN T I. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells[J]. The Plant Cell, 2010, 22(6): 1762-1776.
[84]""" TREWAVAS A. What remains of the cholondy-went theory? a summing up[J]. Plant, Cell amp; Environment, 1992, 15(7): 793-794.
[85]""" CASSAB G I, EAPEN D, CAMPOS M E. Root hydrotropism: an update[J]. American Journal of Botany, 2013, 100(1): 14-24.
[86]""" MORIWAKI T, MIYAZAWA Y, KOBAYASHI A, TAKA-HASHI H. Molecular mechanisms of hydrotropism in seedling roots of Arabidopsis thaliana (Brassicaceae)[J]. American Journal of Botany, 2013, 100(1): 25-34.
[87]""" TAKAHASHI H. Hydrotropism: the current state of our knowledge[J]. Journal of Plant Research, 1997, 110: 163-169.
[88]""" TAKAHASHI H, MIYAZAWA Y, FUJII N. Hormonal inte-ra-ctions during root tropic growth: hydrotropism versus gra-v-itropism[J]. Plant Molecular Biology, 2009, 69: 489-502.
[89]""" TAKAHASHI H, BROWN C S, DRESCHEL T W, SCOTT T K. Hydrotropism in pea roots in a porous-tube water delivery system[J]. HortScience, 1992, 27(5): 430-432.
[90]"nbsp;" MIZUNO H, KOBAYASHI A, FUJII N, YAMASHITA M, TAKAHASHI H. Hydrotropic response and expression pattern of auxin-inducible gene, CS-IAA1, in the primary roots of clinorotated cucumber seedlings[J]. Plant and Cell Physiology, 2002, 43(7): 793-801.
[91]""" TAKAHASHI H, SCOTT T K. Hydrotropism and its interaction with gravitropism in maize roots[J]. Plant Physiology, 1991, 96(2): 558-564.
[92]""" OYANAGI A, TAKAHASHI H, SUGE H. Interactions between hydrotropism and gravitropism in the primary seminal roots of Triticum eastivum L.[J]. Annals of Botany, 1995, 75(3): 229-235.
[93]""" LI Y, YUAN W, LI L, DAI H, DANG X, MIAO R, BALU?KA F, KRONZUCKER H J, LU C, ZHANG J. Co-m--pa--rative analysis reveals gravity is involved in the MIZ1- regulated root hydrotropism[J]. Journal of Experimental Botany, 2020, 71(22): 7316-7330.
[94]""" SIMMONS C, SOLL D, MIGLIACCIO F. Circumnutation and gravitropism cause root waving in Arabidopsis thalia-na[J]. Journal of Experimental Botany, 1995, 46(1): 143- 150.
[95]""" MIYAZAWA Y, ITO Y, MORIWAKI T, KOBAYASHI A, FUJII N, TAKAHASHI H. A molecular mechanism unique to hydrotropism in roots[J]. Plant Science, 2009, 177(4): 297-301.
[96]""" OYAMA T, SHIMURA Y, OKADA K. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl[J]. Genes amp; Development, 1997, 11(22): 2983-2995.
[97]""" CHANG J, LI X, FU W, WANG J, LI J. Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana[J]. Cell Research, 2019, 29(12): 984-993.
[98]""" IWATA S, MIYAZAWA Y, TAKAHASHI H. MIZU-KU-SSEI1 plays an essential role in the hydrotropism of lateral roots in Arabidopsis thaliana[J]. Environmental and Experimental Botany, 2012, 75: 167-172.
[99]""" COLE E S, MAHALL B E. A test for hydrotropic behavior by roots of two coastal dune shrubs[J]. New Phytologist, 2006, 172(2): 358-368.