Abstract:[Objective]Thisstudyaimedtoexplorethebiologicalfunctionsofoneof thealuminum-activatedmalate transporter (ALMT)familygenes,GhALMT10,inthedroughtresistanceofcoton,therebyestablishingafoundation foradeeper understandingof themechanisms ofdroughtresistance incoton.[Methods]ThecodingsequenceofGhALMT10 gene was amplifiedfromGossypiumhirsutumTM-1bypolymerasechainreaction (PCR),followedbybioinformaticsanalysis.The expresionpattensofthisgneinvariouscotontissuesaswellasunderdroughtstress,wereassessedusingquantitative real-timePCR(qRT-PCR).Aditionally,thebiological functionof thisgeneincoton'sresponsetodrought stress was preliminarilyverifiedusingvirus-induced gene silencing(VIGS)technology.[Results]Thecodingregionof GhALMT0spans 1 401bp,encoding aproteincomposed of 466aminoacid residues,which is predicted to be stableand hydrophobic. Phylogeneticanalysisindicated that GhALMT10 iscloselyrelatedto GrALMT10,GaALMT10-like,HsALMT10,and TcALMT10.Results byqRT-PCR indicated thatGhALMT10is expressed incotonroots,stems,and leaves,withthe highest expresion levelobservedin theroots.Comparedwiththecontroltreatment withclear water,theexpresionlevelofGhALMT10 was low at 3h of drought sress,and then significantly increased at 6n and9h of drought stress treatment,while it significantly decreased at 24h Furthermore,thesurvival rateofGhALMT10-silenced cotton plants was significantly higher under drought stresscomparedwith thenegativecontrolplants.Thewaterlossrateof detached leaveswassignificantlyreduced,the chloropyll content in leavesafterdroughttreatmentwas significantly increased,and themalondialdehydecontentwas significantlydecreased inGhALMT10-silencedcoton plants.[Conclusion]Thedrought toleranceof GhALMT10-silenced plants Was significantlyenhanced,indicating that GhALMT10gene negativelyregulates droughtresistance incotton.
Keywords:cotton;GhALMO;drought stress;expressonpaternanalysis;virus-inducedgenesilencing;physiologcaland biochemical indicators
棉花是我國(guó)重要的經(jīng)濟(jì)作物。新疆是我國(guó)最大的棉花種植基地,但新疆的地理位置在很大程度上決定了其干旱的環(huán)境1。干旱脅迫會(huì)導(dǎo)致棉花的產(chǎn)量和纖維品質(zhì)降低[2-3]。因此,培育抗旱棉花品種顯得尤為重要。而傳統(tǒng)雜交育種技術(shù)存在耗時(shí)長(zhǎng)、難度大等固有局限。通過(guò)對(duì)棉花干旱相關(guān)基因展開(kāi)深入探究,解析棉花抗旱的分子機(jī)理,并借助分子育種手段培育抗旱棉花新品系,無(wú)疑是解決該問(wèn)題的1條理想路徑。
鋁激活蘋(píng)果酸轉(zhuǎn)運(yùn)蛋白(aluminium-activatedmalatetransporter,ALMT)在植物體內(nèi)發(fā)揮著多種功能,包括參與調(diào)節(jié)陰離子穩(wěn)態(tài)[45]、礦物質(zhì)營(yíng)養(yǎng)元素吸收、氣孔開(kāi)閉、對(duì)鋁(aluminium,Al)的耐受性[89]和果實(shí)酸度等。第1個(gè)被發(fā)現(xiàn)的ALMT家族成員是TaALMT1,該基因編碼的蛋白可被 Al3+ 激活,調(diào)控蘋(píng)果酸從小麥的根部分泌至土壤,并且過(guò)表達(dá)該基因可以提高小麥對(duì)Al脅迫的耐受性[1I-13]。擬南芥ALMT家族基因有14個(gè)成員,它們定位在不同的組織細(xì)胞中且發(fā)揮著不同的功能[14]。如AtALMT1在根部的表達(dá)可以及時(shí)調(diào)節(jié)蘋(píng)果酸分泌,從而在根部與 Al3+ 發(fā)生螯合反應(yīng),減輕A1脅迫對(duì)根部的損傷[15]。AtALMT4基因不僅通過(guò)脫落酸(abscisicacid,ABA)信號(hào)通路調(diào)節(jié)氣孔開(kāi)度,還在花粉管中表達(dá),通過(guò)調(diào)節(jié)細(xì)胞pH或膨壓影響受精過(guò)程1。AtALMT6主要在保衛(wèi)細(xì)胞和花器官中表達(dá),編碼的蛋白定位于液泡膜,液泡pH和胞質(zhì)蘋(píng)果酸可調(diào)節(jié)其活性,進(jìn)而影響蘋(píng)果酸的轉(zhuǎn)運(yùn),Atalmt6基因敲除植物的保衛(wèi)細(xì)胞液泡中蘋(píng)果酸含量降低[17]。AtALMT9在氣孔開(kāi)放過(guò)程中起關(guān)鍵作用,功能缺失突變體氣孔開(kāi)放受損,蒸騰作用減弱,比野生型更耐旱[18]。AtALMT12主要在保衛(wèi)細(xì)胞中表達(dá),編碼的蛋白定位在質(zhì)膜上,對(duì) Al3+ 不敏感,可被蘋(píng)果酸激活,功能缺失會(huì)導(dǎo)致植物在黑暗、ABA、高濃度 CO2 等條件下氣孔關(guān)閉受損,影響氣體交換[19]。隨著研究的不斷深人,其他多種植物中ALMT基因的功能也被解析。如劉慧等[20]研究發(fā)現(xiàn),GmALMT8超表達(dá)大豆材料的毛狀根中蘋(píng)果酸含量顯著高于對(duì)照,在擬南芥中過(guò)表達(dá)該基因也能提高蘋(píng)果酸含量。GmALMT33轉(zhuǎn)基因煙草對(duì)鎘脅迫的耐受性增強(qiáng)2。BdALMT12蛋白受蘋(píng)果酸、鈣離子/鈣調(diào)蛋白共同調(diào)節(jié),影響離子轉(zhuǎn)運(yùn),從而調(diào)節(jié)保衛(wèi)細(xì)胞膨壓,影響氣孔開(kāi)閉,最終影響植物對(duì) CO2 的吸收以及水分蒸發(fā)[22]
現(xiàn)有研究發(fā)現(xiàn),ALMT基因參與調(diào)節(jié)氣孔開(kāi)閉,而氣孔開(kāi)閉與抗旱過(guò)程密切相關(guān)。陸地棉(Gossypiumhirsutum)中已鑒定出34個(gè)ALMT基因[23],但關(guān)于其抗旱功能的研究鮮有報(bào)道。本實(shí)驗(yàn)室前期對(duì)三片真葉期的陸地棉TM-1棉苗進(jìn)行了模擬干旱處理以及轉(zhuǎn)錄組測(cè)序分析,篩選到1個(gè)響應(yīng)干旱脅迫的基因GhALMT10( GH- D03G0984)?;诖?,本研究對(duì)該基因進(jìn)行了克隆、生物信息學(xué)分析,利用實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time polymerasechainreaction,qRT-PCR)檢測(cè)該基因在不同組織部位和干旱脅迫下的表達(dá)模式,并利用病毒誘導(dǎo)的基因沉默(virus-induced gene silencing,VIGS)技術(shù)初步驗(yàn)證該基因在干旱脅迫下發(fā)揮的功能,以期為棉花抗逆分子育種提供候選基因資源。
1材料與方法
1.1 植物材料
供試材料為陸地棉標(biāo)準(zhǔn)品系TM-1,由本實(shí)驗(yàn)室保存。
1.2 試劑與載體
農(nóng)桿菌(Agrobacteriumtumefaciens)GV3101感受態(tài)細(xì)胞、大腸桿菌(Escherichiacoli)DH5α感受態(tài)細(xì)胞 、2kb plusII DNAMaker、Blunt-Zero平端克隆載體、FastPfuFlyDNA聚合酶均購(gòu)自北京全式金生物技術(shù)有限公司;植物總RNA提取試劑盒、反轉(zhuǎn)錄試劑盒和熒光定量試劑盒均購(gòu)自上海愛(ài)必夢(mèng)生物科技有限公司;丙二醛(malondi-aldehyde,MDA)含量檢測(cè)試劑盒購(gòu)自北京索萊寶科技有限公司;引物合成及測(cè)序均由新疆有康生物科技有限公司完成。
煙草脆裂病毒(tobacco rattlevirus,TRV)載體TRV::RNA1、TRV:RNA2 和 TRV:GhCLA1(陽(yáng)性對(duì)照)由本實(shí)驗(yàn)室保存。
1.3RNA提取及GhALMT10基因的克隆
選取顆粒飽滿且大小一致的TM-1種子,將其播種于營(yíng)養(yǎng)土與蛭石(體積比為 1:2 )的混合基質(zhì)中,并放置在 25°C 恒溫培養(yǎng)箱內(nèi)(16h光照18h 黑暗)培養(yǎng)。待其第3片真葉長(zhǎng)出時(shí),取第2片真葉,用植物總RNA提取試劑盒提取總RNA,經(jīng) 1% (質(zhì)量分?jǐn)?shù),下同)瓊脂糖凝膠電泳檢測(cè)其完整性后利用反轉(zhuǎn)錄試劑盒合成cDNA。
在CottonOmics Database(http://cotton.zju.edu.cn/index.htm)中獲得GhALMT10( GH- D03G0984)的編碼序列(codingsequence,CDS)并設(shè)計(jì)特異性引物(表1)。以棉花真葉cDNA為模板,參照尤揚(yáng)子[24的反應(yīng)體系及程序進(jìn)行聚合酶鏈?zhǔn)椒磻?yīng)(polymerasechainreaction,PCR),利用 1% 瓊脂糖凝膠電泳驗(yàn)證擴(kuò)增片段大小,PCR產(chǎn)物經(jīng)過(guò)純化后,連接至Blunt-Zero載體,轉(zhuǎn)化到大腸桿菌 DH5α 感受態(tài)細(xì)胞,培養(yǎng) 12h 后挑取單個(gè)菌落培養(yǎng),提取質(zhì)粒,進(jìn)行酶切鑒定后進(jìn)行測(cè)序。
表1本研究使用的引物序列
Table 1Primer sequences used in this study
1.4生物信息學(xué)分析
通過(guò)ProtParam (https://web.expasy.org/prot-param/)工具預(yù)測(cè)蛋白的相對(duì)分子質(zhì)量、不穩(wěn)定指數(shù)、等電點(diǎn)、疏水指數(shù)及脂肪系數(shù)等理化參數(shù)。用SignalP5.0(https://services.healthtech.dtu.dk/services/SignalP-5.0/)與 TMHMM2.0(https://services.healthtech.dtu.dk/services/TMHMM-2.0/)分別進(jìn)行信號(hào)肽識(shí)別及跨膜拓?fù)浣Y(jié)構(gòu)分析。基于SMART(https://smart.embl.de/)結(jié)構(gòu)域數(shù)據(jù)庫(kù)進(jìn)行保守結(jié)構(gòu)域鑒定。用PRABI(https://doua.prabi.fr/software/cap3)預(yù)測(cè)二級(jí)結(jié)構(gòu)。采用SWISS-MODEL(https://swissmodel.expasy.org)同源建模平臺(tái)構(gòu)建三維空間結(jié)構(gòu)模型。
根據(jù)NCBI(https://www.ncbi.nlm.nih.gov)蛋白質(zhì)數(shù)據(jù)庫(kù)BLAST結(jié)果,選取雷蒙德氏棉(G.raimondii)、澳洲棉(G.australe)、木槿(Hibiscussyriacus)開(kāi)心果(Pistaciavera)、可可(Theobro-macacao)、歐洲甜櫻桃(Prunusavium)、黑楊(Populusnigra)、桃(Prunuspersica)棗(Ziziphusjujuba)、蒿柳(Salixviminalis)、毛果楊(Populustrichocarpa)等物種中的GhALMT10同源蛋白序列,使用MEGA11構(gòu)建系統(tǒng)進(jìn)化樹(shù)。采用鄰接法(neighbor-joiningmethod),設(shè)自展值(bootstrapvalue)為1000,其他參數(shù)為系統(tǒng)默認(rèn)值。
利用PlantCARE(https://bioinformatics.psb)ugent.be/webtools/plantcare/html/)預(yù)測(cè)啟動(dòng)子區(qū)(起始密碼子上游 2000bp )的順式作用元件。
1.5 GhALMT10基因的表達(dá)模式分析
選取3葉期長(zhǎng)勢(shì)一致的TM-1幼苗,按照 Hu 等[25]的方法用 15% (質(zhì)量分?jǐn)?shù))的聚乙二醇(polyethyleneglycol,PEG)6000進(jìn)行干旱脅迫處理,分別取對(duì)照組和處理組 0h,3h,6h,9h,12h 24h 的真葉以及處理 0h 對(duì)照組的根、莖、葉,每個(gè)時(shí)間點(diǎn)選3株,設(shè)3個(gè)生物學(xué)重復(fù)。樣本經(jīng)液氮速凍后依據(jù)1.3的方法提取RNA并合成cDNA,用熒光定量試劑盒通過(guò)qRT-PCR技術(shù)檢測(cè)GhALMT10基因在棉花不同組織和干旱脅迫下的表達(dá)量。以棉花GhUBQ7為內(nèi)參基因,利用Livak等2的方法計(jì)算基因的相對(duì)表達(dá)量。
1.6VIGS載體構(gòu)建及基因沉默效率檢測(cè)
利用SGNVIGSTool篩選GhALMT1O沉默片段,并通過(guò)DNAMAN設(shè)計(jì)沉默片段的特異性引物CM-GhALMT10-F/R(序列見(jiàn)表1)。以TM-1真葉的cDNA為模板進(jìn)行PCR擴(kuò)增及測(cè)序。通過(guò)酶切、連接方法將測(cè)序正確的沉默片段( 430log )插入TRV::RNA2載體,經(jīng)限制性內(nèi)切酶雙酶切驗(yàn)證后,轉(zhuǎn)化至農(nóng)桿菌GV3101。
選取生長(zhǎng)出2片子葉的TM-1幼苗,采用Hu等[25]的方法進(jìn)行農(nóng)桿菌侵染。試驗(yàn)體系包含TRV::00(陰性對(duì)照組)TRV::GhCLA1(陽(yáng)性對(duì)照組)和TRV::GhALMT1O(試驗(yàn)組)。侵染后陽(yáng)性對(duì)照棉株的真葉出現(xiàn)白化表型時(shí),取陰性對(duì)照和試驗(yàn)組的真葉,利用qRT-PCR檢測(cè)GhALMT10基因的沉默效率,以棉花GhUBQ7為內(nèi)參基因,方法同1.5。
1.7 抗旱性鑒定
農(nóng)桿菌侵染后 20d ,對(duì)GhALMT10基因沉默植株和陰性對(duì)照植株進(jìn)行自然干旱脅迫(不灌水)處理。處理10d后,觀察試驗(yàn)組與對(duì)照組的表型并拍照記錄,然后進(jìn)行復(fù)水,復(fù)水5d后再次觀察棉株表型變化并統(tǒng)計(jì)試驗(yàn)組(3個(gè)重復(fù),分別有12株、12株、16株)與對(duì)照組(3個(gè)重復(fù),分別有12株、14株、16株)的存活率。
1.8抗旱相關(guān)的生理生化指標(biāo)檢測(cè)
選取干旱處理前陰性對(duì)照組(TRV::OO)與試驗(yàn)組(TRV::GhALMT1O)植株第2片真葉,利用稱重法,每隔1h記錄1次離體葉片的自然失水率,連續(xù)記錄 8h 。選取干旱脅迫處理前、干旱處理8d的陰性對(duì)照組與試驗(yàn)組植株的第2片真葉,用SPAD-502葉綠素儀(日本柯尼卡美能達(dá)公司)測(cè)定葉片的SPAD(soilandplant analyzerdevelopment)值表征葉綠素含量,用MDA檢測(cè)試劑盒測(cè)定葉片MDA含量。各個(gè)處理設(shè)置3個(gè)重復(fù),每個(gè)重復(fù)1片真葉。
1.9 數(shù)據(jù)處理與分析
用MicrosoftExcel2019整理數(shù)據(jù),用IBNSPSSStatistics26.0軟件進(jìn)行單因素方差分析,用最小顯著差異法(leastsignificantdifference,LSD)進(jìn)行多重比較。
2 結(jié)果與分析
2.1GhALMT10基因的生物信息學(xué)分析
以棉花真葉cDNA為模板,經(jīng)PCR擴(kuò)增、測(cè)序,得到GhALMT10的CDS序列,長(zhǎng)度為 1401bp 。生物信息學(xué)分析表明,GhALMT10開(kāi)放閱讀框(openreadingframe,ORF)長(zhǎng)度為 1401bp ,包含6個(gè)外顯子和5個(gè)內(nèi)含子,編碼466個(gè)氨基酸殘基。編碼蛋白的相對(duì)分子質(zhì)量為 51466.10Da ,不穩(wěn)定指數(shù)為35.62,理論等電點(diǎn)為7.51,平均親水指數(shù)為0.200,脂肪系數(shù)為102.27,預(yù)測(cè)為穩(wěn)定、疏水的蛋白。SignalP5.0與TMHMM2.0預(yù)測(cè)表明,該蛋白無(wú)信號(hào)肽但有跨膜區(qū)域(圖 1A~B )。基于SMART結(jié)構(gòu)域數(shù)據(jù)庫(kù)預(yù)測(cè)發(fā)現(xiàn),GhALMT10含有6個(gè)跨膜區(qū)域,并且含有1個(gè)ALMT和1個(gè)FUSC結(jié)構(gòu)域。二級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果顯示,該蛋白的二級(jí)結(jié)構(gòu)包括 α? 螺旋、延伸鏈和無(wú)規(guī)則卷曲,占比分別為 63.09%,33.05% 和 3.86% (圖1C)。三級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果(圖1D)與二級(jí)結(jié)構(gòu)特征(圖1C)高度吻合。
系統(tǒng)進(jìn)化樹(shù)(圖2)結(jié)果顯示,GhALMT10及其同源蛋白可分為3個(gè)亞組,分別包括5個(gè)、4個(gè)和3個(gè)蛋白。GhALMT10與雷蒙德氏棉GrALMT10、澳洲棉GaALMT10-like、木槿HsALMT10、可可TcALMT10親緣關(guān)系較近。
經(jīng)預(yù)測(cè),GhALMT10啟動(dòng)子區(qū)域存在TATA盒、啟動(dòng)子和增強(qiáng)子普遍存在的元件CAAT-box、赤霉素響應(yīng)元件P-box、茉莉酸甲酯響應(yīng)元件TGACG-motif、干旱響應(yīng)元件MYC、參與干旱誘導(dǎo)的MYB結(jié)合位點(diǎn)以及光響應(yīng)元件GT1-motif、Sp1、GATA-motif等(表2)。
圖1GhALMT10蛋白的生物信息學(xué)分析Fig.1BioinformaticsanalysisofGhALMT10 protein
A:信號(hào)肽預(yù)測(cè)。SP(Sec/SPI)表示信號(hào)肽序列;CS表示剪切位點(diǎn);Other表示無(wú)信號(hào)肽序列。B:跨膜結(jié)構(gòu)區(qū)預(yù)測(cè)。C:二級(jí)結(jié)構(gòu)預(yù)測(cè)。D:三級(jí)結(jié)構(gòu)預(yù)測(cè)。
A:signalpeptideprediction.SP(Sec/SPI)representssignalpeptidesequence; CSrepresentscleavage site;Otherrepresents no signalpeptidesequence.B:transmembraneregionprediction.C:secondarystructure prediction.D:tertiarystructureprediction.
2.2GhALMT10基因在棉花不同組織及干旱脅迫下的表達(dá)模式分析
通過(guò)qRT-PCR檢測(cè)GhALMT10基因在棉花根、莖、葉中的表達(dá)情況,該基因在根中的相對(duì)表達(dá)量較高,葉中次之,在莖中的相對(duì)表達(dá)量最低(圖3A)。干旱脅迫處理后,棉花真葉中GhALMT10的表達(dá)量呈現(xiàn)降-升-降-升-降的變化趨勢(shì),處理 0h 的表達(dá)量最高,處理 3h,24h 的表達(dá)量較低。與對(duì)照(清水)處理相比,該基因在干旱脅迫處理 6h,9h 的表達(dá)量顯著上調(diào),而在 3h?angle4h 的表達(dá)量顯著下調(diào)(圖3B)。
圖2ALMT10蛋白的系統(tǒng)進(jìn)化分析
Fig.2Phylogeneticanalysisof ALMT10 protein
表2GhALMT10啟動(dòng)子區(qū)順式作用元件分析
Table2 Analysisofcis-actingelements inthe GhALMT10 promoter
2.3 沉默GhALMT10基因增強(qiáng)棉花的抗旱性
棉花幼苗被侵染后約15d,陽(yáng)性對(duì)照(TRV::GhCLA1)棉株呈現(xiàn)典型的GhCLA1基因沉默所致的葉片白化表型(圖4A),說(shuō)明VIGS體系能夠正常工作。qRT-PCR結(jié)果表明,試驗(yàn)組(TRV::GhALMT10)中GhALMT10基因的表達(dá)量顯著低于TRV::00對(duì)照組(圖4B),表明試驗(yàn)組中棉株的GhALMT10基因被有效沉默。
經(jīng)過(guò)10d自然干旱脅迫處理,試驗(yàn)組TRV::
GhALMT10與對(duì)照組TRV::00的葉片都出現(xiàn)一定程度的萎蔫現(xiàn)象,但與對(duì)照組相比,試驗(yàn)組葉片的干枯萎癥狀較輕。復(fù)水后5d,TRV::00僅有少部分植株存活,存活率為 10.99% ,TRV::GhALMT10多數(shù)棉株可正常生長(zhǎng),存活率為59.72% (圖 4C~D )。綜上,沉默GhALMT10基因使棉株具有更強(qiáng)的抗旱能力。
圖3GhALMT10在不同棉花組織(A)及干旱脅迫下(B)的表達(dá)
Fig.3Expression of GhALMT10 in different cotton tissues (A)and under drought stress (B)
離體葉片失水率檢測(cè)結(jié)果顯示,TRV::GhALMT10在 3~8h 的失水率顯著低于TRV::00(圖4E),表明GhALMT10基因沉默棉株具有較強(qiáng)的保水能力。在干旱處理前,TRV::00和TRV::GhALMT10的葉片SPAD值基本一致,無(wú)顯著差異;干旱處理8d后,TRV:GhALMT10棉株葉片的SPAD值顯著高于TRV::00(圖4F)。干旱處理前,TRV:0O和TRV::GhALMT1O的葉片MDA含量無(wú)顯著差異;干旱處理8d后,二者的MDA含量均明顯升高,TRV::00的MDA含量顯著高于TRV::GhALMT10(圖4G)。綜合上述研究結(jié)果,沉默GhALMT10基因降低了離體葉片失水率,在干旱脅迫下提高了葉片SPAD值并且降低了葉片MDA含量,增強(qiáng)了棉株的抗旱能力。
3討論
ALMT是在植物耐A1研究中首先被發(fā)現(xiàn)的1類陰離子轉(zhuǎn)運(yùn)蛋白。研究者最早通過(guò)差減雜交法從耐A1小麥品系ET8根尖中鑒定出ALMT家族成員TaALMT1[I3]。越來(lái)越多的研究表明,ALMT家族是普遍存在于植物細(xì)胞中且植物特有的1類通道蛋白,在植物多種生理過(guò)程中發(fā)揮重要作用[28]。
前人在擬南芥中鑒定出14個(gè)ALMT基因家族成員[4。在大豆中鑒定出34個(gè)ALMT基因家族成員,其中在進(jìn)化樹(shù)的Ic亞支中的GmALMT僅在N端有1個(gè)疏水區(qū)域,包含6個(gè)跨膜結(jié)構(gòu)域2。在甘蔗中鑒定出11個(gè)ALMT基因家族成員,它們至少含有1個(gè)ALMT(PF11744)結(jié)構(gòu)域[30]。在中國(guó)白梨中鑒定出27個(gè)ALMT基因家族成員,均包含ALMT結(jié)構(gòu)域和FUSC結(jié)構(gòu)域[3]。在蘋(píng)果中鑒定出25個(gè)ALMT基因家族成員,其中多數(shù)基因在蘋(píng)果的不同組織部位均有表達(dá)[32]。本研究的預(yù)測(cè)結(jié)果顯示,GhASMT10蛋白含有6個(gè)跨膜結(jié)構(gòu)域,并且含有ALMT和FUSC結(jié)構(gòu)域;qRT-PCR結(jié)果表明,GhASMT10在棉花的根、莖、葉中都有表達(dá)。
ΔXu 等[3]通過(guò)RNA干擾(RNAinterference,RNAi)技術(shù)降低大麥HvALMT1的表達(dá)量,在光照強(qiáng)度較弱的條件下,RNAi植株的氣孔導(dǎo)度顯著高于對(duì)照,并且離體葉片失水更快。Eisenach等研究發(fā)現(xiàn)Atalmt4突變體在ABA作用下氣孔關(guān)閉受損,且該基因可能通過(guò)影響離子通道和細(xì)胞膨壓等參與氣孔的開(kāi)閉運(yùn)動(dòng)。敲除SIALMT15基因?qū)е路眩⊿olanumlycopersicumL.)葉片上的氣孔數(shù)量明顯減少,離體葉片的失水率明顯降低,抗旱性明顯增強(qiáng)[34]。本研究通過(guò)VIGS技術(shù)降低GhALMT10的表達(dá)量,發(fā)現(xiàn)GhALMT10基因沉默棉株的抗旱性顯著強(qiáng)于對(duì)照棉株,基因沉默棉株的離體葉片失水率、干旱處理下的葉片MDA含量顯著低于對(duì)照棉株,干旱脅迫下GhALMT10沉默棉株的存活率和葉片葉綠素含量顯著高于對(duì)照棉株。根據(jù)前人研究推測(cè),GhALMT10可能通過(guò)調(diào)節(jié)氣孔開(kāi)閉負(fù)調(diào)控棉花的抗旱性,未來(lái)可利用基因編輯和轉(zhuǎn)基因過(guò)表達(dá)等技術(shù)進(jìn)一步驗(yàn)證該基因在干旱脅迫下的功能并解析其作用機(jī)制。
A:GhCLA1沉默棉株表型,標(biāo)尺為 1cm B:qRT-PCR檢測(cè)GhALMT1O的沉默效率。C:對(duì)照組TRV:00和試驗(yàn)組TRV:GhALMT10植株的存活率。D:GhALMT10沉默棉株在干旱脅迫下的表型,TO為干旱處理前,T1為干旱處理 10d T2為復(fù)水后 5d E:離體葉片失水率。F:葉片葉綠素含量。G:葉片丙二醛含量。*、**分別表示在0.05、0.01水平差異顯著。
圖4GhALMT10沉默棉株的抗旱性
A: phenotype of GhCLA1 silencing coton plants.Bar sacle,1 cm.B:silencing efficiency of GhALMT10 detected by q RT-PCR.C:survival rateofTRV:00andTRV::GhALMT10plants.D:phenotypesof GhALMT10-silenced cotonplants under droughtstre.Teforedought;thafroughtreatmnt;,thafterrehratio.Eaterlosteofate leaves.F: chlorophyll content of leaves. G: MDA content of leaves. * and ** indicate significant differences at the probability levels of 0.05 and 0.01,respectively.
Fig.4 The drought tolerance of GhALMT10-silenced cotton plant
4結(jié)論
GhALMT10在棉花根中的表達(dá)量較高,在干旱脅迫處理6h和 9h 的表達(dá)量顯著高于清水處理。在自然干旱脅迫處理后,與TRV:0O對(duì)照棉株相比,GhALMT10沉默棉株的存活率和葉片葉綠素含量顯著升高,離體葉片失水率和丙二醛含量顯著下降,說(shuō)明GhALMT1O基因在棉花抗旱過(guò)程中起負(fù)調(diào)控作用。
參考文獻(xiàn):
[1]胡文峰,陳玲玲,姚俊強(qiáng),等.氣候變化背景下新疆氣溫和降水 時(shí)空演變特征分析[J/OL].阜陽(yáng)師范學(xué)院學(xué)報(bào)(自然科學(xué)版), 2020,37(3): 90-95[2025-02-01]. https:/doi.0rg/10.14096/j.cnki. cn34-1069/n/1004-4329(2020)03-0090-06. Hu Wenfeng,Chen Lingling,Yao Junqiang,etal.Analysis of the temporal and spatial evolution of temperature and precipitation in Xinjiang under the background of climate change[J/OL]. Journal ofFuyangNormal University (Natural Science),2020,37(3): 90-95[2025-02-01]. https://doi.org/10.14096/j.cnki.cn34-1069/n/ 1004-4329(2020)03-0090-06.
[2]孫繪健,羅靜,杜珊珊,等.花鈴期不同干旱水平對(duì)南疆棉花品 種生育進(jìn)程、產(chǎn)量及纖維品質(zhì)的影響[J/OL].中國(guó)棉花,2024, 51(12): 20-27[2025-02-01]. https://doi.org/10.11963/cc20240065. Sun Huijian,LuoJing,Du Shanshan,etal.Theeffectsofdifferent drought levels during the flowering and bol-setting stage on the growth process,yield,and fiberquality of cottonvarieties in southern Xinjiang[J/OL].China Cotton,2024,51(12):20-27 [2025-02-01]. https://doi.org/10.11963/cc20240065.
[3]Gao M,SniderLJ,Bai H,etal.Drought effects oncotton (Gossypium hirsutum L.) fibre qualityand fibre sucrose metabolism during the flowering and boll-formation period [J/OL]. Journal of Agronomy and Crop Science, 2020,206(3): 309-321[2025-02-01].https://doi.org/10.1111/jac.12389.
[4] PinerosMA,Cangado GMA,MaronLG,et al.Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMTl-an anion-selective transporter[J/OL].The Plant Journal,2008,53(2):352-367[2025-02- 01]. https://doi.0rg/10.1111/j.1365-313X.2007.03344.x.
[5] Dreyer I,Gomez-PorrasJL,Riano-PachónDM, etal.Molecular evolution of slow and quick anion channels (SLACs and QUACs/ ALMTs)[J/OL].Frontiers inPlant Science,2012,3:263[2025- 02-01].https://doi.org/10.3389/fpls.2012.00263.
[6] Delhaize E,GruberDB,Ryan RP.The roles of organic anion permeases in aluminium resistance and mineral nutrition[J/OL]. FEBS Letters,2007, 581(12): 2255-2262[2025-02-01]. https:// doi.org/10.1016/j.f-ebslet.2007.03.057.
[7]徐睦蕓.水稻OsALMT5和OsALMT9及大麥HvALMT1的 定位及特性研究[D].長(zhǎng)春:吉林大學(xué),2011. Xu Muyun. The characterization and localization of OsALMT5 and OsALMT9 in riceand HvALMT1 in barley[D]. Changchun: Jilin University,2011.
[8] Qin Z Y,Chen SS,F(xiàn)eng J,et al.Identification of aluminumactivatedmalate transporters(ALMT) familygenesin hydrangea andfunctionalcharacterizationofHmALMT5/9/11underaluminumstress[J/OL].PerJ,2022,10: e13620[2025-02-01].https:// doi.org/10.7717/peerj.13620.
[9]MaXW,AnF,WangLF,etal.Genome-wideidentificationof aluminum-activated malate transporter (ALMT) gene family in rubber trees (Hevea brasiliensis) highlights their involvement in aluminum detoxification[J/OL].Forests,2020,11(2):142[2025- 02-01]. https://oi.org/10.3390/f11020142.
[10]Bai Y,DoughertyL,LiMJ,etal. Anatural mutation-led truncation in one ofthe two aluminum-activated malate transporterlike genesat theMalocusisassociated with low fruit acidity in apple[J/OL]. Molecular Genetics and Genomics,2012,28(8): 663-678[2025-02-01]. htps://doi.org/10.1007/s00438-012- 0707-7.
[11] Furuichi T,Sasaki T,Tsuchiya Y,et al.An extracellular hydrophilic carboxy-terminal domain regulates the activity of TaALMT1, the aluminum-activated malate transport protein of wheat[J/OL]. The Plant Journal,2010,64(1): 47-55[2025-02- 01]. https://doi.0rg/10.1111/j.1365-313X.2010.04309.x.
[12] Tian QY, Zhang XX, Sunita R,etal. Ethylene negatively regulates aluminium-induced malate efflux fromwheat roots and tobacco cels transformed with TaALMT1[J/OL]. Journal of Experimental Botany,2014,65(9):2415-2426[2025-02-01]. https://doi.org/10.1093/jxb/eru123.
[13]PereiraFJ,Zhou GF,Emmanuel D,etal.Engineering greater aluminiumresistance in wheat by over-expressing TaALMT1 [J/OL].Annals of Botany,2010,106(1): 205-214[2025-02-01]. https://doi.org/10.1093/aob/mcq058.
[14]KovermannP,MeyerS,HortensteinerS,etal.TheArabidopsis vacuolar malate chanel is a member of the ALMT family [J/OL]. The Plant Journal,2007,52(6):1169-1180[2025-02- 01]. https://doi.0rg/10.1111/j.1365-313X.2007.03367.x.
[15] Kobayashi Y,Hoekenga OA,Itoh H, etal.Characterization of AtALMT1 expression in aluminum-inducible malate release and itsrole for rhizotoxic stress tolerance in Arabidopsis[J/OL]. Plant Physiology,2007,145(3):843-852[2025-02-01].ttps:// doi.org/10.1104/pp.107.102335.
[16]Eisenach C,Baetz U,Huck NV,etal.ABA-induced stomatal closure involves ALMT4,aphosphorylation dependent vacuolar anion channel of Arabidopsis[J/OL].The Plant Cell,2017,29 (10):2552-2569[2025-02-01]. https://doi.org/10.1105/tpc.17. 00452.
[17] Stefan M,Joachim S,Alexis AD,etal.Malate transport by the vacuolar AtALMT6 channel in guard cels is subject to multiple regulation[J/OL].ThePlant Journal,2011,67(2): 247-257[2025- 02-01]. https:doi.org/10.1111/j.1365-313X.2011.04587.x.
[18]DeAngeliA,ZhangJB,MeyerS,etal.AtALMT9 isa malateactivated vacuolar chloride chann-el required for stomatal opening in Arabidopsis[J/OL]. Nature Communications, 2013, 4:1804[2025-02-01]. https://doi.org/10.1038/ncomms2815.
[19] Meyer S,Mumm P, Imes D,et al.AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cels[J/OL]. The Plant Journal,2010,63(6): 1054-1062[2025-02-01]. htps://doi.org/10.1111/j.1365-313X. 2010.04302.x.
[20]劉慧,許文靜,張紅梅,等.大豆鋁激活蘋(píng)果酸轉(zhuǎn)運(yùn)家族基因 GmALMT8的鑒定與功能驗(yàn)證[J/OL].植物遺傳資源學(xué)報(bào), 2024,25(6):1027-1034[2025-02-01]. htps://doi.org/10.13430/ j.cnki.jpgr.20230927001. Liu Hui, Xu Wenjing, Zhang Hongmei, etal.Identification and functional analysis of aluminum-activated malate transporter family gene GmALMT8 in soybean[J/OL]. Journal of Plant Genetic Resources,2024,25(6):1027-1034[2025-02-01].https:// doi.org/10.13430/j.cnki.jpgr.20230927001.
[21]翟佳悅,寧伊,劉麗媛,等.大豆GmALMT33基因在鎘脅迫 應(yīng)答中的功能分析[J/OL].植物遺傳資源學(xué)報(bào),2024,25(6): 1014-1026[2025-02-01]. htps://doi.org/10.13430/j.cnki.jpgr. 20231218001. Zhai Jiayue,Ning Yi,Liu Liyuan,etal.Functional analysis of soybean GmALMT33 gene in response to cadmium stress [J/OL]. Journal ofPlant Genetic Resources,2024,25(6):1014- 1026[2025-02-01].htps://doi.org/10.13430/j.cnki.jpgr.202312 18001.
[22] Luu K,Rajagopalan N,Ching JCH, et al. The malate-activated ALMT12anionchannelinthegrassBrachypodiumdistachyon isco-activated by Ca2/calmodulin[J/OL].The Journal of Biological Chemistry,2019,294(15):6142-6156[2025-02- 01]. https://doi.org/10.1074/jbc.RA118.005301.
[23]LuQ W,ShiY Z,Chen RL,et al. Genome-wide identification, characterization,and expression analysis of aluminum-activated malatetransportergenes(ALMTs) in Gossypium hirsutumL. [J/OL]. Bi0cell,2022,46(5):1347-1356[2025-02-01].https:// doi.org/10.32604/biocell.2022.018254.
[24]尤揚(yáng)子.棉花GhAGL16基因抗旱功能分析及敲除 GhAGL16基因的高效 sgRNA篩選研究[D].烏魯木齊:新疆 農(nóng)業(yè)大學(xué),2023. You Yangzi.Functionalanalysis of GhAGL16 gene for drought resistance in cotton and eficient sgRNA screening study of knockout GhAGL16[D]. Urumqi:XinjiangAgricultural University,2023.
[25] Hu Z Y,LaiJF,DaiPH,et al.Asmall GTP-bindingprotein GhROP3 interacts with GhGGB protein and negatively regulates drought tolerance in cotton (Gossypium hirsutum L.) [J/OL].Plants,2022,11(12): 1580[2025-02-01]. https://doi. org/10.3390/plants11121580.
[26] Livak KJ,Schmittgen TD.Analysis ofrelative gene expression data using real-time quantitative PCR and the method [J/OL].Methods,2001,25(4): 402-408[2025-02-01]. https://
doi.org/10.1006/meth.2001.1262.
[27]WangXY,ChenBZ,MaCK,etal.Systematical characterizationofYUCCA gene familyin five cottonspecies,and potential functions of YUCCA22 gene in drought resistance of cotton [J/OL].Industrial Crops and Products,2021,162:113290[2025- 02-01].https://doi.org/10.1016/j.indcrop.2021.113290.
[28]魏志敏,李亞林,黃鑫,等.植物陰離子通道鋁激活蘋(píng)果酸轉(zhuǎn) 運(yùn)體ALMTs在植物營(yíng)養(yǎng)與生理中的作用[J/OL].植物生理 學(xué)報(bào),2023,59(6):1072-10822025-02-01]. https://doi.g/10. 13592/j.cnki.ppj.300125. Wei Zhimin,Li Yalin,Huang Xin,et al. The role of plant anion channel aluminum-activated malate transporters(ALMTs) in plant nutrition and physiology[J/OL]. Plant Physiology Journal, 2023,59(6):107-10822025-02-01]. https://oi.org/10.13592/ j.cnki.ppj.300125.
[29]PengWT,WuWW,PengJC,etal.Characterizationof the soybean GmALMT family genesand the function of GmALMT5 in response to phosphate starvation[J/OL]. Journal of Integrative Plant Biology,2018,60(3):216-231[2025-02- 01]. htps://doi.org/10.1111/jipb.12604.
[30]RibeiroAP,VineckyF,DuarteKE,etal.Enhancedaluminum tolerance in sugarcane: evaluation of SbMATE overexpression and genome-wide identification of ALMTs in Saccharum spp. [J/OL]. BMC Plant Biology,2021,21(1): 300[2025-02-01]. https://doi.0rg/10.1186/s12870-021-02975-x.
[31] Xu LL,Qiao X, Zhang MY,etal.Genome-wide analysis of aluminum-activated malate transporter family genes in six Rosaceae species,and expression analysis and functional characterization on malate accumulation in Chinese white pear [J/OL].Plant Science,2018,274: 451-465[2025-02-0].tp:/ doi.org/10.1016/j.plantsci.2018.06.022.
[32] Ma B Q, Yuan Y Y, Gao M,et al. Genome-wide identification, molecular evolution,and expression divergence of aluminumactivatedmalate transportersinapples[J/OL].International Journal ofMolecular Sciences,2018,19(9):2807[2025-02-01]. https://doi.org/10.3390/ijms19092807.
[33] Xu MY, Gruber B D,Delhaize E, et al. The barley anion channel, HvALMT1,has multiple roles in guard cell physiology and grain metabolism[J/OL].Physiologia Plantarum,2015,153(1): 183-193[2025-02-01]. https://doi.org/10.1111/ppl.12234.
[34]孫鵬婭.全基因組關(guān)聯(lián)分析挖掘調(diào)控番茄葉片氣孔形成的關(guān) 鍵基因[D].武漢:華中農(nóng)業(yè)大學(xué),2019. Sun Pengya.Exploiting key genes regulating leaf stomata formation by genome-wide association study in tomato[D]. Wuhan: Huazhong Agricultural University,2019.
(責(zé)任編輯:王小璐 責(zé)任校對(duì):王國(guó)鑫)