Abstract:Asakeymemberof theinsulin-likegrowthfactorfamily,nsulin-likegrowthfactor-I(IGF-I)ismainlysythsized intheliverandiswidelydistributedinthehumanbody,anditisivoledintephysiologicalproessssuchscellprolifation, diferentiation,metabolism,andapoptosis.StudieshaveshowtatthelevelofIGF-Iisnegativelycorelatedwiththeseverityof livercirrhosis,andIGF-Imainlyafectstheprogressionoflivercirrhosisbyinibiting liverfibrosis,promotingDNAdamage repair,andregulatinglipid metabolism.MonitoringofIGF-Ilevelisexpected toprovideanevaluationindicatorforimproving the prognosisof patientswith livercirhosis,and stimulatingtheactionpathwayofIGF-Iorregulatingitsexpresionlevelmay becomeanewmethodforthetreatmentoflivercirhosis.Thisarticlereviews theresearchadvancesinIGF-Iinlivercihosis,in ordertoprovide new ideasfor the diagnosisand treatment of liver cirrhosis.
Keywords:Liver Cirrhosis;Hepatic Fibrosis;Insulin-Like Growth Factor I;Prognosis
Research funding:Gansu Province Scienceand Technology Major Project Plan(23JRRA1487
肝硬化是一種由多種慢性肝病發(fā)展而來的嚴(yán)重病理狀態(tài),其特征是肝組織的彌漫性纖維化、假小葉形成及肝細(xì)胞的再生結(jié)節(jié)。肝硬化的發(fā)病機制十分復(fù)雜,涉及多種信號通路之間的串?dāng)_、氧化應(yīng)激、代謝調(diào)節(jié)和免疫反應(yīng)[1]。目前,肝硬化已成為全球重要的公共衛(wèi)生問題[2],病程復(fù)雜且預(yù)后較差,常導(dǎo)致患者死亡[3]。然而,針對肝硬化尚無特效藥物。研究認(rèn)為肝纖維化甚至早期肝硬化是可以逆轉(zhuǎn)的,因此,積極探索其發(fā)病機制、尋求肝硬化的臨床評估和預(yù)后預(yù)測手段對于制訂個體化治療方案及預(yù)測患者生存具有重要意義。近年來,肝硬化病情評估與預(yù)后預(yù)測相關(guān)生物標(biāo)志物的研究與應(yīng)用日益增多,其中,胰島素樣生長因子-I(insulin-likegrowthfactor-I,IGF-I)作為一種重要的胰島素樣生長因子,逐漸引起了研究者的關(guān)注。多項研究表明,IGF-I水平與肝纖維化進(jìn)展呈負(fù)相關(guān),IGF-I水平越低,肝纖維化程度可能越嚴(yán)重[46]。因此,IGF-I表達(dá)水平上調(diào)可能使肝硬化患者獲益。本文對IGF-I在肝硬化發(fā)生發(fā)展中的作用機制、臨床意義及治療潛力等方面進(jìn)行綜述,旨在為肝硬化的診治提供新思路。
1IGF-I概述
IGF-I是一種由70個氨基酸組成的單鏈多肽,其分子結(jié)構(gòu)與胰島素相似,約 48% 的氨基酸序列與胰島素相同,屬于胰島素樣生長因子家族。IGF-I約 90% 由肝臟細(xì)胞合成和分泌[7-8],在人體內(nèi)廣泛分布,參與細(xì)胞增殖、分化、代謝及抑制細(xì)胞調(diào)亡等多種生理過程[8-11]其中,生長素釋放肽-生長激素-胰島素樣生長因子-I軸(GHRH-GH-IGF-I軸)在調(diào)節(jié)肝臟活動中扮演著關(guān)鍵角色,主要通過復(fù)雜的信號通路影響肝臟的代謝、生長、免疫和纖維化等關(guān)鍵生理病理過程。作為GH-IGF-I軸的上游調(diào)節(jié)因子,GHRH在中樞神經(jīng)系統(tǒng)與外周靶器官中均有廣泛表達(dá),通過激活生長激素促分泌素受體1a,精細(xì)調(diào)控GH與IGF-I的分泌與功能[12]。在GH的刺激下,肝臟合成并釋放IGF-I,后者通過其受體(IGF-IR)在循環(huán)系統(tǒng)中以IGF/IGFBP-3復(fù)合體的形式循環(huán),積極參與肝臟代謝的調(diào)節(jié),促進(jìn)能量代謝的高效進(jìn)行[13]。IGF-I的表達(dá)和活性受到GHRH/GH信號通路的調(diào)節(jié)[14],同時,IGF-I可以反向抑制GH分泌,在平衡GH和IGF-I分泌中發(fā)揮重要作用[15]。此外,GH-IGF-I軸可調(diào)控肝臟脂質(zhì)合成的增加,從而維持脂質(zhì)代謝的穩(wěn)態(tài)[16-17]。
2IGF-I在肝纖維化中的作用機制
在肝組織中,IGF-I及其受體IGF-IR對于維系肝臟正常生理功能具有不可或缺的作用。IGF-I/IGF-IR信號傳導(dǎo)體系通過激活下游信號通路(如PI3K/AKT和MAPK/ERK),深刻影響著肝細(xì)胞生長(刺激DNA合成和細(xì)胞增殖)、代謝活動(調(diào)節(jié)糖原合成與分解、脂肪酸合成及膽固醇代謝)及損傷后修復(fù)(促進(jìn)肝細(xì)胞再生、抑制凋亡并加速損傷恢復(fù))等多個方面,是維持肝臟穩(wěn)態(tài)和功能的關(guān)鍵調(diào)節(jié)因子[18-19]。IGF-I對肝纖維化過程具有顯著抑制效應(yīng),其機制涵蓋以下多個方面(圖1)。
2.1IGF-I/IGF-IR在DNA損傷修復(fù)中的促進(jìn)作用據(jù)報道,DNA損傷激活的非編碼RNA(noncodingRNAactivatedbyDNAdamage,NORAD)進(jìn)一步調(diào)控肝纖維化進(jìn)程,并強調(diào)DNA損傷在肝纖維化中的核心作用[20]從肝纖維化早期到晚期,細(xì)胞周期與DNA損傷相關(guān)基因表達(dá)發(fā)生顯著變化,提示DNA修復(fù)機制在纖維化不同階段具有不同作用[21]。諸多研究發(fā)現(xiàn),肝細(xì)胞內(nèi)DNA氧化損傷是肝纖維化過程中的關(guān)鍵事件,促進(jìn)DNA修復(fù)成為減緩肝纖維化的潛在策略[22-23]。研究表明,IGF-I通過PI3K/AKT及p38/MAPK通路促進(jìn)DNA修復(fù),同時與p53通路交互作用,共同調(diào)控細(xì)胞周期與肝纖維化過
程[24-27]??梢姡珼NA損傷修復(fù)在肝纖維化進(jìn)程中扮演關(guān)鍵角色,而IGF-I/IGF-IR系統(tǒng)通過多途徑調(diào)控DNA修復(fù),進(jìn)而影響肝纖維化的發(fā)生與發(fā)展。
2.2IGF-I/IGF-IR通過介導(dǎo)細(xì)胞衰老參與肝纖維化研究表明,IGF-I可通過延長作用時間,抑制核內(nèi)p53與早老素的結(jié)合,有效改善肝臟的脂肪變性和纖維化狀態(tài),進(jìn)而緩解氧化應(yīng)激誘發(fā)的肝細(xì)胞早衰[28]。值得注意的是,p53的表達(dá)上調(diào)與肝纖維化密切相關(guān),而IGF-I則具有抑制p53核內(nèi)轉(zhuǎn)位的能力,并在其表達(dá)增加時緩解肝細(xì)胞的衰老過程[29]
2.3IGF-I/IGF-IR在氧化應(yīng)激介導(dǎo)的肝纖維化中的多重調(diào)節(jié)作用眾多研究指出,氧化應(yīng)激在肝纖維化發(fā)病機制中起關(guān)鍵作用。該應(yīng)激狀態(tài)源自活性氧(ROS)的累積,無論是ROS的過量生成還是抗氧化劑的缺乏,均能誘發(fā)氧化應(yīng)激及損傷。ROS來源多種多樣,包括NADPH氧化酶(NADPHoxidase,NOX)家族酶、一氧化氮合酶、黃嘌呤氧化酶和細(xì)胞色素P450等多種酶類。值得注意的是,在肝組織中,尤其是在HSC內(nèi),NOX的表達(dá)水平顯著上調(diào),這直接導(dǎo)致ROS的大量產(chǎn)生,并在HSC中觸發(fā)多種促纖維化反應(yīng)[30-34]
在 CCl4 誘導(dǎo)的肝纖維化模型中,肝細(xì)胞經(jīng)歷加劇的氧化應(yīng)激與早衰,同時血漿中IGF-I濃度顯著降低。然而,IGF-I的過表達(dá)可阻斷p53-早老素信號通路,顯著緩解肝細(xì)胞的氧化應(yīng)激與早衰狀態(tài),進(jìn)而改善肝脂肪變性和肝纖維化[35-37]。同時,IGF-I通過與其受體IGF-IR結(jié)合,能夠觸發(fā)PI3K/AKT信號通路的活化,這一過程對于保護(hù)細(xì)胞免受氧化應(yīng)激損害、線粒體功能紊亂以及細(xì)胞凋亡具有關(guān)鍵作用[38-39]。有研究指出,IGF-I通過MAPK/ERK1/2而非p38MAPK通路,保護(hù)細(xì)胞免受氧化損傷,進(jìn)而有助于肝纖維化的改善[40]。部分研究還發(fā)現(xiàn)IGF-I通過解偶聯(lián)蛋白3UCP3減少線粒體膜電位,從而降低ROS水平,可能在肝纖維化中發(fā)揮保護(hù)作用[41-43]。此外,在經(jīng) H2O2 處理的誘導(dǎo)多能干細(xì)胞中,作為氧化應(yīng)激調(diào)控因子的microRNA-1的表達(dá)呈現(xiàn)上調(diào)趨勢,而IGF-I則能夠下調(diào)其表達(dá),進(jìn)而緩解氧化應(yīng)激所引發(fā)的損傷[44-45]。由此可見,IGF-I通過作用于多種信號通路,在細(xì)胞與組織氧化應(yīng)激的調(diào)控中發(fā)揮著重要作用,這進(jìn)一步彰顯了其在肝纖維化治療中的潛在價值。值得注意的是,IGF-1在特定條件下亦可促進(jìn)氧化應(yīng)激,如在脂肪細(xì)胞中刺激ROS生成,或降低肝細(xì)胞抗氧化酶活性[46]。因此,IGF-I在肝纖維化中的作用具有雙重性,需根據(jù)具體條件進(jìn)行評估與調(diào)控。
2.4IGF-I對脂質(zhì)代謝的調(diào)控作用IGF-I在脂質(zhì)代謝中同樣發(fā)揮著重要作用。在IGF-I缺陷小鼠中,脂質(zhì)代謝相關(guān)酶的表達(dá)水平顯著下降,導(dǎo)致血脂異常,表明IGF-I與脂質(zhì)代謝之間存在緊密聯(lián)系[47]。在間充質(zhì)干細(xì)胞中,IGF-I通過AKT/mTOR/PPAR- ?γ 通路促進(jìn)脂肪生成分化,而在肌腱干細(xì)胞中,IGF-I激活 p -CREB,與BMP2激活的pSmad協(xié)同作用,上調(diào)PPAR- ?γ 的表達(dá),進(jìn)而增強肌腱干細(xì)胞的脂肪生成分化能力。因此,IGF-1可能與脂質(zhì)代謝相關(guān),通過PPAR抑制HSC激活,這可能是IGF-I通過脂質(zhì)代謝介導(dǎo)肝纖維化的潛在途徑[48-49]IGF-I在脂質(zhì)代謝中的作用具有雙重性。除了已知的抗脂肪分解作用外,IGF-I還能在饑餓條件下激活脂肪組織中的脂肪酸β氧化,促進(jìn)能量消耗[15.50]。這一發(fā)現(xiàn)更新了以往對IGF-I功能的認(rèn)知,并提示IGF-I在脂質(zhì)代謝調(diào)控中的復(fù)雜性。此外,GH作為IGF-I的重要上游調(diào)控因子,在脂質(zhì)代謝和肝纖維化中也發(fā)揮著重要作用。GH通過刺激IGF-I的合成與分泌,間接調(diào)控脂質(zhì)代謝和HSC活化。
綜上所述,IGF-I通過復(fù)雜的信號通路和脂質(zhì)代謝途徑,在肝纖維化進(jìn)程中發(fā)揮著重要調(diào)控作用。深入理解IGF-I與脂質(zhì)代謝、HSC活化之間的相互作用機制,對于開發(fā)肝纖維化治療新策略具有重要意義。
2.5IGF-I在多元代謝途徑中的調(diào)控角色I(xiàn)GF-I廣泛參與葡萄糖、谷氨酰胺等代謝途徑的調(diào)控,能夠促進(jìn)葡萄糖被細(xì)胞攝取并加以利用,這對于機體能量平衡的維持至關(guān)重要。研究顯示,IGF-I還具備調(diào)節(jié)谷氨酰胺代謝相關(guān)酶(例如谷氨酸脫氫酶)活性的功能,進(jìn)而對谷氨酰胺的代謝過程產(chǎn)生影響。通過一系列對葡萄糖和谷氨酰胺代謝途徑的調(diào)控,IGF-1確保了細(xì)胞獲得必要的能量與營養(yǎng)供給,進(jìn)而促進(jìn)細(xì)胞的生長與增殖。值得注意的是,這些代謝活動與肝纖維化的病理演變之間存在著密切的聯(lián)系。因此,IGF-I通過精確調(diào)控這些代謝通路,間接地影響肝纖維化的發(fā)展進(jìn)程[51-52]
3IGF-I在肝硬化病程與預(yù)后評估中的作用
3.1IGF-I水平與肝功能的關(guān)系研究顯示,肝硬化患者血清IGF-I水平顯著低于健康人群,且隨肝功能Child-Pugh分級的增高而進(jìn)行性下降[53]。此外,動物模型實驗表明,IGF-I治療能夠顯著降低由 CCl4 誘導(dǎo)的急性肝損傷小鼠的血清ALT水平,這表明IGF-I能夠改善肝細(xì)胞損傷和肝功能[54],體現(xiàn)了IGF-I對肝功能的保護(hù)作用。
3.2IGF-I在肝硬化預(yù)后預(yù)測中的價值一項前瞻性研究表明,作為GH的主要效應(yīng)分子,IGF-I水平的變化可反映肝功能減退以及肝纖維化/肝硬化的發(fā)展進(jìn)程,這可能預(yù)示著不良的臨床結(jié)局[55]。此外,進(jìn)一步隊列研究結(jié)果支持IGF-I是非酒精性脂肪性肝病進(jìn)展中的關(guān)鍵生物標(biāo)志物,其水平波動與肝纖維化嚴(yán)重程度密切相關(guān),有望成為預(yù)測患者向肝硬化轉(zhuǎn)變的重要評估指標(biāo)[56]。上述研究表明,IGF-I水平在肝硬化病程中至關(guān)重要,有助于估計肝功能儲備或病理狀況以及預(yù)測患者預(yù)后。一項針對148例肝硬化患者的回顧性研究,根據(jù)基線血清IGF-I水平將患者分為低、中、高三組,多變量分析表明,低血清IGF-I水平是預(yù)測病死率[所有患者:風(fēng)險比 0.967,P=0.004 ;代償期患者: HR=0.927,P=0.002. 和失代償進(jìn)展 (HR=0.939,Plt;0.001) 的獨立因素[57]。研究結(jié)果強調(diào)了IGF-I在評估肝硬化患者肝功能儲備及預(yù)測預(yù)后中的重要性,因此,IGF-I可作為預(yù)測代償期肝硬化患者失代償相關(guān)事件的一個有用指標(biāo),監(jiān)測血清IGF-I水平有助于識別高?;颊?,以便早期干預(yù),改善預(yù)后。另有回顧性研究分析IGF-CTP評分系統(tǒng)對失代償性肝硬化患者1年病死率的預(yù)測能力,并與傳統(tǒng)的CTP評分和終末期肝病模型(MELD)評分進(jìn)行比較,發(fā)現(xiàn)IGF-CTP評分的受試者操作特征曲線下面積在預(yù)測1年病死率方面顯著高于CTP和MELD評分[58]。提示,IGF-CTP評分系統(tǒng)比傳統(tǒng)的CTP和MELD評分能更準(zhǔn)確地預(yù)測失代償期肝硬化患者的1年病死率,為臨床評估失代償期肝硬化患者的肝功能儲備和預(yù)測病死率提供了新的、更準(zhǔn)確的工具。綜上,IGF-I水平對肝硬化患者預(yù)后具有較高的預(yù)測效能,低水平IGF-I可能預(yù)示著患者預(yù)后不良,如更高的并發(fā)癥發(fā)生率、住院率和病死率。因此,IGF-I可作為肝硬化患者預(yù)后評估的一個重要參考指標(biāo)。然而,上述研究均為小規(guī)模的回顧性研究,可能存在潛在偏倚。因此,在未來需要前瞻性的大規(guī)模研究來進(jìn)一步證實。
4IGF-I在肝硬化治療中的潛力
基于動物實驗與臨床數(shù)據(jù),IGF系統(tǒng)在肝臟疾病的發(fā)生和發(fā)展中起著重要作用,特別是IGF-I在維持肝臟穩(wěn)態(tài)、調(diào)控肝細(xì)胞增殖與凋亡平衡,以及干預(yù)肝纖維化至肝硬化轉(zhuǎn)變中顯示出不可替代的重要性[13,59-60]。在肝硬化實驗?zāi)P椭?,IGF-I治療顯著可改善肝功能指標(biāo),如AST、ALT水平,并有效緩解腸道屏障功能受損[61]。同時,一項針對非酒精性脂肪性肝病/非酒精性脂肪性肝炎患者的研究發(fā)現(xiàn),調(diào)控IGF-I至生理水平有望改善患者的肝臟狀況,降低肝纖維化和肝硬化的風(fēng)險[62]
上述研究均表明IGF-I對肝臟具有明確的保護(hù)作用,具有減輕肝細(xì)胞損傷、恢復(fù)肝功能的作用,提示IGF-I在抗纖維化與抗肝硬化方面的潛力,可能作為治療肝硬化的新靶點。
5展望
隨著IGF-I在肝硬化領(lǐng)域研究的不斷深入,未來研究應(yīng)聚焦于多維度、多層次地分析其在疾病進(jìn)展各階段的詳細(xì)作用機制,并加速其臨床轉(zhuǎn)化進(jìn)程。IGF-I聯(lián)合其他生物標(biāo)志物的預(yù)測效能、GH-IGF-I軸在肝臟疾病中的治療潛力、IGF-I的具體作用機制及其治療反應(yīng)性和安全性均有待更高質(zhì)量的臨床試驗和多中心研究,可能為肝臟疾病的病程進(jìn)展、治療及預(yù)后評估提供新方向。
利益沖突聲明:本文不存在任何利益沖突。
作者貢獻(xiàn)聲明:汪彥平負(fù)責(zé)選題,文獻(xiàn)檢索與篩選,初稿撰寫;張惠芳、王慧敏、馬小彤參與文獻(xiàn)檢索與篩選;鄭亞、陳兆峰負(fù)責(zé)擬定寫作思路,指導(dǎo)撰寫文章并最后定稿。
參考文獻(xiàn):
[1]PUCHEJE,SAIMANY,F(xiàn)RIEDMANSL.Hepatic stellatecellsand liver fibrosis[J].ComprPhysiol,2013,3(4):1473-1492.DOl:10.1002/cphy. c120035.
[2]WANGYK,WANGMQ,LIUCR,etal.Globalburdenof livercirrhosis 1990-2019and20yearsforecast:Results fromtheglobalburdenof disease study2019[J].AnnMed,2024,56(1):2328521.DOl:10. 1080/07853890.2024.2328521.
[3]ASRANI SK,DEVARBHAVI H,EATONJ,etal. Burden of liver diseases intheworld[J].JHepatol,2019,70(1):151-171.DOl:10.1016/j.jhep. 2018.09.014.
[4]NIJENHUIS-NOORT EC,BERK KA,NEGGERS SJCMM,et al.The fascinatinginterplaybetweengrowth hormone,insulin-like growthfactor-1,and insulin[J].Endocrinol Metab(Seoul),2024,39(1):83-89. DOI:10.3803/EnM.2024.101.
[5]VALENZUELA-VALLEJOL,CHRYSAFIP,KOUVARIM,etal.Circulatinghormones inbiopsy-provensteatotic liverdiseaseandsteatohepatitis:Amulticenterobservationalstudy[J].Metabolism,2023, 148:155694.DOl:10.1016/j.metabol.2023.155694.
[6]DICHTELLE,COREY KE,HAINESMS,etal.The GH/IGF-1axis is associatedwith intrahepatic lipid content and hepatocellulardamageinoverweight/obesity[J].JClinEndocrinol Metab,2022,107 (9):e3624-e3632.DOl:10.1210/clinem/dgac405.
[7]BAILES J,SOLOVIEVM. Insulin-like growth factor-1(IGF-1)and its monitoring in medical diagnostic and in sports[J].Biomolecules, 2021,11(2):217.D0l:10.3390/biom11020217.
[8]JENSEN-CODY SO,POTTHOFF MJ.Hepatokines and metabolism: Decipheringcommunicationfromthe liver[J].MolMetab,2021,44: 101138.DOl:10.1016/j.molmet.2020.101138.
[Y」LEKUIIH D,HULLY JMP, FUKBES BE. INSUIIN-IIKe grOWtn TaCtors: Ligands,binding proteins,and receptors[J]:Mol Metab,2021,52: 101245. DOl: 10.1016/j.molmet.2021.101245.
[10]YAN KY, DENG HL,ZHANG YF,et al.AssOciation between insulin like growth factor-1 and severe hand,foot and mouth disease[J/ CD].Chin J Exp Clin Infect Dis(Electronic Edition),2023,17(3): 151-157. 閆凱悅,鄧慧玲,張玉鳳,等.胰島素樣生長因子-1與手足口病重癥化的 相關(guān)性研究[J/CD].中華實驗和臨床感染病雜志(電子版),2023,17 (3): 151-157.
[11]HAN B,SHAOY,WANG Y. Efect of insulin-like growth factor-1 on vascular remodeling and apoptosis of cardiomyocytes in rats with coronary heart disease[J].Trauma Crit Care Med,2024,12(2):121- 125. DOI: 10.16048/j.issn.2095-5561.2024.02.13. 韓冰,邵洋,汪瑩.胰島素樣生長因子-1對冠心病模型大鼠血管重塑及 心肌細(xì)胞凋亡影響[J].創(chuàng)傷與急危重病醫(yī)學(xué),2024,12(2):121-125. DOl: 10.16048/j.issn.2095-5561.2024.02.13.
[12]YANAGI S,SATO T,KANGAWA K,et al.The homeostatic force of ghrelin[J].CellMetab,2018,27(4):786-804.DOl:10.1016/j.cmet. 2018.02.008.
[13]ADAMEK A,KASPRZAK A. Insulin-like growth factor(IGF)system in liverdiseases[J].IntJMol Sci,2018,19(5):1308.DOl:10.3390/ ijms19051308.
[14] van der VELDEN LM, MAAS P,van AMERSFOORT M, et al. Small molecules to regulate the GH/IGF1axis by inhibiting the growth hormone receptor synthesis[J].Front Endocrinol (Lausanne),2022,13: 926210.DOl:10.3389/fendo.2022.926210.
[15]FANGF,GOLDSTEIN JL,SHI XM,et al.Unexpected role for IGF-1 in starvation: Maintenance of blood glucose[J].Proc Natl Acad Sci USA,2022, 119(32): e2208855119. DOl: 10.1073/pnas.2208855119.
[16]SHAN XY,YEO GSH. Central leptinand ghrelin signaling:Comparingand contrasting their mechanisms of action in the brain[J].Rev Endocr Metab Disord,2011,12(3):197-209.DOl:10.1007/s11154- 011-9171-7.
[17]SHIMIZUK,NISHIMUTAS,F(xiàn)UKUMURAY,etal.Liver-specificoverexpression of lipoprotein lipase improves glucose metabolism in high-fat diet-fed mice[J]. PLoS One,2022,17(9): e0274297. DOI: 10.1371/journal.pone.0274297.
[18]KREIN PM,WINSTON BW.Roles for insulin-like growth factor l and transforming growth factor-beta in fibrotic lung disease[J].Chest, 2002,122(6 Suppl): 289S-293S. DOl: 10.1378/chest.122.6_suppl.2 89s.
[19]LIUYL,GUOW,PUZY,etal.Developmentalchanges of Insulin-like growth factors in the liver and muscle of chick embryos[J].Poult Sci,2016,95(6):1396-1402.DOl: 10.3382/ps/pew043.
[20]ZOU L, SHI CF,WANG DW,et al. Long non-coding RNA-non-coding RNA activated by DNA damage inhibition suppresses hepatic stellate cell activation via microRNA-495-3p/sphingosine 1-phosphate receptor3 axis[J].Bioengineered,2022,13(3):6150-6162.DOl: 10.1080/21655979.2022.2037841.
[21]SARFRAZ S,HAMID S,ALI S,etal.Modulationsof cell cycle checkpoints during HCV associated disease[J].BMC Infect Dis,2009,9: 125. DOI: 10.1186/1471-2334-9-125.
[22]BARTSCH H,NAIR J.Oxidative stress and lipid peroxidationderived DNA-lesions in inflammation driven carcinogenesis[J]. Cancer Detect Prev,2004,28(6): 385-391.DOl: 10.1016/j.cdp.2004.07. 004.
[23]ICHIKAWAK,OKABAYASHI T,SHIMA YS,et al.Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a ratmodel of liver injury inducedbycarbon tetrachloride[J].Mol Biol Rep,2012,39(12): 10803-10810. DOl: 10.1007/s11033-012-1974-4.
[24]BEZERRA MES,BARBERINO RS,MENEZES VG, et al. Insulin-like growth factor-1(IGF-1)promotes primordial folicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/ protein Kinase B(PI3K/AKl) sIgnaing patnwayLJ」.Heprod Fertil Dev,2018,30(11): 1503-1513. DOI: 10.1071/RD17332.
[25]WESTON VJ,WEI WB,STANKOVIC T,et al. Synergistic action of dual IGF1/R and MEK inhibition sensitizes childhood acute lymphoblastic leukemia(ALL)cels to cytotoxic agents and involves downregulation of STAT6 and PDAP1[J]. Exp Hematol, 2018,63:52-63. e5.DOl: 10.1016/j.exphem.2018.04.002.
[26]WANG J,LI JM,CAO NQ,et al.Resveratrol,anactivator of SIRT1, induces protective autophagy in non-small-cell lung cancer via inhibiting Akt/mTOR and activating p38-MAPK[J].Onco Targets Ther, 2018,11: 7777-7786.DOI: 10.2147/OTT.S159095.
[27]XIONG L,KOUF,YANG Y,et al. A novel role for IGF-1R in p53-mediated apoptosis through translational modulation of thep53-Mdm2 feedback loop[J].JCell Biol,2007,178(6):995-1007.DOl:10.1083/ jcb.200703044.
[28]LUOXY,JIANG XK,LIJ,et al.Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53-progerin interaction[J].Cell Death Dis, 2019,10(6): 451. DOl: 10.1038/s41419-019-1670-6.
[29]LI J.IGF-1 alleviates hepatocyte premature senescence and liver fibrosis by regulating nuclear p53/progerin pathway[D].Henan: Zhengzhou University,2019. 李俊.IGF-1通過調(diào)節(jié)核內(nèi)p53/progerin通路緩解肝細(xì)胞早衰和肝纖維 化[D].河南:鄭州大學(xué),2019.
[30]PAIK YH, IWAlSAKOK,SEKI E,etal.The nicotinamide adenine dinucleotide phosphate oxidase(NOX) homologues NOX1 and NOX2/ gp91(phox)mediate hepatic fibrosis inmice[J].Hepatology,2011, 53(5):1730-1741.DOl:10.1002/hep.24281.
[31]JIANG JX,VENUGOPAL S,SERIZAWA N,et al.Reduced nicotinamide adenine dinucleotide phosphate oxidase 2 plays a key role in stellatecellactivation and liver fibrogenesis in vivo[J].Gastroenterology,2010,139(4): 1375-1384. DOl: 10.1053/j.gastro.2010.05.074.
[32]JIANG JX,CHEN XL,SERIZAWA N,et al. Liver fibrosis and hepatocyte apoptosis are attenuated by GKT137831,a novel NOX4/NOX1 inhibitor in vivo[J].Free Radic Biol Med,2012,53(2):289-296. DOI:10.1016/j.freeradbiomed.2012.05.007.
[33]CUI WH, MATSUNO K,IWATA K,et al. NOX1/nicotinamide adenine dinucleotide phosphate,reduced form(NADPH)oxidase promotes proliferation of stellate celsand aggravates liver fibrosis induced by bile duct ligation[J]. Hepatology,2011,54(3):949-958.DOl: 10. 1002/hep.24465.
[34]PAIK YH, KIM J,AOYAMA T,et al. Role of NADPH oxidases in liver fibrosis[J].Antioxid Redox Signal,2014,20(17):2854-2872. DOI: 10.1089/ars.2013.5619.
[35]TOUSSAINT O,MEDRANO EE,VON ZGLINICKI T.Celular and molecularmechanismsof stress-induced premature senescence(SIPS) of human diploid fibroblasts and melanocytes[J].Exp Gerontol, 2000,35(8):927-945.DOl:10.1016/s0531-5565(00)00180-7.
[36]REDDY S,COMAl L. Lamin A,farnesylation and aging[J].Exp Cell Res,2012,318(1):1-7.DOl:10.1016/j.yexcr.2011.08.009.
[37]LIU WT,LIJ,CAl Y,et al. Hepatic IGF-1R overexpression combined with the activation of GSK-3β and FOXO3a in the development of liver cirrhosis[J].Life Sci,2016,147:97-102.DOl: 10.1016/j.Ifs.2016. 01.037.
[38]FRASCAF,PANDINI G,SCIACCAL,etal.The roleof insulin receptors and IGF-l receptors in cancer and other diseases[J]. Arch Physiol Biochem,2008,114(1):23-37.DOl: 10.1080/13813450801969715.
[39]HAO CN,GENG YJ,LIF,etal. Insulin-like growth factor-1receptor activation prevents hydrogen peroxide-induced oxidative stress,mitochondrial dysfunction and apoptosis[J].Apoptosis,2011,16(11): 1118-1127. DOl: 10.1007/s10495-011-0634-9.
[40]YANG SY,HOY M,F(xiàn)ULLER B,et al. Pretreatment with insulin-like growth factor l protects skeletalmusclecellsagainst oxidative damage via Pl3K/Akt and ERK1/2 MAPK pathways[J].Lab Invest,2010, 90(3):391-401.DOl:10.1038/labinvest.2009.139.
[41]HILSE KE,KALINOVICH AV,RUPPRECHT A,etal.The expression ofUCP3 directly correlates to UCP1abundance in brown adipose tissue[J].Biochim Biophys Acta,2016,1857(1):72-78.DOl:10.1016/ j.bbabio.2015.10.011.
[42]CADENAS S.Mitochondrial uncoupling,ROS generation and cardioprotection[J].Biochim Biophys Acta Bioenerg,2018,1859(9):940- 950.DOl:10.1016/j.bbabio.2018.05.019.
[43]LOMBARDI A, BUSIELLO RA, NAPOLITANO L, et al. UCP3 translocates lipid hydroperoxideand mediates lipid hydroperoxide-dependent mitochondrialuncoupling[J].J Biol Chem,2010,285(22):16599-16605. DOI:10.1074/jbc.M110.102699.
[44]van ROOlJ E,OLSON EN.microRNAs:Powerful new regulatorsof heart disease and provocative therapeutic targets[J].JClin Invest, 2007,117(9):2369-2376.DOI:10.1172/JCI33099.
[45]LI YX,SHELAT H, GENG YJ. IGF-1 prevents oxidative stress inducedapoptosis in induced pluripotent stem cells which is mediated by microRNA-1[J].Biochem Biophys Res Commun,2012,426(4):615- 619.DOl:10.1016/j.bbrc.2012.08.139.
[46]BROWN-BORG HM,RAKOCZYSG,ROMANICKMA,etal.Effects of growth hormone and insulin-like growth factor-1 on hepatocyte antioxidative enzymes[J].Exp Biol Med(Maywood),2002,227(2): 94-104.DOI: 10.1177/153537020222700203.
[47] AGUIRRE GA,RODRIGUEZ DE ITA J,de la GARZA RG,et al. Insulin-like growth factor-1 deficiency and metabolic syndrome[J]. JTransl Med,2016,14:3.DOl:10.1186/s12967-015-0762-z.
[48]LIU J, CHENL, ZHOU Y,et al.Insulin-like growth factor-1 and bone morphogenetic protein-2 jointlymediate prostaglandin E2-induced adipogenic differentiation of rat tendonstem cells[J].PLoS One,2014, 9(1):e85469. DOl:10.1371/journal.pone.0085469.
[49]LEEJH,LEE SH,LEE HS,et al.Lnk is an important modulator of insulin-like growth factor-1/Akt/peroxisome proliferator-activated receptorgamma axis during adipogenesis of mesenchymal stem cells[J]. KoreanJPhysiol Pharmacol,2016,20(5):459-466.DOl:10.4196/ kjpp.2016.20.5.459.
[50]VAZQUEZ-BORREGO MC,DEL RIO-MORENO M,KINEMAN RD.Towardsunderstanding the direct and indirect actions of growth hormone in controling hepatocyte carbohydrate and lipid metabolism [J].Cells,2021,10(10):2532. DOl: 10.3390/cells10102532.
[51]ZHAO YQ,WANG Q,WANG Y,et al.Glutamine protects against oxidative stress injury through inhibiting the activation of Pl3K/Akt signaling pathwayin parkinsoniancellmodel[J].Environ Health Prev Med,2019,24(1):4.DOI:10.1186/s12199-018-0757-5.
[52]DEVESAJ,ALMENGLO C,DEVESAP.Multiple effectsof growth hormone in the body:Is it really the hormone for growth?[J].Clin Med Insights Endocrinol Diabetes,2016,9:47-71.DOl:10.4137/ CMED.S38201.
[53]WANG X,WANG YL,YAN H. Study on the relationship between the levels of serum insulin-like factor 1,retinol-blinding proteinand liver function in liver cirrhosis[J].J Clin Hepatol,2002,18(4):237-238. DOI:10.3969/j.issn.1001-5256.2002.04.020. 王欣,王延齡,閆虹.肝硬化患者血清胰島素樣生長因子I、視黃醇結(jié)合 蛋白水平變化與肝功能關(guān)系探討[J].臨床肝膽病雜志,2002,18(4): 237-238. DOl:10.3969/j.issn.1001-5256.2002.04.020.
[54]MORALES-GARZALA,PUCHEJE,AGUIRREGA,etal.Experimentalapproachto IGF-1therapyin CCl4 -inducedacute liverdamagein healthy controlsand micewith partial IGF-1 deficiency[J].J Transl Med,2017,15(1):96.DOl:10.1186/s12967-017-1198-4.
[55]WU DX,ZHANG LJ,MA SS,et al.Low growth hormone levels predict poor outcome of hepatitisB virus-related acute-on-chronic liver failure[J].FrontMed(Lausanne),2021,8:655863.DOl:10.3389/ fmed.2021.655863.
[56]MARQUES V,AFONSO MB,BIERIG N,et al.Adiponectin,leptin, and IGF-1 are useful diagnostic and stratification biomarkers of NAFLD [J].FrontMed(Lausanne),2021,8:683250.DOl:10.3389/fmed. 2021.683250.
[57]SAEKI C,KANAl T,UEDA K,et al.Insulin-like growth factor1 predictsdecompensationand long-term prognosis inpatientswithcompensated cirrhosis[J].Front Med(Lausanne),2023,10:1233928. DOI:10.3389/fmed.2023.1233928.
[58]YAO YF,YANG DL,HUANGYD,etal.Predictive value of insulin-like growth factor 1-Child-Turcotte-Pugh score formortalityin patients with decompensated cirrhosis[J].Clin Chim Acta,2020,505:141- 147.DOl:10.1016/j.cca.2020.02.031.
[59]CRISTINL,MONTINI A,MARTININOA,etal.The role of growth hormoneand insulin growth factor1inthe development of non-alcoholic steato-hepatitis:Asystematic review[J].Cells,2023,12(4):517.DOl: 10.3390/cells12040517.
[60]VETRANO E,RINALDI L,MORMONE A,etal.Non-alcoholic fatty liverdisease(NAFLD),type 2 diabetes,and non-viral hepatocarcinoma:Pathophysiological mechanismsand newtherapeuticstrategies[J].Biomedicines,2023,11(2):468.DOl:10.3390/biomedicines11020468.
[61]ZHAOTY,ZHUY,YAOLY,etal.IGF-1alleviates CCl4 -induced hepaticcirrhosis and dysfunction of intestinal barrier through inhibition TLR4/NF-kB signalingmediatedby down-regulation HMGB1[J].Ann Hepatol,2021,26:100560.DOl:10.1016/j.a0hep.2021.100560.
[62]DICHTEL LE,CORDOBA-CHACON J,KINEMAN RD.GroWth hormoneand insulin-likegrowthfactor1regulationofnonalcoholic fatty liver disease[J].JClin Endocrinol Metab,2022,107(7):1812-1824. DOI:10.1210/clinem/dgac088.
收稿日期:2024-10-08:錄用日期:2024-11-13本文編輯:劉曉紅
引證本文:WANGYP,ZHENGY,ZHANGHF,etal.Roleofinsulin-like growth factor-Iinprognostic evaluationandtreatmentof livericirrhosis[J].J Clin Hepatol,2025,41(6):1188-1193.
汪彥平,鄭亞,張惠芳,等.胰島素樣生長因子-I(IGF-I)在肝硬化預(yù)后評估和治療中的作用[J].臨床肝膽病雜志,2025,41(6):1188-1193.