摘" 要:植物果糖激酶(fructokinase,F(xiàn)RK)特異性催化果糖磷酸化進入糖酵解途徑,是果糖代謝和可溶性糖積累的關(guān)鍵酶。闡明紅肉火龍果果實HpFRK2基因的表達模式及酶特性,為了解果實可溶性糖積累的分子機制并改良果實品質(zhì)提供理論基礎(chǔ)。本研究從紅肉火龍果紫紅龍品種中克隆HpFRK2基因,采用實時熒光定量PCR分析該基因表達模式,采用煙草葉肉細胞瞬時表達檢測其亞細胞定位,通過原核表達獲得重組蛋白并檢測其酶活性。結(jié)果表明:HpFRK2基因的開放閱讀框(open reading frame,ORF)為1026" bp,編碼341個氨基酸。HpFRK2蛋白相對分子質(zhì)量為36.95" kDa,理論等電點為5.94。系統(tǒng)進化分析表明HpFRK2與木薯MeFRK2、番茄SlFRK1、蘋果MdFRK1和擬南芥AtFRK1具有較近的親緣關(guān)系。蛋白序列分析表明其含有磷酸果糖激酶B(phosphofructokinase type B,pfkB)家族保守結(jié)構(gòu)域。HpFRK2在果實發(fā)育20 d時的表達量最高,隨著果實發(fā)育逐漸降低表達,30 "d時表達量最低;此外,HpFRK2在莖中的表達顯著低于果實。亞細胞定位檢測表明HpFRK2主要位于細胞質(zhì)。構(gòu)建原核表達載體在大腸桿菌表達,成功誘導(dǎo)獲得HpFRK2重組蛋白。酶活性檢測表明HpFRK2特異性催化果糖磷酸化,果糖對酶活性不具有底物抑制性,催化果糖磷酸化的Km值為1.84 "mmol/L。本研究結(jié)果表明,紅肉火龍果HpFRK2蛋白位于細胞質(zhì),特異催化果糖磷酸化,主要在果實轉(zhuǎn)色期(花后20~23 d)表達,可能負調(diào)控果實的果糖積累。
關(guān)鍵詞:紅肉火龍果;果糖激酶;基因克??;蛋白表達;酶活中圖分類號:S667.9 """"nbsp;文獻標(biāo)志碼:A
Cloning, Expression and Enzymatic Activity Analysis of the Fructokinase Gene HpFRK2 in Red Pitaya (Hylocereus polyrhizus)
LUO Donglan1, BA Liangjie1, WANG Honglin2,3, ZHENG Qianming2,3*
1. School of Biology and Environmental Engineering, Guiyang University, Guiyang, Guizhou 550005, China; 2. Guizhou Institute of Pomology Science, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, China; 3. Key Laboratory of Crop Gene Genetic Resources and Germplasm Innovation in Karst Mountainous Area, Ministry of Agriculture and Rural Affairs, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, China
Abstract: Plant fructokinase (FRK) specifically catalyzes fructose phosphorylation into glycolysis pathway, which is a key enzyme for fructose metabolism and soluble sugar accumulation. This study elucidated the expression pattern and enzyme characteristics of red pitaya HpFRK2 gene, which would provide a theoretical basis for understanding the molecular mechanism of fruit soluble sugar accumulation and improving fruit quality. HpFRK2 was cloned from red pitaya ‘Zihonglong’, and its expression pattern was analyzed by real-time fluorescence quantitative PCR. Subcellular localization was performed by transiently expressing in tobacco mesophyll cells, and the recombinant protein was obtained by prokaryotic expression and its enzyme activity was detected. The open reading frame (ORF) was 1026 bp, encoding 341 amino acids. The relative molecular weight of HpFRK2 was 36.95 kDa, and the theoretical isoelectric point was 5.94. Phylogenetic analysis showed that HpFRK2 was closely related to cassava MeFRK2, tomato SlFRK1, apple MdFRK1 and Arabidopsis AtFRK1. HpFRK2 contained a conserved domain of the phosphofructokinase type B (pfkB) family. The expression level of HpFRK2 was the highest at 20 days of fruit development, gradually decreased with fruit development, and the expression level was the lowest at 30 days. In addition, the expression of HpFRK2 in stems was significantly lower than that in fruits. Subcellular localization results showed that HpFRK2 was mainly located in the cytoplasm. A prokaryotic expression vector was constructed and expressed in Escherichia coli, and recombinant protein was successfully induced. The results of enzyme activity characteristics showed that HpFRK2 specifically catalyzed fructose phosphorylation, fructose did not have the substrate inhibition on its enzyme activity, and the Km value for fructose phosphorylation was 1.84 mmol/L. The results showed that HpFRK2 was located in the cytoplasm, specifically catalyzed fructose phosphorylation, was mainly expressed during the veraison period (20-23 d after flowering) of red pitaya fruit, and may negatively regulate fructose accumulation in fruit.
Keywords: red pitaya; fructokinase; gene cloning; protein expression; enzyme activity
DOI: 10.3969/j.issn.1000-2561.2025.07.002
紅肉火龍果(Hylocereus polyrhizus)屬于仙人掌科(Cactaceae)量天尺屬(Hylocereus)植物,其果肉清甜多汁,深受消費者喜愛。紅肉火龍果成熟果實積累的可溶性糖主要有葡萄糖和果糖,其含量和組成是衡量果實內(nèi)在品質(zhì)的重要因素[1-2]。解析紅肉火龍果果實發(fā)育期間可溶性糖積累的分子機制,能為改善果實品質(zhì)提供理論依據(jù)。
果糖激酶(fructokinase,F(xiàn)RK)屬于pfkB碳水化合物激酶家族,是植物糖代謝途徑上游環(huán)節(jié)的關(guān)鍵酶[3]。果糖經(jīng)FRK或己糖激酶催化生成果糖-6-磷酸進入糖酵解途徑,為植物生長發(fā)育提供底物、能量和信號[4]。FRK對果糖的親和力遠大于葡萄糖,因此是催化果糖磷酸化的關(guān)鍵酶[5]。FRK也作為糖信號感受器,控制果糖的利用和碳源再分配,參與調(diào)控植株維管束發(fā)育[6]。植物FRK常以多基因家族的形式存在,在擬南芥[7]、番茄[8-9]、馬鈴薯[10]、水稻[11]和蘋果[12]等物種相繼分離。擬南芥AtFRK1和AtFRK3雙突變體表現(xiàn)嚴重的種子發(fā)育缺陷,脂肪酸積累減少,重量減小且形態(tài)異常,說明AtFRK1和AtFRK3正向調(diào)節(jié)種子發(fā)育[13]。水稻OsFRK3被敲除后種子粒重下降,胚乳灌漿率和淀粉含量降低,蔗糖和果糖含量升高,表明OsFRK3可能通過糖代謝正向調(diào)節(jié)淀粉積累[14]。番茄SlFRK1、SlFRK2和SlFRK3參與維管束發(fā)育,干涉SlFRK1和SlFRK2表達嚴重抑制韌皮部發(fā)育和植株生長,干涉SlFRK2和SlFRK3還導(dǎo)致葉片枯萎,影響坐果和結(jié)實[15-16]。過表達蘋果MdFRK2降低幼齡植株的蔗糖和果糖含量,上調(diào)葉片的山梨醇代謝,促進莖的纖維素積累[12, 17];成年植株中鈣結(jié)合蛋白MdCacyBP與MdFRK2互作,促進MdFRK2泛素化并被蛋白酶降解,降低FRK酶活性導(dǎo)致果糖積累[18]。因此,F(xiàn)RK通過影響糖代謝,參與植物的葉、莖、種子和果實等多種組織的生長發(fā)育。
研究表明,植物FRK家族成員表現(xiàn)出不同的表達模式。如蘋果MdFRK1主要在果實表達,MdFRK2主要在莖尖表達[12]。木薯MeFRK5僅在花特異表達,MeFRK1、MeFRK3和MeFRK4在葉、莖、塊根、花和果實中表現(xiàn)出差異的表達模式;MeFRK3和MeFRK4在塊根的表達遠高于其他FRKs,且在塊根發(fā)育早期表達,在成熟期較低[19]。楊梅MrFRK2、枸杞LbFRK7和梨PpyFRK5均在果實發(fā)育早期表達,并隨果實發(fā)育成熟逐漸降低[20-22]。FRK家族的亞細胞定位也存在差異,如擬南芥AtFRK3和番茄SlFRK3蛋白定位于質(zhì)體,其余成員均定位于細胞質(zhì)[7, 23]。FRK蛋白的催化活性也存在差異,如MdFRK1、MdFRK2和AtFRK2-6酶活性均在果糖濃度較高時被明顯抑制,AtFRK1酶活性則不受果糖濃度抑制[7, 12]。由此可見,不同FRKs的表達模式、亞細胞定位和酶特性存在明顯差異,表明其發(fā)揮的生理功能也存在較大差異。
此前從紅肉火龍果果實轉(zhuǎn)錄組測序數(shù)據(jù)中分離HpFRK1,證明其在果實發(fā)育期間負調(diào)控可溶性糖積累[24]。同時在轉(zhuǎn)錄組測序數(shù)據(jù)也獲得其他FRK相關(guān)轉(zhuǎn)錄本(命名為HpFRK2),與HpFRK1序列存在較大的差異。本研究克隆HpFRK2的基因全長,分析其表達模式、亞細胞定位和酶催化活性,比較其與HpFRK1的差異,進一步探討FRKs在紅肉火龍果果實可溶性糖積累過程中的生理功能。
1.1 "材料
試驗材料采集地為貴州省羅甸縣火龍果種植園,選取長勢一致、無病蟲害的紅肉火龍果品種紫紅龍的成年結(jié)果植株,采集成熟的莖組織。參考此前對紅肉火龍果果實發(fā)育階段的描述[25],于花后20、23、25、27、30 d共計5個時期采集果實。每份樣品均設(shè)置3個生物學(xué)重復(fù),每個重復(fù)均含有5個果實。將莖和去皮后的果肉切成薄片,液氮速凍并研磨成粉末,于–80"℃儲存?zhèn)溆谩?/p>
1.2" 方法
1.2.1" HpFRK2基因克隆" 采用總RNA快速抽提試劑盒(北京艾德萊生物科技有限公司)提取紅肉火龍果紫紅龍植株莖和花后5個時期的果實總RNA,使用微量分光光度計(德國Implen公司)檢測其濃度和純度,瓊脂糖凝膠電泳檢測其完整性。使用反轉(zhuǎn)錄PCR試劑盒(TaKaRa公司)將合格的總RNA樣品反轉(zhuǎn)錄成cDNA?;诩t肉火龍果紫紅龍轉(zhuǎn)錄組測序數(shù)據(jù)獲得的FRK序列[25],使用Primer Premier 5.0軟件設(shè)計全長引物HpFRK2-F/R(表1)。PCR反應(yīng)體系為:cDNA 2 μL,HpFRK2-F/R引物(10 μmol/L)各1 μL,高保真DNA聚合酶(南京諾維贊生物科技股份有限公司)12.5 μL,ddH2O補齊至25 μL。PCR反應(yīng)條件:95"℃預(yù)變性3 min;95"℃變性15 s,56"℃退火15"s,72"℃延伸1.5 min,35個循環(huán);72"℃延伸5"min。PCR產(chǎn)物使用DNA純化試劑盒(天根生化科技有限公司)純化回收,回收產(chǎn)物按pMDTM19-T克隆載體(TaKaRa公司)說明書進行T載體連接,轉(zhuǎn)化至大腸桿菌DH5α感受態(tài)細胞,經(jīng)菌液PCR鑒定陽性克隆,送至生工生物工程(上海)股份有限公司測序。
1.2.2" 生物信息學(xué)分析 "使用ProtParam(https:// web.expasy.org/protparam/)在線軟件預(yù)測蛋白質(zhì)結(jié)構(gòu)、氨基酸組成、蛋白質(zhì)相對分子質(zhì)量和理論等電點,利用PSORT Prediction(http://psortl.hgc. jp/form.html)在線軟件預(yù)測蛋白質(zhì)亞細胞定位情況,利用TMHMM(http://www.cbs.dtu.dk/services/ TMHMM2.0/)在線軟件預(yù)測蛋白跨膜區(qū)結(jié)構(gòu)。使用Clustal W軟件進行氨基酸序列比對,利用MEGA 7.0軟件基于鄰接法構(gòu)建系統(tǒng)進化樹,Bootstrap重復(fù)次數(shù)為1000次。
1.2.3 "基因表達分析 "基于HpFRK2序列設(shè)計熒光定量PCR引物HpFRK2-qRT-F/R(表1),并在火龍果基因組數(shù)據(jù)庫(http://www.pitayageno-mic.com/index.php)比對確保特異性擴增。以β-ACT-F/R作為內(nèi)參基因(表1),使用熒光定量PCR儀(美國BIO-RAD公司)進行檢測。反應(yīng)體系為:cDNA 1"μL,HpFRK2-qRT-F/R引物(10"μmol/L)各1 μL,2×SYBR Green Fast qPCR Mix(北京百邁客生物科技有限公司)10 μL,ddH2O補齊至20 μL。PCR反應(yīng)條件為:95"℃預(yù)變性3 min,95"℃變性5 s,60"℃ 30 s,40個循環(huán)。每個樣品設(shè)置3次技術(shù)重復(fù),采用2-ΔΔCt法計算該基因的相對表達量。
1.2.4" 亞細胞定位" 使用引物HpFRK2-GFP-F/R(表1)擴增不含終止密碼子的HpFRK2基因,利用單片段無縫克隆試劑盒(南京諾維贊生物科技股份有限公司)連接至1300-GFP載體。連接產(chǎn)物轉(zhuǎn)化至大腸桿菌DH5α感受態(tài)細胞,挑選轉(zhuǎn)化子培養(yǎng)并進行PCR鑒定和測序。測序結(jié)果經(jīng)比對并確認正確后,使用質(zhì)粒抽提試劑盒(上海邁跟生物科技有限公司)提取重組質(zhì)粒。將重組質(zhì)粒HpFRK2-GFP和載體對照1300-GFP分別轉(zhuǎn)化農(nóng)桿菌GV3101感受態(tài)細胞(上海唯地生物技術(shù)有限公司),采用注射法轉(zhuǎn)化煙草葉片,培養(yǎng)72 h,取樣,通過激光共聚焦熒光顯微鏡(德國ZEISS公司)檢測其熒光信號并拍照。
1.2.5" 原核表達 "參考大腸桿菌密碼子偏愛性,人工合成HpFRK2的ORF并插入原核表達載體pGEX-4T-1載體。將重組質(zhì)粒轉(zhuǎn)入BL21(DE3)感受態(tài)細胞中,選取單克隆于LB培養(yǎng)基37"℃培養(yǎng)至菌體OD600=0.6~0.8,加入終濃度為0.5 mmol/L的異丙基-D-硫代半乳糖苷(IPTG),37"℃培養(yǎng)4 h。誘導(dǎo)產(chǎn)生的融合His標(biāo)簽重組蛋白使用SDS-PAGE電泳檢測可溶性,然后使用鎳柱純化重組蛋白。
1.2.6 "重組蛋白酶活性檢測" 參考RENZ等[26]的方法分析HpFRK2重組蛋白的酶活特性,反應(yīng)體系總體積為1 mL,包含25 μL重組蛋白、50 mmol/L pH 8.0的Tris-HCl緩沖液、4 mmol/L MgCl2、2.5"mmol/L ATP、0.33 mmol/L NAD+、1 U葡萄糖- 6磷酸脫氫酶和1 U磷酸葡萄糖異構(gòu)酶。加入200"μL不同濃度(0~80 mmol/L)的果糖,30"℃條件下反應(yīng)5 min。使用酶標(biāo)儀(美國賽默飛世爾科技公司)檢測340 nm 處的吸光度值A340。酶活性定義為:1 U即1 min內(nèi)1.0 mg重組蛋白的A340值增加0.01。
2.1 "HpFRK2基因克隆及生物信息學(xué)分析
PCR擴增和測序結(jié)果表明,HpFRK2的ORF為1026"bp,編碼341個氨基酸。預(yù)測HpFRK2蛋白的相對分子質(zhì)量為36.95 kDa,理論等電點為5.94。蛋白跨膜結(jié)構(gòu)預(yù)測表明HpFRK2蛋白不含有跨膜區(qū),亞細胞預(yù)測表明HpFRK2蛋白定位于細胞質(zhì)。
HpFRK2的氨基酸序列與此前報道的HpFRK1具有74.30%的一致率。氨基酸序列比對和結(jié)構(gòu)域分析(圖1)表明:HpFRK2與擬南芥AtFRK1、AtFRK2、番茄SlFRK1和SlFRK2類似,均具有底物糖結(jié)合位點、ATP結(jié)合位點和pfkB家族特異性區(qū)域。系統(tǒng)進化顯示HpFRK2與木薯MeFRK2、番茄SlFRK1、蘋果MdFRK1和擬南芥AtFRK1聚為一類,而HpFRK1與甜菜BvFRK、擬南芥AtFRK2、AtFRK4-7、木薯MeFRK3、4和番茄SlFRK2聚為另一類(圖2),說明HpFRK2與HpFRK1屬于不同的類別。
2.2" HpFRK2蛋白的亞細胞定位
在煙草葉肉細胞的亞細胞定位結(jié)果表明:對照1300-GFP的熒光信號廣泛分布于細胞核、細胞質(zhì)和細胞膜;HpFRK2-GFP融合蛋白熒光信號主要分布在細胞質(zhì)和細胞膜,且未見分布于細胞核和葉綠體(圖3)。因此,HpFRK2主要定位于細胞質(zhì)和細胞膜。
2.3" HpFRK2在不同組織中的表達分析
熒光定量PCR檢測表明:HpFRK2在莖的表達量顯著低于5個時期的果實;HpFRK2在花后20 d的表達量最高,23 d時表達量下降;此后隨著果實的發(fā)育和成熟顯著下降,30 d時表達量最低(圖4)。
2.4" HpFRK2原核表達
SDS-PAGE電泳結(jié)果表明,經(jīng)IPTG誘導(dǎo)后在接近66.2 kDa位置出現(xiàn)明顯的單一條帶,未誘導(dǎo)不同小寫字母表示差異顯著(Plt;0.05)。
樣品則無明顯條帶(圖5)。由于標(biāo)簽蛋白約為27"kDa,重組蛋白的實際分子量略小于39.2 kDa,與預(yù)測基本一致。因此,原核表達實驗成功誘導(dǎo)獲得HpFRK2重組蛋白。
2.5" HpFRK2重組蛋白的酶學(xué)性質(zhì)
不同底物下的酶活性檢測表明,HpFRK2重組蛋白對果糖具有明顯的催化活性,對葡萄糖無催化活性(圖6A)。以不同濃度果糖為底物的酶活性檢測表明,底物濃度為0.1~10 mmol/L時,HpFRK2重組蛋白的酶活性隨濃度增加呈現(xiàn)快速增加的趨勢;此后酶活性隨底物濃度的增加僅緩慢增加,當(dāng)?shù)孜餄舛却笥?0 mmol/L后的酶活性隨底物濃度增加僅呈現(xiàn)略增加的趨勢(圖6B)。因此,果糖對HpFRK2酶活性不具有底物抑制性,HpFRK2催化果糖磷酸化的Km值為1.84 mmol/L。
本研究基于果實轉(zhuǎn)錄組測序數(shù)據(jù)和RT-PCR擴增,獲得紅肉火龍果HpFRK2基因。氨基酸序列比對和結(jié)構(gòu)域分析表明,HpFRK2與其他FRK類似,具有pfkB碳水化合激酶家族的保守特征結(jié)構(gòu)域[3]。HpFRK2與HpFRK1的氨基酸序列一致率較低,系統(tǒng)進化分析也表明HpFRK2與HpFRK1分屬于不同的類別。因此推測HpFRK2也屬于FRK家族,但與HpFRK1的生理功能存在差異。
亞細胞定位預(yù)測HpFRK2蛋白定位于細胞質(zhì),跨膜結(jié)構(gòu)預(yù)測該蛋白不含有跨膜區(qū),不屬于膜蛋白。利用煙草葉片開展亞細胞定位檢測,結(jié)果表明HpFRK2主要定位于細胞質(zhì)和細胞膜。綜合預(yù)測和亞細胞定位實驗結(jié)果證明HpFRK2與HpFRK1類似[24],均定位于細胞質(zhì)。已有研究表明,植物FRKs主要定位于細胞質(zhì)和質(zhì)體[27]。大部分成員如擬南芥AtFRK1、AtFRK2和AtFRK4-7[7],蘋果MdFRK1和MdFRK2[12]、枇杷EjFRK[28]均定位于細胞質(zhì),僅AtFRK3[7]和番茄SlFRK3[23]定位于質(zhì)體。HpFRK2與AtFRK1、MdFRK1具有較近的親緣關(guān)系,也顯示出相同的亞細胞定位模式。因此推測HpFRK2與HpFRK1均在細胞質(zhì)發(fā)揮果糖磷酸化的功能。
植物FRK家族不同成員的酶催化活性存在底物抑制性的差異,如擬南芥AtFRK1、AtFRK7和番茄SlFRK1酶活性不受高濃度果糖抑制,AtFRK2、SlFRK2、AtFRK3和AtFRK4-6卻受到明顯的抑制[7, 29];玉米ZmFRK1和ZmFRK2酶活性均受高濃度果糖抑制,ZmFRK1對果糖較不敏感,ZmFRK2對果糖更敏感[30];蘋果MdFRK1和MdFRK2酶活性均具有底物抑制性,且MdFRK2對果糖敏感[12]。隨著果糖濃度的增加,HpFRK2酶活性未受到明顯的抑制,與AtFRK1、AtFRK7、SlFRK1和HpFRK1的酶活性一致。FRK家族不同成員對果糖的親和力也存在差異,如AtFRK7(0.012"mmol/L)[7]、SlFRK2(0.054 mmol/L)[29]和MdFRK2(0.1 mmol/L)[12]親和力高;AtFRK1(0.47"mmol/L)[7]、AtFRK3(0.48"mmol/L)[7]、MdFRK1(0.62"mmol/L)[12]和SlFRK1(1.3"mmol/L)[29]親和力次之;HpFRK1(11.01"mmol/L)[24]親和力較低。HpFRK2催化果糖的Km值為1.84"mmol/L,其親和力與SlFRK1相似,遠大于HpFRK1。因此推測HpFRK1主要在相對較高濃度條件下參與果糖代謝,HpFRK2則主要在低濃度條件下參與果糖代謝。
園藝作物如楊梅、枇杷、梨、枸杞的FRKs主要在果實發(fā)育早期表達,伴隨著旺盛的代謝和較低的果糖積累;FRKs表達隨果實成熟逐漸降低,伴隨著各類代謝活動減緩,有利于果糖等可溶性糖積累[20-22, 28]?;虮磉_分析表明HpFRK2主要在紅肉火龍果果實發(fā)育20~23 d表達,該時期為果肉的轉(zhuǎn)色期[25]。轉(zhuǎn)色期的果肉合成大量的甜菜色素,果糖積累較少,推測HpFRK2介導(dǎo)的糖代謝為甜菜色素合成提供前體和能量。隨著果實發(fā)育和成熟,果糖含量快速增加并在30 d(成熟)時達到最高,而HpFRK2表達持續(xù)降低并在30"d(成熟)時達到最低。由此可見,HpFRK2與HpFRK1[24]類似,對紅肉火龍果果實的果糖積累也具有負調(diào)控作用??紤]到親和力的明顯差異,推測HpFRK2與HpFRK1分別負責(zé)紅肉火龍果果實轉(zhuǎn)色期低濃度和高濃度下的果糖代謝。
本研究分離克隆紅肉火龍果HpFRK2基因,其蛋白定位于細胞質(zhì)。HpFRK2蛋白特異性催化果糖磷酸化,果糖對酶活性不具有抑制性。HpFRK2蛋白催化果糖磷酸化的Km值為1.84"mmol/L,對果糖具有較高的親和力。HpFRK2主要在花后20~23 d果實表達,并隨果實成熟逐漸降低表達,可能參與負調(diào)控果實的果糖積累。
參考文獻
[1]"""""" Mou Z L, Zeng R x, Chen N h, Liu Z l, Zeng Z x, Qin Y h, Shan W, Kuang J f, Lu W j, Chen J y, Zhao Y t. The association of HpDof1.7 and HpDof5.4 with soluble sugar accumulation in pitaya fruit by transcriptionally activating sugar metabolic genes[J]. Food Quality and Safety, 2022, 6: 1-10.
[2]"""""" Wei W, Cheng M n, Ba L j, Zeng R x, Luo D l, Qin Y h, Liu Z l, Kuang J f, Lu W j, Chen J y, Su X g, Shan W. Pitaya HpWRKY3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1[J]. International Journal of Molecular Sciences, 2019, 20(8): 1890.
[3]"""""" Rolland F, Baena-Gonzalez E, Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms[J]. Annual Review of Plant Biology, 2006, 57(1): 675-709.
[4]"""""" GRANOT D. Role of tomato hexose kinases[J]. Functional Plant Biology, 2007, 34(6): 564-570.
[5]"""""" GRANOT D, DAVID-SCHWARTZ R, KELLY G. Hexose kinases and their role in sugar-sensing and plant development[J]. Frontiers in Plant Science,2013, 4: 44.
[6]"""""" PEGO J V, SMEEKENS S. Plant fructokinases: a sweet family get-together[J]. Trends in Plant Science, 2000, 5(12): 531-536.
[7]"""""" Riggs J W, Cavales P C, Chapiro S M, Callis J. Identi?cation and biochemical characterization of the fructokinase gene family in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17(1): 83.
[8]"""""" Martinez-Barajas E, Luethy M H, Randall D D. Molecular cloning and analysis of fructokinase expression in tomato (Lycopersicon esculentum Mill.)[J]. Plant Science, 1997, 125(1): 13-20.
[9]"""""" German M A, Asher I, Petreikov M, Dai N, Schaffer A A, GRANOT D. Cloning, expression and characterization of LeFRK3, the fourth tomato (Lycopersicon esculentum Mill.) gene encoding fructokinase[J]. Plant Science, 2004, 166(2): 285-291.
[10]""" Taylor M A, Ross H A, Gardner A, Davies H V. Characterisation of a cDNA encoding fructokinase from potato (Solanum tuberosum)[J]. Journal of Plant Physiology, 1995, 145(3): 253-256.
[11]""" Jiang H W, Dian W M, Liu F Y, Wu P. Isolation and characterization of two fructokinase cDNA clones from rice[J]. Phytochemistry, 2003, 62(1): 47-52.
[12]""" Yang J J, Zhu L C, Cui W F, Zhang C, Li D X, Ma B Q, Cheng L L, Ruan Y L, Ma F W, Li M J. Increased activity of MdFRK2, a high-affinity fructokinase, leads to upregulation of sorbitol metabolism and downregulation of sucrose metabolism in apple leaves[J]. Horticulture Research, 2018, 5: 71.
[13]""" Stein O, Avin-Wittenberg T, Krahnert I, Zemach H, Bogol V, Daron O, Aloni R, Fernie AR, Granot D. Arabidopsis fructokinases are important for seed oil accumulation and vascular development[J]. Frontiers in Plant Science, 2017, 7: 2047.
[14]""" Zhang Z, Tan J, Chen Y, Sun Z, Yan X, Ouyang J, Li S, Wang X. New fructokinase, OsFRK3, regulates starch accumulation and grain filling in rice[J]. Journal of Agricultural and Food Chemistry, 2023, 71(2): 1056-1066.
[15]""" Stein O, Damari-Weissler H, Secchi F, Rachmilevitch S, German M A, Yeselson Y, Amir R, Schaffer A, Holbrook N M, Aloni R, Zwieniecki M A, Granot D. The tomato plastidic fructokinase SlFRK3 plays a role in xylem development[J]. New Phytologist, 2016, 209(4): 1484-1495.
[16]""" Stein O, Secchi F, German M A, Damari- Weissler H., Aloni R., Holbrook N M, ZWIeniecky m A, Granot D. The tomato cytosolic fructokinase FRK1 is important for phloem fiber development[J]. Biologia Plantarum, 2018, 62(2): 353-361.
[17]""" Su J, Zhang C X, Zhu L C, Yang N X, Yang J J, Ma B Q, Ma F W, Li M J. MdFRK2-mediated sugar metabolism accelerates cellulose accumulation in apple and poplar[J]. Biotechnology for Biofuels, 2021: 14(1): 137.
[18]""" Su J, Jiao T T, Liu X, Zhu L C, Ma B Q, Ma F W, Li M J. Calcyclin-binding protein-promoted degradation of MdFRUCTOKINASE2 regulates sugar homeostasis in apple[J]. Plant Physiology, 2023, 191(2): 1052-1065.
[19]""" YAO Y, GENG M T, WU X H, SUN C, WANG Y L, CHEN X, SHANG L, LU X H, LI Z, LI R M, FU S P, DUAN R J, LIU J, HU X W, GUO J C. Identification, expression, and functional analysis of the fructokinase gene family in Cassava[J]. International Journal of Molecular Sciences, 2017, 18(11): 2398.
[20]""" 陳馨, 施麗愉, 邵佳蓉, 陳偉, 鄭永華, 楊震峰. 楊梅果糖激酶基因MrFRK2的克隆及在成熟期果實中的表達分析[J]. 園藝學(xué)報, 2016, 43(8): 1585-1592.CHEN X, SHI L Y, SHAO J R, CHEN W, ZHNEG Y H, YANG Z F. Molecular cloning and expression analysis of MrFRK2 in Chinese bayberry during fruit ripening[J]. Acta Horticulturae Sinica, 2016, 43(8): 1585-1592. (in Chinese)
[21]""" 趙建華, 尹躍, 李浩霞, 王亞軍, 李彥龍, 安巍. 枸杞果糖激酶基因LbFRK7的克隆及表達分析[J]. 西北植物學(xué)報, 2018, 38(5): 816-822.ZHAO J H, YIN Y, LI H X, WANG Y J, LI Y L, AN W. Cloning and expression analysis of fructokinase gene (LbFRK7) from wolfberry (Lycium barbarum Lin.)[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5): 816-822. (in Chinese)
[22]""" 陶鑫, 朱榮香, 貢鑫, 吳磊, 張紹鈴, 趙建榮, 張虎平. 梨果糖激酶基因PpyFRK5在果實蔗糖積累中的作用[J]. 園藝學(xué)報, 2022, 49(7): 1429-1440.TAO X, ZHU R x, GONG X, WU L, ZHANG S L, ZHAO J R, ZHANG H P. Fructokinase gene PpyFRK5 plays an important role in sucrose accumulation of pear fruit[J]. Acta Horticulturae Sinica, 2022, 49(7): 1429-1440. (in Chinese)
[23]""" DAMARI-WEISSLER H, KANDEL-KFIR M, GIDONI D, METT A, BELAUSOV E, GRANOT D. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants[J]. Planta, 2006, 224: 1495-1502.
[24]""" 解璞, 晏霜, 王紅林, 鄭乾明. 紅肉火龍果果糖激酶基因HpFRK1克隆、表達與酶學(xué)活性分析[J]. 西北植物學(xué)報, 2024, 44(10): 1589-1596.XIE P, YAN S, WANG H L, ZHENG Q M. Cloning, expression and enzymatic activity analysis of the fructokinase gene HpFRK1 in red pitaya (Hylocereus polyrhizus)[J]. Acta Botanica Boreali-occidentalia Sinica, 2024, 44(10): 1589-1596. (in Chinese)
[25]""" Zheng Q M, Wang X K, Qi Y, MA Y H. Selection and validation of reference genes for qRT-PCR analysis during fruit ripening of red pitaya (Hylocereus polyrhizus)[J]. FEBS Open Bio, 2021, 11(11): 3142-3152.
[26]""" RENZ A, STITT M. Substrate specificity and product inhibition of different forms of fructokinases and hexokinases in developing potato tubers[J]. Planta, 1993, 190(2): 166-175.
[27]""" 葉香媛, 周文彬. 植物果糖激酶研究進展[J]. 科學(xué)通報, 2021, 66(22): 2820-2831.YE X Y, ZHOU W B. Research advances in plant fructokinases[J]. Chinese Science Bulletin, 2021, 66(22): 2820-2831. (in Chinese)
[28]""" QIN Q P, CUI Y Y, ZHANG L L, LIN F F, LAI Q X. Isolation and induced expression of a fructokinase gene from loquat[J]. Russian Journal of Plant Physiology, 2014, 61(3): 289-297.
[29]""" Kanayama Y, Granot D, Dai N, Petreikov M, Schaffer A, Powell A, Bennett A B. Tomato fructokinases exhibit differential expression and substrate regulation[J]. Plant Physiology, 1998, 117(1): 85-90.
[30]""" Zhang S R, Nichols S E, Dong J G. Cloning and characterization of two fructokinases from maize[J]. Plant Science, 2003, 165(5): 1051-1058.