Research Progress of Melatoninand Adipose Derived Stem Cells Transplantation for Spinal Cord Injury/TAN Weiyuan,ZHANG Wei,LI Qing,MA Tianyong.//Medical Innovation of China,2025,22(17): 183-188
[Abstract]Spinalcord injury is aserious traumatic disease in spinal surgery,and its occurrence mechanism is acomplex pathological process.At present,the treatment methods for spinal cord injury mainly include surgical treatment and non-surgical treatment.Surgical treatment includes anterior surgery,posterior surgeryand combined anterior surgery,and non-surgical treatment mainly includes drug therapy,hyperbaric oxygen therapy, etc.Melatonin,as a neurohormone,may promote the repair of spinal cord injury through mechanisms such as antioxidation,reducing inflammatory response,maintaining the integrityof the blood-spinal cord barrier,and maintaining microcirculation.Adipose derived stemcelsalso havearepairing efectonspinal cord injury,which maybe related to its mechanisms such as reducing inflammatory response and promoting angiogenesis.Melatonin and adipose derived stemcells transplantation are expected to become new efective treatment methods for spinal cord injury.Pretreatment,improvementof the transplantation environment and combined therapy can enhance the therapeutic effect of adipose derived stemcells transplantation.
[Key words] Spinal cord injury MelatoninAdipose derived stem cells
First-author'saddress:Department of Orthopedics I,the Fifth Affiliated Hospital of Zunyi Medical University,Zhuhai,Zhuhai5191oo,China
doi:10.3969/j.issn.1674-4985.2025.17.042
脊髓損傷(spinalcord injury,SCI)是脊柱外科嚴(yán)重創(chuàng)傷性疾病[1],其致傷原因主要為高處墜落、車禍、壓砸傷等高能量損傷[。SCI目前發(fā)病率呈上升趨勢[,其治療難度大、治療費(fèi)用昂貴、致殘率高,給患者身體及心理帶來極大損害,給社會帶來巨大的經(jīng)濟(jì)負(fù)擔(dān)[。目前SCI傳統(tǒng)治療方式雖能不同程度穩(wěn)定脊柱,減少繼發(fā)性損傷,但對損傷部位的神經(jīng)再生無明顯效果[5,目前需迫切研究更有效的SCI修復(fù)方法。近年來細(xì)胞療法的發(fā)展為SCI的治療帶來了新的思路。研究表明,干細(xì)胞移植可促進(jìn) SCI后神經(jīng)修復(fù),改善傷后運(yùn)動功能。而脂肪干細(xì)胞(adiposederivedstemcells,ADSCs)因其具有來源豐富、獲取容易、體外擴(kuò)增能力強(qiáng)等特點(diǎn)[,目前常用于SCI治療的研究中。研究指出,褪黑素(melatonin,MT)可促進(jìn)SCI的修復(fù)?,F(xiàn)本文對MT及ADSCs移植修復(fù)SCI的研究進(jìn)展進(jìn)行綜述。
1 SCI
1.1 SCI概述
SCI是指外傷、炎癥等因素導(dǎo)致脊髓實(shí)質(zhì)損傷,導(dǎo)致脊髓受損平面以下肢體運(yùn)動感覺障礙及反射異常[0]。近年來,SCI發(fā)病率呈上升趨勢[],車禍、高處墜落、暴力傷害是SCI發(fā)生的常見原因[12],其中最常見的原因?yàn)闄C(jī)動車交通事故[13]。SCI的病理生理機(jī)制是一個(gè)復(fù)雜的過程,按其病理過程主要分為原發(fā)性SCI和繼發(fā)性SCI。原發(fā)性SCI為撞擊、牽拉等物理性損傷直接致傷脊髓實(shí)質(zhì),致神經(jīng)元及血管破裂引起神經(jīng)病理改變[14],主要表現(xiàn)為受損脊髓組織出血、壞死[15],而外傷后出現(xiàn)炎癥、氧化應(yīng)激、自由基生成等一系列反應(yīng)會導(dǎo)致繼發(fā)性SCI目前有研究表明,SCI后血管損傷破裂是繼發(fā)性損傷發(fā)展的重要機(jī)制,SCI后脊髓血管破裂出血、水腫滲出壓迫血管引起血供中斷會導(dǎo)致脊髓組織進(jìn)一步破壞[]。炎癥反應(yīng)是SCI發(fā)生發(fā)展的另一重要原因,SCI后血脊髓屏障被破壞,炎癥細(xì)胞募集,大量炎癥介質(zhì)、炎癥因子釋放導(dǎo)致受損脊髓微環(huán)境惡化,SCI病情進(jìn)一步加重[18]。有研究指出,自由基生成對SCI的發(fā)展也起重要作用,自由基生成引起的脂質(zhì)過氧化和氧化應(yīng)激是導(dǎo)致脊髓繼發(fā)性損傷的重要因素[19]。對于SCI的致病機(jī)制,目前尚無定論,普遍認(rèn)為是多種因素作用的結(jié)果。
1.2SCI治療
隨著對SCI病理機(jī)制研究的逐步深入,SCI的治療方法也取得了相應(yīng)研究進(jìn)展。SCI治療自的是減輕脊髓水腫、為脊髓修復(fù)創(chuàng)造有利條件。SCI的治療方法主要包括手術(shù)治療和非手術(shù)治療[20]。手術(shù)治療方式主要為通過切除骨性結(jié)構(gòu)、椎間盤等對脊髓壓迫的組織,改善受損節(jié)段血供,促進(jìn)損傷神經(jīng)的恢復(fù)。常見手術(shù)減壓方式包括前路手術(shù)、后路手術(shù)和前路聯(lián)合手術(shù)[2]。非手術(shù)治療方式包括藥物治療、高壓氧治療、康復(fù)訓(xùn)練、中醫(yī)治療等。藥物治療主要通過抑制炎癥反應(yīng)、減輕神經(jīng)水腫、清除自由基和抗脂質(zhì)過氧化等,從而促進(jìn)神經(jīng)修復(fù)。常用藥物主要有糖皮質(zhì)激素、神經(jīng)節(jié)苷脂等[22]。糖皮質(zhì)激素主要起抗炎作用,而神經(jīng)節(jié)昔脂起促進(jìn)中樞神經(jīng)恢復(fù)作用。高壓氧治療、康復(fù)治療及中醫(yī)治療作為輔助治療方案在SCI患者的功能恢復(fù)中同樣起重要作用[23]。高壓氧通過抑制炎癥反應(yīng)、清除自由基、促進(jìn)神經(jīng)和血管再生等促進(jìn)SCI患者神經(jīng)功能恢復(fù),中醫(yī)療法通過針灸、中藥等改善神經(jīng)功能。近年有研究指出,MT可促進(jìn)SCI的修復(fù)[24],隨著細(xì)胞療法的研究及發(fā)展,干細(xì)胞移植治療SCI目前處于試驗(yàn)階段,MT及干細(xì)胞移植有望成為治療SCI的新方法[25]。
2 MT
2.1 MT概述
MT是一種主要由松果體分泌的神經(jīng)激素,是一種內(nèi)源性吲哚胺類激素,主要生理作用為調(diào)控晝夜節(jié)律[2。研究表明,MT還參與了多種其他生理活動,包括抗炎、免疫調(diào)節(jié)、抗細(xì)胞凋亡及營養(yǎng)神經(jīng)等[27]。目前相關(guān)研究發(fā)現(xiàn),MT對子宮卵巢疾病、感染性疾病、心臟病、糖尿病、肥胖癥及退行性病變等多種疾病有一定治療作用[28],更有研究表明MT具有神經(jīng)保護(hù)作用[29]。MT可能能夠應(yīng)用于中樞神經(jīng)系統(tǒng)疾病的治療。
2.2 MT在SCI修復(fù)中的應(yīng)用
MT可調(diào)節(jié)多種生理活動,Kedziora-Kornatowska等[3研究表明MT具有良好的抗氧化、抗炎作用,而氧化應(yīng)激和炎癥反應(yīng)是SCI后影響神經(jīng)元修復(fù)軸突再生的重要因素,由此可推測,MT可應(yīng)用于SCI的修復(fù)治療。目前已有應(yīng)用MT修復(fù)SCI的實(shí)驗(yàn)研究,但對于MT修復(fù)SCI的具體機(jī)制未有定論[31]。有研究指出,MT可通過抑制 NF-κB 通路減輕炎癥反應(yīng)從而促進(jìn)小鼠 SCI修復(fù)[32]。有學(xué)者指出,激活Nrf2/ARE通路可能是MT減輕炎癥反應(yīng)促進(jìn)SCI修復(fù)的另一機(jī)制,Wang等[33]通過實(shí)驗(yàn)研究指出MT可通過激活Nrf2/ARE通路,抑制NLRP3炎性小體的表達(dá)從而抑制脊髓炎癥反應(yīng)、促進(jìn)SCI后神經(jīng)功能恢復(fù)。有學(xué)者指出,MT可能通過激活PI3K/PTEN/Akt信號通路,上調(diào)突觸可塑性相關(guān)蛋白的表達(dá),從而促進(jìn) SCI大鼠脊髓修復(fù)[34]。保持血脊髓屏障的完整性、維持微循環(huán)可能是MT修復(fù)SCI的重要機(jī)制。 Wu 等[35指出MT可通過調(diào)節(jié)緊密連接蛋白、保護(hù)血管內(nèi)皮細(xì)胞及周細(xì)胞來維持血脊髓屏障的完整性,并且MT還可以通過降低水通道蛋白和細(xì)胞黏附因子的表達(dá)來維持微循環(huán)[3,從而促進(jìn)SCI修復(fù)。抑制神經(jīng)元細(xì)胞死亡、促進(jìn)神經(jīng)可塑性可能亦是MT修復(fù)SCI的重要機(jī)制。有研究發(fā)現(xiàn)MT可在SCI早期防止軸突變性和脫髓鞘病變,抑制神經(jīng)元細(xì)胞死亡,并且通過減輕氧化應(yīng)激、防止線粒體功能障礙促進(jìn)SCI修復(fù)[37]。更有研究發(fā)現(xiàn),MT可通過調(diào)控腦源性神經(jīng)營養(yǎng)因子(BDNF)和生長相關(guān)蛋白43(GAP-43)的表達(dá)促進(jìn)神經(jīng)重塑從而修復(fù) SCI[38] 。SCI后纖維化瘢痕形成是脊髓修復(fù)的重要阻礙原因,Krityakiarana等[39研究得出MT可抑制SCI后瘢痕形成從而促進(jìn)軸突生長,利于SCI修復(fù)。對于MT修復(fù)SCI的具體機(jī)制及哪一機(jī)制起關(guān)鍵作用仍有待進(jìn)一步研究。
3 ADSCs
3.1 ADSCs概述
ADSCs是間充質(zhì)干細(xì)胞中的一種,其來源于脂肪組織,具有獲取容易、來源豐富、分離簡單、分化能力強(qiáng)、穩(wěn)定性好等特點(diǎn),并且可分泌多種作用因子,目前被認(rèn)為是干細(xì)胞療法研究的種子細(xì)胞[4]。研究表明,ADSCs移植對于骨關(guān)節(jié)退行性疾病、骨質(zhì)疏松、心臟疾病、糖尿病足潰瘍創(chuàng)面等多種疾病,可能是一種可行的治療方法[41]。
3.2 ADSCs在SCI修復(fù)中的應(yīng)用
干細(xì)胞療法的發(fā)展為SCI的治療帶來了新的希望,研究表明,干細(xì)胞移植可能改善SCI后炎癥反應(yīng)、血管破壞、軸突變性等影響神經(jīng)修復(fù)的不利因素[42]。有研究指出,ADSCs體內(nèi)移植到 SCI損傷節(jié)段,相對其他干細(xì)胞具有更高的存活率,并且ADSCs與骨髓間充質(zhì)干細(xì)胞相比較,ADSCs更能促進(jìn)SCI大鼠功能恢復(fù),考慮其機(jī)制可能與促進(jìn)受損脊髓內(nèi)BDNF的表達(dá)、抑制炎癥與細(xì)胞凋亡、促進(jìn)軸突再生有關(guān)[43]。ADSCs相對骨髓間充質(zhì)干細(xì)胞更易獲取,被認(rèn)為在SCI治療中有良好的應(yīng)用前景,目前已被應(yīng)用于SCI修復(fù)治療的研究中。早在2011年,已有研究應(yīng)用靜脈移植ADSCs的方法干預(yù)SCI大鼠,研究發(fā)現(xiàn)經(jīng)靜脈注射移植的ADSCs可遷移至受損節(jié)段脊髓組織,并可促進(jìn)受損節(jié)段脊髓功能恢復(fù),其急性期移植療效要優(yōu)于慢性期,SCI后早期移植ADSCs能更有效促進(jìn)脊髓功能恢復(fù)[44]。2012年的研究進(jìn)一步證實(shí)了ADSCs移植對SCI大鼠的治療作用[45]。對于ADSCs修復(fù)SCI的機(jī)制,除了其向神經(jīng)細(xì)胞分化外,有研究指出,ADSCs移植治療可能通過抑制Notch信號通路,減少炎癥細(xì)胞浸潤,抑制炎癥反應(yīng),抑制星形膠質(zhì)細(xì)胞JAK/STAT3的磷酸化,從而對SCI起修復(fù)作用[4。有學(xué)者指出,促進(jìn)SCI后血管生成及上調(diào)ERK、Akt表達(dá)亦可能是ADSCs移植修復(fù)SCI的另一機(jī)制[47],該學(xué)者通過靜脈注射ADSCs干預(yù)SCI大鼠,發(fā)現(xiàn)在ADSCs移植后,病變脊髓組織中血管生成增加和細(xì)胞因子CINC-1顯著增加,該因子可激活ERK及Akt,從而促進(jìn)肢體功能恢復(fù)。更有學(xué)者發(fā)現(xiàn),TGF- β /Smad/PLOD2信號通路可能是ADSCs修復(fù)SCI 的重要分子機(jī)制,ADSCs可能通過激活TGF- β?/ Smad/PLOD2信號通路促進(jìn)神經(jīng)細(xì)胞中PLOD2的表達(dá),而PLOD2可能通過細(xì)胞外基質(zhì)重塑和促進(jìn)神經(jīng)膠原纖維的交聯(lián)對SCI起修復(fù)作用[48]。
盡管ADSCs移植對SCI具有修復(fù)作用,但移植后的ADSCs遷移率低,到達(dá)靶點(diǎn)的量少,在靶組織中的存活率低,這大大限制了干細(xì)胞療法的應(yīng)用[49]。提高ADSCs遷移率和存活率、促進(jìn)ADSCs歸巢到病變組織是ADSCs移植療法成功的關(guān)鍵。目前已有學(xué)者提出通過預(yù)處理ADSCs、改善移植環(huán)境及干細(xì)胞聯(lián)合療法等方法提高干細(xì)胞存活率,這些方法經(jīng)過實(shí)驗(yàn)研究證實(shí)可行[5。有研究對SCI大鼠在外置磁場下移植ADSCs,結(jié)果表明可提高ADSCs靶向治療 SCI的效果[5]。另一研究在此基礎(chǔ)上,采用外置磁場下移植經(jīng) Ngb 轉(zhuǎn)染預(yù)處理ADSCs干預(yù) SCI大鼠,取得更好的療效[52。聯(lián)合療法是提高ADSCs修復(fù)SCI療效的可行方式,王瑩等[53]、李文媛等[54]采用二氫睪酮(DHT)或KLF樣轉(zhuǎn)錄因子7(KLF7)聯(lián)合ADSCs移植對SCI大鼠進(jìn)行干預(yù),發(fā)現(xiàn)聯(lián)合應(yīng)用修復(fù)SCI的效果優(yōu)于單純ADSCs移植,其機(jī)制可能與聯(lián)合療法促進(jìn)移植ADSCs在病變脊髓組織中的存活有關(guān)。材料科學(xué)的發(fā)展亦為ADSCs移植修復(fù)SCI提供了更多可能,研究指出水凝膠聯(lián)合ADSCs能更好促進(jìn)ADSCs遷移、增殖及分化,并且水凝膠可緩釋生物活性因子,可保護(hù)ADSCs活性及生物功能[55]。ADSCs移植聯(lián)合療法有廣闊的應(yīng)用前景。
除了研究ADSCs本身對SCI的修復(fù)作用,目前越來越多學(xué)者關(guān)注到ADSCs旁分泌作用。研究指出,ADSCs能分泌多種細(xì)胞因子,包括血管內(nèi)皮生長因子、成纖維細(xì)胞生長因子和抗炎因子等,這些因子以細(xì)胞外囊泡方式從細(xì)胞中釋放,在細(xì)胞間傳遞信息從而發(fā)揮作用[5,而條件培養(yǎng)基和外泌體是目前研究旁分泌作用修復(fù)SCI的兩大熱點(diǎn)。在2018年,Lankford等[5]報(bào)道,在大鼠SCI模型中經(jīng)靜脈注射干細(xì)胞外泌體后可減輕SCI程度及促進(jìn)大鼠功能恢復(fù)。2022年,有學(xué)者采用在脊髓受損節(jié)段原位注射ADSCs外泌體的方法干預(yù)SCI大鼠,發(fā)現(xiàn)ADSCs外泌體可改變SCI大鼠巨噬細(xì)胞極化方向、抑制膠質(zhì)瘢痕形成,從而促進(jìn)SCI改善[58]。有學(xué)者對ADSCs外泌體進(jìn)行缺氧預(yù)處理后經(jīng)尾靜脈注射干預(yù)SCI大鼠,得出缺氧預(yù)處理可增強(qiáng)ADSCs外泌體對 SCI的治療作用的結(jié)果[5。對于ADSCs外泌體修復(fù)SCI的機(jī)制,目前主要認(rèn)為與其通過多條信號通路調(diào)控小膠質(zhì)細(xì)胞表型、抑制神經(jīng)炎癥、改善受損脊髓微環(huán)境、抑制神經(jīng)元凋亡、促進(jìn)神經(jīng)再生有關(guān)[]。干細(xì)胞條件培養(yǎng)基中含有大量旁分泌細(xì)胞因子,有研究得出,干細(xì)胞條件培養(yǎng)基對SCI亦有修復(fù)作用。目前有研究指出通過移植間充質(zhì)干細(xì)胞條件培養(yǎng)基后,大鼠SCI節(jié)段空洞體積會變小并且血管生長會增加,從而促進(jìn)神經(jīng)功能恢復(fù)[61。但目前相關(guān)研究以骨髓間充質(zhì)干細(xì)胞條件培養(yǎng)基為主,對于ADSCs條件培養(yǎng)基干預(yù)SCI的研究較少,有待進(jìn)一步研究。ADSCs條件培養(yǎng)基及外泌體與干細(xì)胞移植相比,可大大降低細(xì)胞移植產(chǎn)生的免疫排斥風(fēng)險(xiǎn),有一定研究前景。
4MT與ADSCs聯(lián)合治療SCI
MT和ADSCs對SCI均有一定的修復(fù)作用。Han等[2]研究指出,MT對ADSCs具有調(diào)控作用,Romano等[3]指出,MT能促進(jìn)ADSCs向神經(jīng)元分化。Liao等[4提出,MT有利于移植ADSCs的遷移與歸巢,其作用機(jī)制可能與MT可促進(jìn)介導(dǎo)細(xì)胞遷移和歸巢的關(guān)鍵受體趨化因子CXCR4的表達(dá)有關(guān)[5]。MT與ADSCs移植的聯(lián)合療法能否更好地促進(jìn)SCI后脊髓神經(jīng)的修復(fù)有一定的研究前景。Naeimi等[采用共培養(yǎng)方法對ADSCs進(jìn)行MT預(yù)處理,經(jīng)靜脈注射MT預(yù)處理的ADSCs對SCI大鼠進(jìn)行干預(yù),研究發(fā)現(xiàn),經(jīng)MT預(yù)處理的ADSCs在SCI部位存活率及分化率更高,更能改善SCI后大鼠肢體功能,初步證實(shí)了MT與ADSCs移植的聯(lián)合療法更能促進(jìn)SCI修復(fù)的可能性。至于MT與ADSCs聯(lián)合治療對SCI的確切效果及兩者聯(lián)合治療的最佳方式有待進(jìn)一步研究。
5總結(jié)與展望
SCI是脊柱外科難治性疾病,其機(jī)制是一個(gè)復(fù)雜的病理過程,傳統(tǒng)SCI治療方法主要為手術(shù)治療和藥物治療、高壓氧治療及康復(fù)訓(xùn)練等,隨著近年研究的進(jìn)一步深入,MT和ADSCs移植可能成為有效治療SCI的新方法。MT作為一種神經(jīng)激素,可能通過抗氧化、減輕炎癥反應(yīng)、保持血脊髓屏障的完整性、維持微循環(huán)等機(jī)制促進(jìn)SCI修復(fù),但MT修復(fù)SCI的具體機(jī)制及哪一機(jī)制起關(guān)鍵作用有待進(jìn)一步研究。ADSCs對SCI亦具有修復(fù)作用,除了其向神經(jīng)細(xì)胞分化的作用外,可能與其調(diào)控信號通路減輕炎癥反應(yīng)、促血管生成等機(jī)制有關(guān),預(yù)處理、改善移植環(huán)境及聯(lián)合療法可提高ADSCs移植治療的效果,ADSCs旁分泌作用在SCI的治療中起一定作用,其外泌體及條件培養(yǎng)基有一定研究前景。MT與ADSCs移植聯(lián)合治療可能更能促進(jìn)SCI的修復(fù),未來對于MT聯(lián)合ADSCs移植干預(yù)SCI的療效及最佳聯(lián)用方式需進(jìn)一步深入研究。
參考文獻(xiàn)
[1] KUMARR,LIMJ,MEKRY RA,et al.Traumatic spinal injury : global epidemiologyand worldwide volume[J].World Neurosurgery, 2018,113:345-363.
[2] CHEN CD,QIAO X,LIU W,et al.Epidemiology of spinal cord injury in China:a systematic review of the Chinese and English literature[J].Spinal cord,2022,60(12):1050-1061.
[3]KANG Y,DING H,ZHOUH,et al.Epidemiology of worldwide spinal cord injury:aliterature review[J].Journal of Neurorestoratology,2018,6(1):1-9.
[4]GBD Traumatic Brain Injury Group,RAHMAN MA, DARABSEH M Z.Global,regional,and national burden oftraumatic brain injury and spinal cord injury,199O-2016:a systematic analysis for the global burden of disease study 2016[J]. LancetNeurology,2019,18(1):56-87.
[5]YUKIO,MITSUKOT,AKEMIH,et al.Isolationof adiposederived stem/stromal cells from cryopreserved fat tissue and transplantation into rats with spinal cord injury[J].International JournalofMolecularEnces,2018,19(7):1963-1968.
[6]RUZICKAJ,MACHOVA-URDZIKOVAL,GILLICKJ,etal. Acomparative studyofthreedifferent types of stemcellsfor treatment of rat spinal cord injury[J].Cell Transplantation,2017, 26(4):585-603.
[7]ASSINCKP,DUCANGJ,HILTONBJ,etal.Cell transplantatio therapy for spinal cord injury[J].Nat Neurosci, 2017,20(5):637-647.
[8] ZHOU ZL,CHENYH,ZHANGH,etal.Comparison of mesenchymal stromal cells from human bone marrow and adipose tisue for the treatmentof spinal cord injury[J].Cytotherapy,2013, 15 (4) : 434-448.
[9] WUQB,JING YL,YUAN XC,et al.Melatonin treatment protects against acute spinal cord injury-induced disruption of blood spinal cord barrier in mice[J].Journal of Molecular Neuroscience,2014,54(4):714-722.
[10] YU T,YANG L L,ZHOUY,et al.Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy[J].Stem Cell Research Therapy,2024,15(1):6.
[11] KARSY M,HAWRYLUK G.Modern medical management of spinal cord injury[J].Curr Neurol Neurosci Rep,2019,19(9): 65.
[12]LOFVENMARKI,NORRBRINKC,NILLSSONWIKMARK K,et al.Traumatic spinal cord injury in Botswana: Characteristics,aetiology and mortality[J].Spinal Cord,2015, 53(2): 150-154.
[13] QUADRISA,F(xiàn)AROOQQUI M,IKRAMK A,et al.Recent update on basic mechanisms of spinal cord injury[J].Neurosurg Rev,2020,43(2):425-441.
[14] LUKACOVA N, KISUCKA A, KISS BIMBOVA K,et al.Glialneuronal interactions in pathogenesis and treatment of spinal cord injury[J].Int JMol Sci,2021,22(24):13577.
[15] ANJUMA, YAZID M D,F(xiàn)AUZI DAUD M, et al.Spinal cord injury:pathophysiology,multimolecular interactions,and underlying recovery mechanisms[J].Int J Mol Sci,2020,21 (20): 1-35.
[16] FADEN A I,WU J,STOICA B A,et al.Progressive inflammation-mediated neurodegeneration after traumatic brain or spinal cord injury[J].BrJPharmacol,2016,173(4): 681- 691.
[17] ZRZAVY T, SCHWAIGER C,WIMMER I, et al.Acute and non-resolving inflammation associate with oxidative injury after human spinal cord injury[J].Brain,2021,144(1):144-161.
[18] GUO S, REDENSKI I, LEVENBERG S.Spinal cord repair : from cellsandtissue engineeringto extracellar vesicles[J].Cls, 2021,10(8): 1872.
[19] LIAO HY,WANG Z Q,RAN R,et al.Biological functions and therapeutic potential of autophagy in spinal cord injury[J].Front Cell Dev Biol,2021,9:761273.
[20] YUE Z,PENG S,ZHEN Z P,et al.Combination therapy with hyperbaric oxygen and erythropoietin inhibits neuronal apoptosis and improves recovery inrats with spinal cord injury[J].Physical Therapy,2019,99(12):871-893.
[21] RAMAKONAR H, FEHLINGS M G.'Time is spine': new evidence supports decompression within 24 h for acute spinal cord injury[J].Spinal Cord,2021,59(8): 933-934.
[22]劉小舟,賴逸菲,金子焯,等.脊髓損傷研究及治療進(jìn)展[J]. 江西中醫(yī)藥,2022,53(11):65-71.
[23]陳守勃,吳文華.創(chuàng)傷性脊髓損傷的臨床治療進(jìn)展[J].福建 醫(yī)藥雜志,2023,45(3):134-136.
[24]黃姣娟,王文春,張安仁.褪黑素對脊髓損傷神經(jīng)保護(hù)作用 機(jī)制的研究進(jìn)展[J].西南軍醫(yī),2019,21(2):139-142.
[25] TSAI CY,BRYCE TN,DELGADO AD.Treatments that perceived to be helpful for non-neuropathic pain after traumatic spinal cord injury: amulticentercross-sectional surveyJ].Spinal Cord,2021,59(5):520-528.
[26] TALLB W H.Melatonin and cancer hallmarks[J].Molecules, 2018,23(3):518.
[27] MANCHESTERL C,COTO-MONTES A,BOGAJA, et al.Melatonin: an ancient molecule that makes oxygen metabolically tolerable[J].J Pineal Res,2015,59(4): 403- 419.
[28] MORADKHANIF,MOLOUDIZARGARI M,F(xiàn)ALLAH M,et al. Immunoregulatory role of melatonin in cancer[J].J Cell Physiol, 2020,235(2) :745-757.
[29] ZHUN,RUANJW,YANG XM,et al.Triptolide improves spinal cord injury by promoting autophagy and inhibiting apoptosis[J].CellBiol Int,2020,44(3): 785-794.
[30] KEDZIORA-KORNATOWSKA K, SZEWCZYK-GOLEC K, KOZAKIEWICZ M,et al.Melatonin improves oxidative stress parameters measured in the blood of elderly type 2 diabetic patients[J].JPineal Res,2009,46:333-337.
[31] ANDRABI,SYED S,YANG J,et al.Nanoparticles with antioxidant enzymes protect injured spinal cord from neuronal cell apoptosis by attenuating mitochondrial dysfunction[J].Journal of Controlled Release,2020,317:300-311.
[32]林愛新.褪黑素通過NF-κB通路調(diào)控急性脊髓損傷后細(xì)胞 焦亡的機(jī)制研究[D].蘭州:蘭州大學(xué),2023.
[33] WANG HY,HUANG HF,HUANG H,et al.Melatonin attenuates spinal cord injury in mice by activating the Nrf2/ARE signaling pathway to inhibit the NLRP3 inflammasome[J].Cell, 2022,11(18):2089.
[34]畢佳琦,陳崇,李政,等.基于PI3K/PTEN/AKT信號途徑 探討褪黑素對脊髓損傷大鼠突觸可塑性的影響[J].現(xiàn)代生物 醫(yī)學(xué)進(jìn)展,2019,19(6):1001-1005.
[35] WUQB,JINGYL,YUAN XC,et al.Melatonin treatment protects against acute spinal cord injury-induced disruption of blood spinal cord barrier in mice[J].Journal of Molecular Neuroscience,2014,54(4):714-722.
[36] JING YL,BAIF,CHEN H,et al.Meliorating microcirculatory with melatonin in rat model of spinal cord injury using laser Doppler flowmetry[J].Neuroreport,2016,27(17): 1248.
[37] WANGQJ,LUQY,GUOQ,et al.Structural basis of the ligand binding and signaling mechanism of melatonin receptors[J]. Nature communications,2022,13(1):454.
[38] BIJQ,SHEN JX,CHEN C,et al.Role of melatonin in the dynamics of acute spinal cord injury in rats[J].J Cell Mol Med, 2021,25(6):2909-2917.
[39] KRITYAKIARANA W, SOMPUPK,JONGKAMONWIWATN, et al.Effects of melatonin on severe crush spinal cord injuryinduced reactive astrocyte and scar formation[J].J Neurosci Res, 2016,94(12): 1451-1459.
[40]薛芷忻,李燁,魯峰,等.基因工程促進(jìn)脂肪干細(xì)胞成骨 分化的研究進(jìn)展[J].中國臨床解剖學(xué)雜志,2024,42(2): 233-235.
[41] AL-GHADBAN S,BUMMELL B A.Adipose tissue-derived stem cells:immunomodulatory effects and therapeutic potential[J]. Physiology,2020,35(2):125-133.
[42] MUHEREMU A,PENG J,AO Q.Stem cels based therapies for spinal cord injury[J].Tissue and Cell, 2016,48(4) : 328-333.
[43] TAKAHASHI A,NAKAJIMA H,UCHIDAK,et al. Comparison of mesenchymal stromal cells isolated from murine adipose tissue and bone marrow in the treatment of spinal cord injury[J].Cell Transplantation,2018,27(7):1126-1139.
[44]喬曉俊.脂肪間充質(zhì)干細(xì)胞靜脈移植治療大鼠脊髓損傷的實(shí) 驗(yàn)研究[D].鄭州:鄭州大學(xué),2011.
[45]丁春勁.骨髓間充質(zhì)干細(xì)胞與脂肪源性干細(xì)胞治療大鼠脊髓 損傷的抗凋亡作用[D].蘇州:蘇州大學(xué),2012.
[46]田曉波.脂肪間充質(zhì)干細(xì)胞通過調(diào)控Notch信號通路在脊髓 損傷修復(fù)中的作用及機(jī)制[D].廣州:南方醫(yī)科大學(xué),2021.
[47] OHTA Y,HAMAGUCHI A,OOTAKI M,et al.Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury[J].Cytotherapy,2O17,19 (7) : 839-848.
[48]李芳 .ADSCs 通過調(diào)控神經(jīng)細(xì)胞 TGF-β 1/Smad/PLOD2 信號 通路修復(fù)脊髓損傷的機(jī)制研究[D].濟(jì)南:山東大學(xué),2021.
[49] PAUL C,SAMDANI AF,BETZ RR,et al.Grafting of human bone marrow stromal cells into spinal cord injury: a comparison of delivery methods[J].Spine,2009,34(4):328-334.
[50] KARPOV AA,UDALOVAD V,PLISS MG,et al.Can the outcomes of mesenchymal stem cell-based therapy for myocardial infarction be improved?Providing weapons and armour to cells[J/OL]. Cell Prolif,2016,50(2):e12316(2016-11-23)[2024-12- 17].https://pubmed.ncbi.nlm.nih.gov/27878916/.DOI:10.1111/ cpr.12316.
[51]謝嘉清.外置磁場下靜脈注射ADSCs治療大鼠脊髓損傷的 實(shí)驗(yàn)研究[D].遵義:遵義醫(yī)科大學(xué),2019.
[52]胡金金,齊新文,李松軍,等.外置磁場下靜脈注射經(jīng) SPIONs標(biāo)記的Ngb轉(zhuǎn)染ADSCs靶向治療大鼠脊髓損傷的實(shí) 驗(yàn)研究[J].醫(yī)學(xué)綜述,2021,27(7):1428-1432.
[53]王瑩,李文媛,尹國華,等.二氫睪酮聯(lián)合ADSC對大鼠脊 髓損傷 BDNF及其受體 TrkB 的影響[J].中國實(shí)用神經(jīng)疾病 雜志,2017,20(5):17-20. 對脊髓損傷大鼠運(yùn)動功能的影響及其機(jī)制[J].山東醫(yī)藥, 2017,57(44): 5-8.
[55]袁欣,丁璐,鄧宇斌.水凝膠聯(lián)合間充質(zhì)干細(xì)胞治療脊髓 損傷的研究進(jìn)展[J].生物醫(yī)學(xué)工程學(xué)雜志,2021,38(4): 805-811.
[56] SYKOVA E,CIZKOVA D,KUBINOVA S.Mesenchymal stem cells in treatment of spinal cord injury and amyotrophic lateral sclerosis[J].Front Cell Dev Biol,2021,9: 695900.
[57] LANKFORD KL,ARROYO EJ,KATARZYNA N,et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J/OLJ.PLoS One,2018,13(1) : e0190358(2018-01-02)[2024-12-17]. https://pubmed.ncbi.nlm.nih.gov/29293592/.DOI: 10.1371/ journal.pone.0190358.
[58]陳浩賢,嚴(yán)利軍,安永剛,等.脂肪間充質(zhì)干細(xì)胞來源外泌 體對脊髓損傷大鼠巨噬細(xì)胞極化及膠質(zhì)瘢痕形成的影響 [J]. 四川醫(yī)學(xué),2022,43(4):333-338.
[59]梁顏.缺氧預(yù)處理脂肪間充質(zhì)干細(xì)胞來源外泌體治療脊髓損 傷的療效和機(jī)制研究[D].長沙:中南大學(xué),2022.
[60]劉闖,譚龍旺,周禾山,等.脂肪間充質(zhì)干細(xì)胞外泌體治療 創(chuàng)傷性中樞神經(jīng)系統(tǒng)損傷[J].中國組織工程研究,2023,27 (19):3061-3069.
[61]張峰,申才良,宋旆文,等.條件培養(yǎng)基局部移植對大鼠脊 髓損傷的修復(fù)作用[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2015,50(5): 599-603.
[62] HAN D,HUANG W,LI X,et al.Melatonin facilitates adiposederived mesenchymal stem cells to repair the murine infarcted heart viathe SIRT1 signaling pathway[J].JPineal Res,2016,60 (2):178-192.
[63] ROMANO IR,D'ANGELI F,GILI E,et al.Melatonin enhances neural differentiation of adipose-derived mesenchymal stem cels[J].International Journal of Molecular Sciences,2024, 25 (9) : 4891.
[64]LIAO N S,SHIYJ,WANGYC,et al.Antioxidant preconditioning improves therapeutic outcomes of adipose tissuederived mesenchymal stemcells through enhancing intrahepatic engraftment efficiency in a mouse liver fibrosis model[J].Stem Cell Res Ther,2020,11(1):237.
[65] LIAO NS,SHI YJ,ZHANGCL,et al.Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion[J].Stem CellRes Ther,2019,10(1):306.
[66] NAEIMI A, ZAMINY A, AMININ,et al.Effects of melatoninpretreated adipose-derived mesenchymal stem cels (MSC) in an animal model of spinal cord injury[J].BMC Neuroscience,2022, 23(1):1-12.
(收稿日期:2025-02-07)(本文編輯:陳韻)
中國醫(yī)學(xué)創(chuàng)新2025年17期