• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      鐵死亡介導KATP通道功能受損致心力衰竭機制的研究進展

      2024-01-01 00:00:00汪志誠張子玥鄒紫瑩張代民
      心血管病學進展 2024年6期
      關(guān)鍵詞:心律失常心力衰竭

      基金項目:國家自然科學資金(81970342,81370304);江蘇省重點研發(fā)計劃臨床前沿(BE2018611)

      通信作者:張代民,E-mail:daiminzh@126.com

      【摘要】心力衰竭是一種以臨床預后差、死亡率高為主要特點的心血管疾病。KATP通道偶聯(lián)能量代謝與細胞膜興奮性,在可興奮細胞中起著關(guān)鍵調(diào)控作用。KATP通道激活使膜電位超極化,減少早期后除極介導心律失常的發(fā)生。心肌細胞KATP通道在生理條件下活性較低,而在嚴重缺血和長時間缺氧導致腺苷三磷酸/腺苷二磷酸比值降低時激活,降低細胞興奮性,從而阻止動作電位的產(chǎn)生和細胞收縮。鐵死亡是一種新型細胞程序性死亡方式,其特征在于Fe2+和脂質(zhì)過氧化物代謝異常導致的膜系統(tǒng)中脂質(zhì)過氧化物的致死性積累,研究發(fā)現(xiàn)鐵死亡可能對KATP通道的功能造成損傷,惡化心臟功能。因此,現(xiàn)就鐵死亡介導KATP通道功能受損在心力衰竭中調(diào)控機制進行綜述。

      【關(guān)鍵詞】KATP通道;鐵死亡;心力衰竭;心律失常

      【DOI】10.16806/j.cnki.issn.1004-3934.2024.06.019

      Dysfunctional Mechanism of KATP Channel in Heart Failure Induced by Ferroptosis

      WANG Zhicheng,ZHANG Ziyue,ZOU Ziying,ZHANG Daimin

      (Department of Cardiology,Sir Run Run Hospital,Nanjing Medical University,Nanjing 211112,Jiangsu,China)

      【Abstract】Heart failure is a global cardiovascular disease characterized by poor clinical prognosis and high mortality.KATP channel play pivotal roles in excitable cells and link cellular metabolism with membrane excitability.The action potential converts electricity into dynamics by ion channels mediated ion-exchange generate the systole,which composes every single heartbeat.Activation of the KATP channel repolarizes the membrane potential and decreases the occurrence of early after-depolarization-mediated arrhythmias.Cardiac KATP channel have less function under physiological conditions and open during severe and prolonged anoxia due to reduced adenosine triphosphate/adenosine diphosphate ratio,lessening cellular excitability,thus preventing action potential generation and cell contraction.Accumulated evidence indicated that ferroptosis may cause damage to the KATP channel.Hence,we describe the potential damage role of ferroptosis in the KATP channel,lucubrating the potential mechanisms and insight into the clinical therapeutic strategy.

      【Keywords】KATP channel;Ferroptosis;Heart failure;Arrhythmia" 隨著人口老齡化的加重和急性心肌梗死后患者生存率的提高,心力衰竭發(fā)病率和死亡率升高,預后差及醫(yī)療費用昂貴等諸多問題亟待解決[1]。雖經(jīng)幾十年探索,心力衰竭治療方案不斷更新迭代,但其預后不佳的現(xiàn)狀始終困擾臨床工作者。據(jù)預測2012—2030年,心力衰竭患病率增加46%,患者5年內(nèi)死亡率為40%~50%[1-3]。

      1983年Noma[4]首次報道心肌中的KATP通道,隨后發(fā)現(xiàn)其也存在于骨骼肌系統(tǒng)、消化系統(tǒng)、泌尿系統(tǒng)、皮膚系統(tǒng)、生殖系統(tǒng)和中樞神經(jīng)系統(tǒng)中。激活心肌KATP通道可縮短動作電位時程,減少Ca2+進入細胞,防止細胞內(nèi)Ca2+超載,從而抑制心臟過度收縮導致的心律失常和心功能不全。

      鐵死亡是一種基于鐵過載且不同于既往的新型細胞死亡方式,其特征是脂質(zhì)過氧化導致的細胞膜損傷[5]。研究[6]表明鐵死亡參與大量病理生理過程,如多柔比星誘導的心力衰竭,且鐵死亡和線粒體功能障礙關(guān)系密切。因此,現(xiàn)就鐵死亡和KATP通道信號調(diào)控機制進行綜述。

      1" KATP通道

      KATP通道是由4個磺酰脲受體(sulfonylurea receptors,SUR)亞基和4個K+內(nèi)向整流(K+ inward rectifiers,Kir)6.x亞基共同組裝形成異八聚體復合物。心血管系統(tǒng)中KATP通道主要有

      線粒體膜KATP通道(mitochondrial KATP,mitoKATP)和心肌細胞膜KATP通道(sarcolemma KATP,sarcKATP)兩種亞型[7-10]。

      1.1" mitoKATP通道

      mitoKATP通道位于線粒體內(nèi)膜內(nèi),對缺血心肌具有保護作用[11]。Paggio等[12]闡明mitoKATP分子由成孔亞基(MITOK,由CCDC51基因編碼)和調(diào)控亞基(MITOSUR,組織表達與ABCB8基因相關(guān))組成。

      激活mitoKATP通道促進線粒體K+向深度負極化的基質(zhì)線粒體膜電位內(nèi)流動,使基質(zhì)線粒體膜電位超極化,降低線粒體Ca2+攝取的驅(qū)動力,抑制Ca2+內(nèi)流和在線粒體基質(zhì)中的積累,防止線粒體Ca2+超載,誘導線粒體松弛,增強脂肪酸氧化、氧化磷酸化、呼吸功能和腺苷三磷酸(adenosine triphosphate,ATP)產(chǎn)生,從而阻止線粒體通透性轉(zhuǎn)換孔的形成,提高心肌細胞存活時間[7,13]。

      1.2" sarcKATP通道

      sarcKATP通道由SUR2A亞基和Kir6.x組成,在缺血預處理和心肌缺血抵抗中起著至關(guān)重要的作用,該通道平常是關(guān)閉的,其隨ATP/腺苷二磷酸(adenosine diphosphate,ADP)降低而打開,將膜興奮性與ATP產(chǎn)生的胞內(nèi)穩(wěn)態(tài)聯(lián)系起來,K+流出,動作電位時程縮短。sarcKATP通道對物理應(yīng)激的適應(yīng),極大地改變膜興奮性和其他膜電位相關(guān)功能,如Ca2+超載。激活sarcKATP通道可易化應(yīng)激狀態(tài)下心肌細胞穩(wěn)態(tài)。sarcKATP通道的打開是心肌細胞在缺血時保存ATP和限制Ca2+超載的最后一道防線,它在代謝抑制的后期打開,延長心肌缺血時正常的線粒體功能同時維持ATP持續(xù)產(chǎn)生,但它不參與早期的心臟刺激所提供的保護。

      在心肌肥厚的病理狀態(tài)下,主要是sarcKATP通道調(diào)節(jié)亞基SUR的損傷,激活sarcKATP通道可延緩心力衰竭病變進展[14]。心力衰竭時sarcKATP通道的激活可促進心房利尿鈉肽的生成,發(fā)揮抑制交感神經(jīng)興奮和心肌細胞肥大的作用。正常生理條件下,sarcKATP通道的密度在心臟保護中起著重要作用,但在某些病理生理條件下(如高胰島素血癥和心肌缺血等)sarcKATP通道密度下降。近來研究[15]發(fā)現(xiàn),甲狀腺功能亢進小鼠心房中Kir6.2及SUR2表達水平降低。sarcKATP通道調(diào)節(jié)亞基SUR2A表達增加可通過縮短動作電位時程和改善心臟Ca2+穩(wěn)態(tài)來調(diào)節(jié)心臟生理并提高對物理應(yīng)激的適應(yīng)。Singh等[16]發(fā)現(xiàn)在Cantú綜合征(SUR2亞基突變)的患者中出現(xiàn)明顯的低全身血管阻力,引起特發(fā)性高輸出量心肌肥厚。

      2" 代謝異常和活性氧在鐵死亡中的作用

      鐵死亡由鐵穩(wěn)態(tài)失衡導致鐵過載產(chǎn)生,過量Fe2+通過芬頓反應(yīng)導致氧化還原失衡,生成大量多不飽和脂肪酸(polyunsaturated fatty acid,PUFA)隨后被氧化,導致膜的不穩(wěn)定和被破壞,細胞質(zhì)和細胞器腫脹,線粒體萎縮,線粒體膜密度增加,線粒體嵴減少或消失,但核形態(tài)沒有任何變化[17]。

      細胞內(nèi)脂質(zhì)體PUFA經(jīng)過長鏈脂酰輔酶A合成酶4(long-chain acyl-CoA synthetase 4,ACSL4)活化形成PUFA輔酶A;PUFA輔酶A在溶血卵磷脂膽堿?;D(zhuǎn)移酶3作用下生成多不飽和酰基磷脂(polyunsaturated fatty acids of phospholipids,PL-PUFA),PL-PUFA在過量Fe2+刺激下生成過氧化脂質(zhì)(PL-PUFA-OOH)。然而,輔酶Q在鐵死亡抑制蛋白1作用下生成二氫泛醌抑制PL-PUFA-OOH生成[18];細胞膜表面System Xc-轉(zhuǎn)運系統(tǒng)將胱氨酸轉(zhuǎn)移到細胞內(nèi)形成谷胱甘肽,谷胱甘肽在谷胱甘肽過氧化物酶4作用下生成過氧型谷胱甘肽抑制PL-PUFA-OOH生成[19];鳥苷三磷酸依賴環(huán)水解酶1生成抗氧化的四氫生物蝶呤抑制PL-PUFA-OOH生成[20]。

      葡萄糖依賴線粒體生成能量過程伴隨著電子傳遞鏈中復合體Ⅰ和復合體Ⅲ的電子向分子氧轉(zhuǎn)移,導致這些分解代謝反應(yīng)中產(chǎn)生活性氧(reactive oxygen species,ROS);ROS可以作為刺激細胞增殖的信號分子,但ROS異常積累也可引起細胞膜損傷,影響細胞存活。細胞中過量活性鐵可導致鐵過載,F(xiàn)e2+不但可以直接作用于PL-PUFA-OOH誘導脂質(zhì)過氧化,而且通過芬頓反應(yīng)產(chǎn)生ROS,ROS作用于細胞膜脂質(zhì)PUFA碳碳雙鍵,導致細胞膜脂質(zhì)過氧化,最終形成鐵死亡[21]。

      3" PKC/KATP通道信號在心力衰竭中的作用

      蛋白激酶C(protein kinase C,PKC)由依賴第二信使及Ca2+激活的傳統(tǒng)亞型(α、β、γ)、只依賴第二信使激活的新型PKC亞型(δ、ε、θ、η)、不依賴第二信使和Ca2+激活的非典型PKC 亞型(ζ、λ/ι)組成[22-24]。心臟中PKCα表達廣泛,PKCα基因敲除可避免心肌肥厚向心力衰竭進展,過度表達PKCα基因引起心臟過度收縮。神經(jīng)突起導向因子1可通過抑制PKCα/MAPK信號通路逆轉(zhuǎn)血管緊張素Ⅱ誘導的心肌肥厚和心肌纖維化。敲除PKCβ基因可減小梗死面積,增強左心室功能恢復,過表達PKCβ基因可導致心肌肥厚和猝死。P2X7受體通過調(diào)控PKCβ和胞外信號調(diào)節(jié)激酶(extracellular signal-regulated kinase,ERK)改善鏈脲佐菌素(streptozotozin,STZ)誘導的心臟損傷和重塑[25]。PKCγ單基因敲除無特殊心臟表型變化。PKCδ缺失可導致心肌代謝功能紊亂。穩(wěn)心顆粒通過調(diào)控H9c2細胞中PKCδ/NOx2/ROS信號途徑改善線粒體缺氧/復氧誘導的氧化應(yīng)激。PKCε基因敲除小鼠對缺血再灌注(ischemia reperfusion,IR)損傷的易感性更高,過表達PKCε引起心肌肥厚。肥大細胞中的Gi偶聯(lián)受體(如組胺H4、腺苷A3和鞘氨醇1-磷酸-S1P1受體)激活PKCε/ALDH2通路,提供抗腎素-血管緊張素系統(tǒng)心臟保護作用。PKCθ基因敲除導致擴張型心肌病,表明PKCθ對心肌細胞存活和重塑有重要作用。PKCζ基因敲除沒有心臟表型變化。黑茄水提取物通過抑制PKCζ來減輕血管緊張素Ⅱ誘導的心臟肥大并改善心臟功能[26]。

      近來研究表明PKC參與鐵死亡的調(diào)控。瞬時電位亞家族受體7(transient receptor potential melastatin,TRPM7)通過抑制Ca2+內(nèi)流來降低PKCα依賴氮氧化物(nitrogen oxide,NOx)活性,調(diào)節(jié)類風濕關(guān)節(jié)炎關(guān)節(jié)軟骨細胞鐵死亡[27]。PKCβⅡ通過直接磷酸化ACSL4的Thr328位點快速提高細胞膜脂質(zhì)過氧化水平,加速鐵死亡[28]。PKCθ介導的自噬受體海馬樣蛋白1(hippocalcin like 1,HPCAL1)在Thr149上的磷酸化激活選擇性降解鈣黏蛋白2(cadherin-2,CDH2),降低膜張力和增加脂質(zhì)過氧化,增加鐵死亡易感性[29]。轉(zhuǎn)錄因子KRAB家族成員ZNF498通過干擾p53 Ser46位點的磷酸化競爭p53結(jié)合并抑制PKCδ和p53 INP1結(jié)合來抑制肝細胞癌變中的鐵死亡[30]。

      激活PKC促使ATP水解為ADP引起ATP/ADP比值降低,ATP/ADP比值降低誘發(fā)KATP通道開放,調(diào)控心肌細胞代謝從而發(fā)揮心臟保護作用。選擇性抑制PKCα/β激活心肌KATP通道將時間依賴性葡萄糖心臟毒性轉(zhuǎn)換為心臟保護作用[26]。氣體信號小分子H2S介導PKCδ和PKCζ易位激活促進KATP 通道開放,調(diào)節(jié)胞內(nèi)Ca2+穩(wěn)態(tài)發(fā)揮心臟保護作用。阿片肽類藥物(deltorphinⅡ)減少心肌梗死發(fā)生的作用是通過PKCδ、磷脂酰肌醇3激酶、ERK1/2的激活,KATP通道的打開和線粒體通透性轉(zhuǎn)換孔的關(guān)閉介導的[31](見圖1)。

      注:Netrin-1,神經(jīng)軸突導向因子1;RAS,腎素-血管緊張素系統(tǒng)。

      4" 靶向鐵死亡/KATP通道的臨床價值與展望

      近年來研究[32-35]發(fā)現(xiàn)在蒽環(huán)類藥物、赫賽汀、血管緊張素Ⅱ、異丙腎上腺素等藥物誘導的心肌肥厚模型中,鐵死亡起著重要調(diào)控作用。SLC7A11/xCT可通過抑制鐵死亡防止心肌肥厚[36]。黃芪中活性物質(zhì)黃芪甲苷通過減輕CD36介導的鐵死亡,減少擴張型心肌病的心肌功能障礙[37]。阿托伐他汀通過逆轉(zhuǎn)鐵死亡抑制異丙腎上腺素誘導的心功能紊亂和心肌重構(gòu)[32]。吡咯并喹啉醌通過誘導Yes相關(guān)蛋白相關(guān)的抗鐵死亡活性來減緩或預防心肌肥厚病理進展從而延緩心力衰竭[38]。血清磷酸甘油酸變位酶5(phosphoglycerate mutase 5,PGAM5)減少Keap1/Nrf2/ROS信號通路誘導的氧化應(yīng)激和鐵死亡,所以PGAM5可作為治療心力衰竭潛在治療靶點[39]。KATP通道激活劑(左西孟旦)通過激活連接蛋白43逆轉(zhuǎn)心力衰竭期間的心臟功能障礙和心肌細胞鐵死亡[40]。綜上,激活KATP通道可逆轉(zhuǎn)由鐵死亡誘導心力衰竭的進展。

      鐵死亡介導KATP通道功能改變在心力衰竭病程中發(fā)揮重要作用。心力衰竭時PKC以膜激活方式作用于細胞膜,長時間、過度PKC激活,造成ACSL4磷酸化誘導鐵死亡發(fā)生;鐵死亡發(fā)生時,細胞膜脂質(zhì)過氧化導致細胞膜損傷,引起KATP通道損傷,尤其是調(diào)節(jié)亞基SUR;損傷KATP通道導致細胞內(nèi)Ca2+超載,進而加重心肌肥厚、心肌纖維化等,最后引起心力衰竭。因此,靶向鐵死亡關(guān)鍵調(diào)控因子,激活KATP通道,延緩、逆轉(zhuǎn)心力衰竭病理進展,具有重大臨床價值。

      參考文獻

      [1]Savarese G,Stolfo D,Sinagra G,et al.Heart failure with mid-range or mildly reduced ejection fraction[J].Nat Rev Cardiol,2022,19(2):100-116.

      [2]Kaneko H,Yano Y,Itoh H,et al.Association of blood pressure classification using the 2017 American College of Cardiology/American Heart Association blood pressure guideline with risk of heart failure and atrial fibrillation[J].Circulation,2021,143(23): 2244-2253.

      [3]Yu H,Zhang F,Yan P,et al.LARP7 protects against heart failure by enhancing mitochondrial biogenesis[J].Circulation,2021,143(20):2007-2022.

      [4]Noma A.ATP-regulated K+ channels in cardiac muscle[J].Nature,1983,305(5930): 147-148.

      [5]Kao YR,Will B.The cost of competency?[J].Cell,2023,186(4):685-687.

      [6]Guo Y,Zhang H,Yan C,et al.Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction[J].Nat Chem Biol,2023,19(4):468-477.

      [7]Jiang X,Wu D,Jiang Z,et al.Protective effect of nicorandil on cardiac microvascular injury:role of mitochondrial integrity[J].Oxid Med Cell Longev,2021,2021:4665632.

      [8]Aziz Q,Chen J,Moyes AJ,et al.Vascular KATP channels protect from cardiac dysfunction and preserve cardiac metabolism during endotoxemia[J].J Mol Med (Berl),2020,98(8):1149-1160.

      [9]Pertiwi KR,Hillman RM,Scott CA,et al.Ischemia reperfusion injury produces,and ischemic preconditioning prevents,rat cardiac fibroblast differentiation: role of KATP channels[J].J Cardiovasc Dev Dis,2019,6(2):22.

      [10]Iguchi K,Saotome M,Yamashita K,et al.Pinacidil,a KATP channel opener,stimulates cardiac Na+/Ca2+ exchanger function through the NO/cGMP/PKG signaling pathway in guinea pig cardiac ventricular myocytes[J].Naunyn Schmiedebergs Arch Pharmacol,2019,392(8): 949-959.

      [11]Bezerra Palácio P,Brito Lucas AM,Varlla de Lacerda Alexandre J,et al.Pharmacological and molecular docking studies reveal that glibenclamide competitively inhibits diazoxide-induced mitochondrial ATP-sensitive potassium channel activation and pharmacological preconditioning[J].Eur J Pharmacol,2021,908: 174379.

      [12]Paggio A,Checchetto V,Campo A,et al.Identification of an ATP-sensitive potassium channel in mitochondria[J].Nature,2019,572(7771):609-613.

      [13]Sakamoto K,Kurokawa J.Involvement of sex hormonal regulation of K+ channels in electrophysiological and contractile functions of muscle tissues[J].J Pharmacol Sci,2019,139(4):259-265.

      [14]Bai XJ,Hao JT,Zheng RH,et al.Glucagon-like peptide-1 analog liraglutide attenuates pressure-overload induced cardiac hypertrophy and apoptosis through activating ATP sensitive potassium channels[J].Cardiovasc Drugs Ther,2021,35(1):87-101.

      [15]Zhang F,Zhou GH,An Q,et al.Decreased gene expression of KACh and KATP channels in hyperthyroid rabbit atria[J].Int J Clin Exp Pathol,2022,15(3):145-151.

      [16]Singh GK,McClenaghan C,Aggarwal M,et al.A unique high-output cardiac hypertrophy phenotype arising from low systemic vascular resistance in Cantu syndrome[J].J Am Heart Assoc,2022,11(24):e027363.

      [17]van Vlerken-Ysla L,Tyurina YY,Kagan VE,et al.Functional states of myeloid cells in cancer[J].Cancer cell,2023,41(3):490-504.

      [18]Cheu JW,Lee D,Li Q,et al.Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer[J].Cell Mol Gastroenterol Hepatol,2023,16(1):133-159.

      [19]Xu S,Li X,Li Y,et al.Neuroprotective effect of Dl-3-n-butylphthalide against ischemia-reperfusion injury is mediated by ferroptosis regulation via the SLC7A11/GSH/GPX4 pathway and the attenuation of blood-brain barrier disruption[J].Front Aging Neurosci,2023,15:1028178.

      [20]Costa I,Barbosa DJ,Benfeito S,et al.Molecular mechanisms of ferroptosis and their involvement in brain diseases[J].Pharmacol Ther,2023,244:108373.

      [21]Huang L,F(xiàn)eng J,Zhu J,et al.A strategy of Fenton reaction cycloacceleration for high performance ferroptosis therapy initiated by tumor microenvironment remodeling[J].Adv Healthc Mater,2023,12(18):e2203362.

      [22]Chen L,Shi D,Guo M.The roles of PKC-δ and PKC-ε in myocardial ischemia/reperfusion injury[J].Pharmacol Res,2021,170:105716.

      [23]Liu X,Wang Y,Zhang H,et al.Different protein kinase C isoenzymes mediate inhibition of cardiac rapidly activating delayed rectifier K+ current by different G-protein coupled receptors[J].Br J Pharmacol,2017,174(23):4464-4477.

      [24]Rohde S,Sabri A,Kamasamudran R,et al.The alpha(1)-adrenoceptor subtype- and protein kinase C isoform-dependence of Norepinephrine’s actions in cardiomyocytes[J].J Mol Cell Cardiol,2000,32(7):1193-1209.

      [25]Huang S,Wang W,Li L,et al.P2X7 receptor deficiency ameliorates STZ-induced cardiac damage and remodeling through PKCβ and ERK[J].Front Cell Dev Biol,2021,9:692028.

      [26]Lin HJ,Mahendran R,Huang HY,et al.Aqueous extract of Solanum nigrum attenuates Angiotensin-II induced cardiac hypertrophy and improves cardiac function by repressing protein kinase C-ζ to restore HSF2 deSUMOlyation and Mel-18-IGF-IIR signaling suppression[J].J Ethnopharmacol,2022,284:114728.

      [27]Zhou R,Chen Y,Li S,et al.TRPM7 channel inhibition attenuates rheumatoid arthritis articular chondrocyte ferroptosis by suppression of the PKCα-NOX4 axis[J].Redox Biol,2022,55:102411.

      [28]Zhang HL,Hu BX,Li ZL,et al.PKCβⅡ phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis[J].Nat Cell Biol,2022,24(1):88-98.

      [29]Chen X,Song X,Li J,et al.Identification of HPCAL1 as a specific autophagy receptor involved in ferroptosis[J].Autophagy,2023,19(1):54-74.

      [30]Zhang X,Zheng Q,Yue X,et al.ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation[J].J Exp Clin Cancer Res,2022,41(1):79.

      [31]Popov SV,Mukhomedzyanov AV,Maslov LN,et al.The infarct-reducing effect of the δ2 opioid receptor agonist deltorphin Ⅱ:the molecular mechanism[J].Membranes (Basel),2023,13(1):63.

      [32]Ning D,Yang X,Wang T,et al.Atorvastatin treatment ameliorates cardiac function and remodeling induced by isoproterenol attack through mitigation of ferroptosis[J].Biochem Biophys Res Commun,2021,574:39-47.

      [33]Sun L,Wang H,Yu S,et al.Herceptin induces ferroptosis and mitochondrial dysfunction in H9c2 cells[J].Int J Mol Med,2022,49(2):17.

      [34]Zhang Z,Tang J,Song J,et al.Elabela alleviates ferroptosis,myocardial remodeling,fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling[J].Free Radic Biol Med,2022,181:130-142.

      [35]Liu J,Lane S,Lall R,et al.Circulating hemopexin modulates anthracycline cardiac toxicity in patients and in mice[J].Sci Adv,2022,8(51):eadc9245.

      [36]Zhang X,Zheng C,Gao Z,et al.SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis[J].Cardiovasc Drugs Ther,2022,36(3):437-447.

      [37]Li X,Li Z,Dong X,et al.Astragaloside Ⅳ attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis[J].Phytother Res,2023,37(7):3042-3056.

      [38]Zhou J,Yu T,Wu G,et al.Pyrroloquinoline quinone modulates YAP-related anti-ferroptotic activity to protect against myocardial hypertrophy[J].Front Pharmacol,2022,13:977385.

      [39]Li S,Wen P,Zhang D,et al.PGAM5 expression levels in heart failure and protection ROS-induced oxidative stress and ferroptosis by Keap1/Nrf2[J].Clin Exp Hypertens,2023,45(1):2162537.

      [40]Zhang LL,Chen GH,Tang RJ,et al.Levosimendan reverses cardiac malfunction and cardiomyocyte ferroptosis during heart failure with preserved ejection fraction via connexin 43 signaling activation[J].Cardiovasc Drugs Ther,2023.DOI:10.1007/s10557-023-07441-4.

      收稿日期:2024-01-07

      猜你喜歡
      心律失常心力衰竭
      BNP、甲狀腺激素水平在老年心衰患者病情及預后判斷中的價值
      心肌梗死急診介入治療中心律失常的有效護理干預
      參松養(yǎng)心膠囊治療心律失常的研究分析
      從“虛、痰、瘀、毒”論治老年冠心病心律失常探析
      慢性心衰患者血尿酸和腦鈉肽水平檢測的臨床意義
      嬰兒肺炎合并心力衰竭的臨床護理分析
      中西醫(yī)結(jié)合治療冠心病心律失常療效觀察
      今日健康(2016年12期)2016-11-17 19:31:51
      曲美他嗪治療急性心肌炎心律失常和心功能療效研究
      今日健康(2016年12期)2016-11-17 12:26:26
      中藥湯劑聯(lián)合中藥足浴及耳穴壓豆治療慢性心力衰竭的臨床觀察
      β受體阻滯劑治療心律失常的效果分析
      左云县| 泽库县| 天门市| 苍溪县| 凤翔县| 泾源县| 伊宁县| 麻栗坡县| 城固县| 新野县| 文水县| 深州市| 淮滨县| 乌兰察布市| 临西县| 博罗县| 平和县| 左云县| 柯坪县| 海城市| 平凉市| 平度市| 仁怀市| 衢州市| 黄冈市| 万宁市| 潼关县| 定结县| 临武县| 鸡泽县| 遵义市| 山阳县| 内黄县| 皮山县| 辽阳市| 阳高县| 萝北县| 苏尼特左旗| 黔东| 越西县| 富民县|