基金項目:黑龍江省博士后科研啟動資助金(LBH-Q20119)
通信作者:魯靜,E-mail:694608205@qq.com
【摘要】糖尿病心肌病(DCM)是糖尿病患者死亡的主要原因,但確切調(diào)控機制仍不清楚。近年研究發(fā)現(xiàn),固有免疫應(yīng)答是DCM發(fā)展過程的中心環(huán)節(jié)。模式識別受體是執(zhí)行固有免疫功能的重要分子,主要包括Toll樣受體、NOD樣受體、視黃酸誘導(dǎo)基因Ⅰ樣受體、C型凝集素受體、黑色素瘤缺乏因子2樣受體、清道夫受體和環(huán)狀GMP-AMP合成酶?,F(xiàn)就上述幾種模式識別受體在DCM中作用的研究進(jìn)展進(jìn)行綜述,以期為DCM的臨床治療提供新思路和新靶點。
【關(guān)鍵詞】糖尿病心肌??;模式識別受體;固有免疫應(yīng)答;炎癥反應(yīng)
【DOI】10.16806/j.cnki.issn.1004-3934.2024.06.016
Pattern Recognition Receptors in Diabetic Cardiomyopathy
DONG Zeyao,ZHUANG Xiaomi,LU Jing
(The First Affiliated Hospital of Harbin Medical University,Harbin 150001,Heilongjiang,China)
【Abstract】Diabetic cardiomyopathy (DCM) is a leading cause of death among patients with diabetes,yet the precise regulatory mechanisms remain unclear.Recent studies have discovered that the innate immune response plays a central role in the progression of DCM.Pattern recognition receptors are critical molecules that execute the functions of the innate immune system,including Toll-like receptor,NOD-like receptor,retinoic acid-inducible gene-Ⅰ-like receptor,C-type lectin receptor,absent in melanoma 2-like receptor,scavenger receptor,and cyclic GMP-AMP synthase.This review summarizes the research progress on the role of these pattern recognition receptors in DCM,aiming to provide new insights and targets for the clinical treatment of DCM.
【Keywords】Diabetic cardiomyopathy;Pattern recognition receptor;Innate immune response;Inflammation reaction
據(jù)國際糖尿病聯(lián)盟《第10版全球糖尿病地圖》[1]最新數(shù)據(jù)顯示,中國現(xiàn)有糖尿病患者1.4億,是糖尿病患病人數(shù)最多的國家,且患病率仍在迅速增長。糖尿病心肌?。╠iabetic cardiomyopathy,DCM)是一種獨立于高血壓、冠狀動脈疾病和瓣膜性心臟病等心血管疾病的特異性心肌功能障礙,己成為糖尿病患者死亡的主要原因。當(dāng)機體出現(xiàn)胰島素缺乏和/或胰島素抵抗時,持續(xù)的高血糖狀態(tài)將導(dǎo)致心臟僵硬、肥大、纖維化和細(xì)胞信號異常等結(jié)構(gòu)和功能異常,早期以舒張功能減退為特征,晚期出現(xiàn)收縮功能障礙,最終發(fā)展為心力衰竭[2]。
DCM的發(fā)病機制復(fù)雜,至今尚未闡明。普遍認(rèn)為DCM的發(fā)生與胰島素代謝信號紊亂、炎癥反應(yīng)、晚期糖基化終末產(chǎn)物增加、脂質(zhì)代謝異常、氧化應(yīng)激、內(nèi)質(zhì)網(wǎng)應(yīng)激、線粒體功能障礙、鈣調(diào)節(jié)失衡、腎素-血管緊張素-醛固酮系統(tǒng)激活、冠狀動脈內(nèi)皮細(xì)胞功能障礙、外泌體失調(diào)、自噬相關(guān)通路激活、細(xì)胞凋亡、細(xì)胞壞死等多種因素有關(guān)[3]。心肌免疫炎癥反應(yīng)包括固有免疫和獲得性免疫兩大類。近年研究發(fā)現(xiàn),固有免疫炎癥反應(yīng)是DCM發(fā)展過程的中心環(huán)節(jié)。模式識別受體(pattern recognition receptor,PRR)是執(zhí)行固有免疫功能的重要分子,通過與病原相關(guān)分子模式或損傷相關(guān)分子模式(damage-associated molecular pattern,DAMP)結(jié)合,識別感知包括病原體侵襲、環(huán)境信號變化等損傷因素,啟動免疫應(yīng)答。在DCM中,心臟組織和細(xì)胞受損產(chǎn)生系列DAMP,被PRR檢測和識別,激活巨噬細(xì)胞、樹突狀細(xì)胞等免疫細(xì)胞產(chǎn)生促炎細(xì)胞因子,進(jìn)一步加劇DCM的發(fā)展[4-5]。
1" PRR在DCM中的作用
目前PRR主要包括Toll樣受體(Toll-like receptor,TLR)、NOD樣受體(NOD-like receptor,NLR)、視黃酸誘導(dǎo)基因Ⅰ樣受體(retinoic acid-inducible geneⅠ-like receptor,RLR)、C型凝集素受體(C-type lectin receptor,CLR)、黑色素瘤缺乏因子2樣受體(absent in melanoma 2-like receptor,ALR),以及其他核酸感應(yīng)受體[6]。
1.1" TLR
TLR是研究最廣泛的PRR,迄今為止,已在人類中鑒定出10種TLR(TLR1~10),小鼠中鑒定出12種TLR(TLR1~9,TLR11~13)。作為一種Ⅰ型跨膜糖蛋白,當(dāng)TLR與配體結(jié)合后,通過招募髓系分化初級反應(yīng)蛋白質(zhì)88(myeloid differentiation primary response protein 88,MyD88)、β干擾素TIR結(jié)構(gòu)域銜接蛋白(TIR-domain-containing adapter-inducing interferon-β,TRIF)等適配器蛋白,促進(jìn)下游信號的傳遞。TLR在免疫細(xì)胞(如巨噬細(xì)胞和樹突狀細(xì)胞)及非免疫細(xì)胞(如心肌細(xì)胞、成纖維細(xì)胞和內(nèi)皮細(xì)胞)均有表達(dá),可識別細(xì)菌、分枝桿菌、病毒、真菌、寄生蟲等,通常以其在細(xì)胞的定位分為兩類:位于細(xì)胞膜的TLR1~2、TLR4~6、TLR11和位于內(nèi)溶酶體膜的TLR3、TLR7~10[7]。
目前在心臟組織研究較為成熟的TLR是TLR4。TLR4參與介導(dǎo)動脈粥樣硬化、主動脈瘤、心肌缺血再灌注損傷、心肌肥厚、心肌纖維化、心力衰竭等多種心血管疾病的病理進(jìn)程[8]。TLR4在糖尿病患者標(biāo)本、模型小鼠和大鼠心臟組織中表達(dá)上調(diào);高糖上調(diào)心肌細(xì)胞、內(nèi)皮細(xì)胞、單核細(xì)胞TLR4的表達(dá),通過激活下游核因子κB(nuclear factor-κB,NF-κB)和促分裂原活化的蛋白激酶(mitogenactivated protein kinase,MAPK)信號誘導(dǎo)炎癥因子過表達(dá),引發(fā)心肌肥厚、纖維化、收縮功能障礙等,導(dǎo)致DCM;抑制TLR4顯著改善高糖引發(fā)的心臟重構(gòu)和功能障礙[9],提示TLR4有望成為DCM臨床治療的靶點。Luo等[10]發(fā)現(xiàn),MyD88的干擾小RNA或小分子抑制劑LM8可顯著抑制心肌細(xì)胞MyD88-TLR4復(fù)合體的形成,下調(diào)MAPKs/NF-κB級聯(lián)反應(yīng),抑制促炎細(xì)胞因子的表達(dá);在1型和2型糖尿病小鼠模型中,LM8可通過抑制TLR4-MyD88-MAPKs/NF-κB信號通路達(dá)到抗炎、抗肥大和抗纖維化的作用,保護(hù)心臟功能。Yao等[11]發(fā)現(xiàn)聯(lián)合應(yīng)用紫丁香苷和田薊苷可通過TLR4/MyD88/NF-κB/NLRP3通路和PGC1α/SIRT3通路的相互串?dāng)_機制改善DCM,并且減輕心臟炎癥、氧化應(yīng)激、細(xì)胞凋亡和線粒體功能障礙,而選擇性SIRT3抑制劑3-TYP可抑制PGC1α/SIRT3通路,消除紫丁香苷和田薊苷聯(lián)合治療對DCM的保護(hù)作用,但對TLR4和MyD88表達(dá)降低無顯著影響。TAK-242是靶向TLR4的小分子抑制劑,在胰島分離早期應(yīng)用TAK-242,可有效阻斷TLR4介導(dǎo)的無菌性炎癥反應(yīng),提高胰島移植成功率[12]。Zhu等[13]發(fā)現(xiàn)TAK-242可通過阻斷TLR4/NF-κB通路,增強小檗堿對高糖誘導(dǎo)腎小球足細(xì)胞炎癥和凋亡的抑制作用。其他TLR,如TLR2基因敲除可顯著抑制氧化應(yīng)激誘導(dǎo)的細(xì)胞凋亡和膠原的產(chǎn)生,改善DCM小鼠心肌纖維化和心功能不全的病理進(jìn)程[14];TLR6基因敲除可顯著抑制高果糖誘導(dǎo)DCM小鼠的氧化應(yīng)激和炎癥反應(yīng),改善心肌纖維化[15]。然而迄今為止,尚未有靶向TLR的DCM治療藥物投入臨床應(yīng)用。
1.2" NLR
NLR是一類定位于細(xì)胞質(zhì)的PRR,由負(fù)責(zé)配體識別的C端結(jié)構(gòu)域、中心位置的核苷酸結(jié)合寡聚化結(jié)構(gòu)域以及負(fù)責(zé)細(xì)胞內(nèi)信號傳導(dǎo)的N端結(jié)構(gòu)域組成。根據(jù)N端結(jié)構(gòu)域的不同,NLR通常分為NLRA、NLRB、NLRC和NLRP四類亞族。NLRP是NLR的最大亞族,包括NLRP1~NLRP14,其中NLRP3是近年研究的熱點NLR。有報道[16-17]顯示,高血糖、胰島素抵抗、高血脂等可作為DAMP被心肌細(xì)胞、成纖維細(xì)胞和冠狀動脈內(nèi)皮細(xì)胞NLRP3識別,NLRP3與凋亡相關(guān)斑點樣蛋白和胱天蛋白酶1的前體(pro-cysteine aspartic acid specific protease-1,pro-caspase-1)組成NLRP3炎癥小體,自切割激活caspase-1,激活的caspase-1一方面切割Gasdermin D蛋白(GSDMD)的N端序列,使其結(jié)合到細(xì)胞膜上形成孔洞,另一方面切割白細(xì)胞介素-1β的前體(pro-interleukin-1β,pro-IL-1β)和白細(xì)胞介素-18的前體(pro-interleukin-18,pro-IL-18),促使IL-1β和IL-18成熟和分泌,引發(fā)心肌細(xì)胞焦亡和肥大、心肌纖維化、血管內(nèi)膜屏障受損、單位心肌毛細(xì)血管減少等,最終加重DCM的病理進(jìn)程。
高糖顯著上調(diào)H9c2、HL-1、人和大鼠原代心肌細(xì)胞NLRP3的表達(dá),DCM小鼠、大鼠模型心肌中NLRP3表達(dá)上調(diào),NLRP3基因敲除可顯著抑制小鼠、大鼠DCM的進(jìn)展[16];組織蛋白酶B通過NLRP3介導(dǎo)的細(xì)胞焦亡導(dǎo)致小鼠心臟重構(gòu),加重DCM[18];葛根素通過P2X嘌呤能受體7(P2X purinoceptor 7,P2X7)抑制NLRP3-caspase-1-GSDMD介導(dǎo)的細(xì)胞焦亡改善DCM[19];達(dá)格列凈和沙格列汀通過抑制NLRP3炎癥小體的激活來改善2型糖尿病小鼠DCM的發(fā)展[20],提示靶向抑制NLRP3有望為DCM的臨床治療帶來新的突破。MCC950是一種NLRP3特異性小分子抑制劑[21]。在動物和細(xì)胞模型中發(fā)現(xiàn),MCC950可通過抑制NLRP3降低caspase-1活性,進(jìn)而下調(diào)炎癥因子IL-1β、IL-18的表達(dá),緩解小鼠心肌梗死后心肌纖維化的進(jìn)程,改善心臟功能[22];MCC950可通過抑制NLPR3/caspase-1/IL-1β通路減輕2型糖尿病db/db小鼠腎臟纖維化損傷[23]。然而在一項類風(fēng)濕性關(guān)節(jié)炎Ⅱ期臨床試驗[24]中發(fā)現(xiàn),MCC950可上調(diào)血清肝酶水平導(dǎo)致肝臟毒性,但具體原因尚不清楚。McBride等[25]對MCC950的化學(xué)結(jié)構(gòu)進(jìn)行修改后得到新的選擇性NLRP3抑制劑GDC-2394,且在連續(xù)14 d給予食蟹猴500 mg/(kg·d)的GDC-2394后,未發(fā)現(xiàn)肝臟和腎臟產(chǎn)生毒性變化,遺憾的是該藥物至今尚未進(jìn)入臨床試驗,更多NLRP3靶向藥物的研發(fā)對DCM的防治具有重要的臨床意義和廣闊的應(yīng)用前景。
1.3" RLR
RLR是位于細(xì)胞質(zhì)的RNA解旋酶家族,主要包括視黃酸誘導(dǎo)基因Ⅰ(retinoic acid-inducible gene Ⅰ,RIG-Ⅰ)、黑色素瘤分化相關(guān)基因5(melanoma differentiation -associated gene 5,MDA5)、遺傳學(xué)和生理學(xué)實驗室蛋白2(laboratory of genetics and physiology 2,LGP2)三個成員。RLR可識別細(xì)胞內(nèi)異常存在的病毒,激活免疫系統(tǒng),保護(hù)機體免受病毒的侵害,在抗病毒感染方面展現(xiàn)了良好的應(yīng)用前景。深入研究發(fā)現(xiàn),宿主來源的RNA同樣可激活RLR,在死于暴發(fā)性1型糖尿病患者的胰腺組織中發(fā)現(xiàn),RIG-Ⅰ和MDA5表達(dá)顯著上調(diào)[26];在胰島β細(xì)胞株小鼠胰島素瘤細(xì)胞和2型糖尿病db/db小鼠胰島中發(fā)現(xiàn),糖脂毒性和代謝性炎癥可激活RIG-Ⅰ,通過誘導(dǎo)Src/STAT3/Skp2信號傳導(dǎo)阻滯,抑制胰島β細(xì)胞增殖[27];LGP2通常作為RIG-Ⅰ和MDA5的負(fù)反饋調(diào)節(jié)分子發(fā)揮作用,但其在DCM中的作用尚有待研究。
1.4" CLR
CLR是鈣依賴的聚糖結(jié)合蛋白,可識別病毒、細(xì)菌、真菌、蠕蟲以及DAMP的特定碳水化合物結(jié)構(gòu),激活免疫系統(tǒng),其配體顯示出作為疫苗佐劑的潛在發(fā)展策略[28]。有報道[29]稱,在肥胖條件下,脂肪組織中的巨噬細(xì)胞可通過TLR4/NF-κB途徑誘導(dǎo)Mincle(巨噬細(xì)胞誘導(dǎo)的CLR)表達(dá),在肥胖誘導(dǎo)的炎癥中發(fā)揮作用。甘露糖結(jié)合凝集素(mannose binding lectin,MBL)是肝臟產(chǎn)生的一種血清型CLR,Pavlov等[30]發(fā)現(xiàn)MBL參與介導(dǎo)急性高血糖誘導(dǎo)的心肌病和血管功能障礙,MBL基因敲除可顯著改善糖尿病小鼠心臟射血分?jǐn)?shù)、心肌肥厚、膠原沉積以及炎癥細(xì)胞浸潤情況。
1.5" ALR
ALR是一類細(xì)胞質(zhì)DNA感受器,可識別各種細(xì)菌和病毒的DNA。當(dāng)機體受到細(xì)菌和病毒的DNA侵染時,ALR與其配體凋亡相關(guān)斑點樣蛋白和caspase-1相互偶聯(lián),促進(jìn)炎癥小體的形成以及IL-1β和IL-18的成熟和分泌,啟動固有免疫應(yīng)答。ALR可通過細(xì)胞凋亡和焦亡途徑參與腫瘤的調(diào)控[31]。黑色素瘤缺乏因子2炎癥小體(absent in melanoma 2 inflammasome,AIM2)是最具代表性的ALR。研究發(fā)現(xiàn),糖尿病患者唾液中的AIM2含量升高[32],AIM2參與促進(jìn)糖尿病加速動脈粥樣硬化的病理進(jìn)程[33]。Wang等[34]證實,高糖可通過活性氧途徑上調(diào)AIM2的表達(dá),導(dǎo)致H9c2心肌細(xì)胞發(fā)生焦亡;AIM2在2型糖尿病大鼠模型心臟組織中表達(dá)升高,AIM2基因敲除可顯著改善2型糖尿病大鼠代謝異常、心肌纖維化、心肌細(xì)胞死亡以及心室重塑[34]。
1.6" 其他PRR
清道夫受體(scavenger receptor,SR)是一類位于細(xì)胞表面的多功能PRR,參與介導(dǎo)動脈粥樣硬化斑塊的形成,并在2型糖尿病并發(fā)缺血性心臟病患者心外膜脂肪組織中高表達(dá)[35]。SR包括SR-A、SR-B、SR-E等多個亞族,其中SR-B的亞型SR-B2也被稱為CD36,可與氧化型低密度脂蛋白結(jié)合介導(dǎo)泡沫細(xì)胞的形成,在動脈粥樣硬化病變中起到關(guān)鍵作用[36]。早前研究[37]發(fā)現(xiàn)大鼠心臟收縮功能障礙與CD36在肌膜上的增多相關(guān),抑制CD36可改善大鼠心肌細(xì)胞脂質(zhì)蓄積和心臟收縮功能障礙。最新報道[38]顯示,黃芪甲苷抑制CD36表達(dá),其改善DCM大鼠心肌損傷和收縮功能障礙的作用是通過抑制心肌細(xì)胞鐵死亡和脂質(zhì)沉積介導(dǎo)的。
環(huán)狀GMP-AMP合成酶(cyclic GMP-AMP synthase,cGAS)是近年發(fā)現(xiàn)的新型細(xì)胞質(zhì)DNA感受器。當(dāng)發(fā)生病毒和細(xì)菌感染時,cGAS識別宿主細(xì)胞中異常的外源性雙鏈DNA,形成二級信使環(huán)GMP-AMP(cGAMP),cGAMP與干擾素刺激因子(STING)結(jié)合,激活下游信號通路,誘導(dǎo)干擾素和炎癥因子表達(dá)[39]。Ma等[40]發(fā)現(xiàn),在棕櫚酸誘導(dǎo)的脂毒性H9c2細(xì)胞模型和肥胖相關(guān)的DCM小鼠模型中,cGAS-STING及其下游炎癥信號通路激活,DCM小鼠模型腹腔注射STING抑制劑C-176和干擾小RNA干擾脂毒性H9c2細(xì)胞模型中的STING基因表達(dá)可顯著改善心肌細(xì)胞炎癥和凋亡,cGAS-STING在肥胖相關(guān)DCM的病理進(jìn)程中發(fā)揮著關(guān)鍵作用。
2" 結(jié)語
糖尿病患者持續(xù)性高血糖可導(dǎo)致全身組織器官受損,釋放DAMP,被機體PRR識別,觸發(fā)下游信號通路產(chǎn)生促炎細(xì)胞因子,激活無菌性炎癥反應(yīng),引發(fā)心肌纖維化、心肌肥大、心室重塑、心臟收縮功能障礙等,最終導(dǎo)致心力衰竭。因此,PRR在DCM病理進(jìn)程中發(fā)揮關(guān)鍵作用,且有望成為DCM早期篩查、診斷和評估嚴(yán)重程度的生物標(biāo)志物,在DCM的預(yù)防、診斷和治療中具有廣闊的應(yīng)用前景。
長期以來對PRR的研究主要集中于TLR和NLR,尤其是TLR4和NLRP3。大量動物和細(xì)胞實驗證實TLR4和NLRP3參與調(diào)控DCM,且靶向抑制TLR4和NLRP3顯著延緩DCM的發(fā)生發(fā)展,但尚缺乏臨床證據(jù)支持,相信未來會有更多的靶向藥物問世并投入臨床試驗。近年來,越來越多的證據(jù)顯示RLR、CLR、ALR、SR、cGAS在DCM的病理進(jìn)程中同樣發(fā)揮關(guān)鍵作用,深入研究其作用機制,挖掘核心靶點,有望為DCM的臨床治療提供新的思路。
參考文獻(xiàn)
[1]Sun H,Saeedi P,Karuranga S,et al.IDF diabetes atlas:global,regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J].Diabetes Res Clin Pract,2022,183:109119.
[2]Murtaza G,Virk HUH,Khalid M,et al.Diabetic cardiomyopathy—A comprehensive updated review[J].Prog Cardiovasc Dis,2019,62(4):315-326.
[3]Jia G,Whaley-Connell A,Sowers JR.Diabetic cardiomyopathy:a hyperglycaemia- and insulin-resistance-induced heart disease[J].Diabetologia,2018,61(1):21-28.
[4]Wang X,Antony V,Wang Y,et al.Pattern recognition receptor-mediated inflammation in diabetic vascular complications[J].Med Res Rev,2020,40(6):2466-2484.
[5]Zhou ZF,Jiang L,Zhao Q,et al.Roles of pattern recognition receptors in diabetic nephropathy[J].J Zhejiang Univ Sci B,2020,21(3):192-203.
[6]Xu M,Liu PP,Li H.Innate immune signaling and its role in metabolic and cardiovascular diseases[J].Physiol Rev,2019,99(1):893-948.
[7]Wicherska-Pawowska K,Wróbel T,Rybka J.Toll-like receptors (TLRs),NOD-like receptors (NLRs),and RIG-Ⅰ-like receptors (RLRs) in innate immunity.TLRs,NLRs,and RLRs ligands as immunotherapeutic agents for hematopoietic diseases[J].Int J Mol Sci,2021,22(24):13397.
[8]Balistreri CR,Ruvolo G,Lio D,et al.Toll-like receptor-4 signaling pathway in aorta aging and diseases:“its double nature”[J].J Mol Cell Cardiol,2017,110:38-53.
[9]Wang Y,Luo W,Han J,et al.MD2 activation by direct AGE interaction drives inflammatory diabetic cardiomyopathy[J].Nat Commun,2020,11(1):2148.
[10]Luo W,Wu G,Chen X,et al.Blockage of MyD88 in cardiomyocytes alleviates cardiac inflammation and cardiomyopathy in experimental diabetic mice[J].Biochem Pharmacol,2022,206:115292.
[11]Yao J,Li Y,Jin Y,et al.Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways[J].Int Immunopharmacol,2021,96:107728.
[12]Chang CA,Murphy K,Kane RR,et al.Early TLR4 blockade attenuates sterile inflammation-mediated stress in islets during isolation and promotes successful transplant outcomes[J].Transplantation,2018,102(9):1505-1513.
[13]Zhu L,Han J,Yuan R,et al.Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway[J].Biol Res,2018,51(1):9.
[14]Lei L,Hu H,Lei Y,et al.Leukocytic toll-like receptor 2 knockout protects against diabetes-induced cardiac dysfunction[J].Biochem Biophys Res Commun,2018,506(3):668-673.
[15]Zhang Y,Zhang Y.Toll-like receptor-6 (TLR6) deficient mice are protected from myocardial fibrosis induced by high fructose feeding through anti-oxidant and inflammatory signaling pathway[J].Biochem Biophys Res Commun,2016,473(2):388-395.
[16]Ding K,Song C,Hu H,et al.The role of NLRP3 inflammasome in diabetic cardiomyopathy and its therapeutic implications[J].Oxid Med Cell Longev,2022,2022:3790721.
[17]Zeng C,Wang R,Tan H.Role of pyroptosis in cardiovascular diseases and its therapeutic implications[J].Int J Biol Sci,2019,15(7):1345-1357.
[18]Liu C,Yao Q,Hu T,et al.Cathepsin B deteriorates diabetic cardiomyopathy induced by streptozotocin via promoting NLRP3-mediated pyroptosis[J].Mol Ther Nucleic Acids,2022,30:198-207.
[19]Sun S,Gong D,Liu R,et al.Puerarin inhibits NLRP3-Caspase-1-GSDMD-mediated pyroptosis via P2X7 receptor in cardiomyocytes and macrophages[J].Int J Mol Sci,2023,24(17):13169.
[20]Ye Y,Bajaj M,Yang HC,et al.SGLT-2 inhibition with dapagliflozin reduces the activation of the NLRP3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes.Further augmentation of the effects with saxagliptin,a DPP4 inhibitor[J].Cardiovasc Drugs Ther,2017,31(2):119-132.
[21]Li H,Guan Y,Liang B,et al.Therapeutic potential of MCC950,a specific inhibitor of NLRP3 inflammasome[J].Eur J Pharmacol,2022,928:175091.
[22]Gao R,Shi H,Chang S,et al.The selective NLRP3-inflammasome inhibitor MCC950 reduces myocardial fibrosis and improves cardiac remodeling in a mouse model of myocardial infarction[J].Int Immunopharmacol,2019,74:105575.
[23]Zhang C,Zhu X,Li L,et al.A small molecule inhibitor MCC950 ameliorates kidney injury in diabetic nephropathy by inhibiting NLRP3 inflammasome activation[J].Diabetes Metab Syndr Obes,2019,12:1297-1309.
[24]Mangan MSJ,Olhava EJ,Roush WR,et al.Targeting the NLRP3 inflammasome in inflammatory diseases[J].Nat Rev Drug Discov,2018,17(8):588-606.
[25]McBride C,Trzoss L,Povero D,et al.Overcoming preclinical safety obstacles to discover (S)-N-((1,2,3,5,6,7-Hexahydro-s-indacen-4-yl)carbamoyl)-6-(methylamino)-6,7-dihydro-5H-pyrazolo[5,1-b][1,3]oxazine-3-sulfonamide (GDC-2394):a potent and selective NLRP3 inhibitor[J].J Med Chem,2022,65(21):14721-14739.
[26]Aida K,Nishida Y,Tanaka S,et al.RIG-Ⅰ- and MDA5-initiated innate immunity linked with adaptive immunity accelerates beta-cell death in fulminant type 1 diabetes[J].Diabetes,2011,60(3):884-889.
[27]Pan Y,Li G,Zhong H,et al.RIG-Ⅰ inhibits pancreatic β cell proliferation through competitive binding of activated Src[J].Sci Rep,2016,6:28914.
[28]Li M,Zhang R,Li J,et al.The role of C-type lectin receptor signaling in the intestinal microbiota-inflammation-cancer axis[J].Front Immunol,2022,13:894445.
[29]Ichioka M,Suganami T,Tsuda N,et al.Increased expression of macrophage-inducible C-type lectin in adipose tissue of obese mice and humans[J].Diabetes,2011,60(3):819-826.
[30]Pavlov VI,La Bonte LR,Baldwin WM,et al.Absence of mannose-binding lectin prevents hyperglycemic cardiovascular complications[J].Am J Pathol,2012,180(1):104-112.
[31]Li D,Wu M.Pattern recognition receptors in health and diseases[J].Signal Transduct Target Ther,2021,6(1):291.
[32]Arunachalam LT,Suresh S,Lavu V,et al.Association of salivary levels of DNA sensing inflammasomes AIM2,IFI16 and cytokine IL 18 with periodontitis and diabetes[J].J Periodontol,2024,95(2):114-124.
[33]Hsu CC,F(xiàn)idler TP,Kanter JE,et al.Hematopoietic NLRP3 and AIM2 inflammasomes promote diabetes-accelerated atherosclerosis,but increased necrosis is independent of pyroptosis[J].Diabetes,2023,72(7):999-1011.
[34]Wang X,Pan J,Liu H,et al.AIM2 gene silencing attenuates diabetic cardiomyopathy in type 2 diabetic rat model[J].Life Sci,2019,221:249-258.
[35]Santiago-Fernández C,Pérez-Belmonte LM,Millán-Gómez M,et al.Overexpression of scavenger receptor and infiltration of macrophage in epicardial adipose tissue of patients with ischemic heart disease and diabetes[J].J Transl Med,2019,17(1):95.
[36]Alquraini A,El Khoury J.Scavenger receptors[J].Curr Biol,2020,30(14):R790-R795.
[37]Angin Y,Steinbusch LKM,Simons PJ,et al.CD36 inhibition prevents lipid accumulation and contractile dysfunction in rat cardiomyocytes[J].Biochem J,2012,448(1):43-53.
[38]Li X,Li Z,Dong X,et al.Astragaloside Ⅳ attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis[J].Phytother Res,2023,37(7):3042-3056.
[39]Unterholzner L.Innate immune sensing by cGAS-STING in animals reveals unexpected messengers [J].Cell,2023,186(15):3145-3147.
[40]Ma XM,Geng K,Law BY,et al.Lipotoxicity-induced mtDNA release promotes diabetic cardiomyopathy by activating the cGAS-STING pathway in obesity-related diabetes[J].Cell Biol Toxicol,2023,39(1):277-299.
收稿日期:2023-09-15