基金項(xiàng)目:廣州市科技計(jì)劃項(xiàng)目(202002030081)
通信作者:張少衡,E-mail:shaohengzh67@163.com
【摘要】心血管疾病是全球主要死因,而M2巨噬細(xì)胞在心血管疾病中起著主導(dǎo)作用。了解M2巨噬細(xì)胞的作用機(jī)制有助于制定相應(yīng)的治療策略。M2巨噬細(xì)胞具有消除炎癥和修復(fù)心肌的能力,在心肌梗死后,減小梗死灶的大小,減少梗死后的纖維化,改善心肌重構(gòu)。許多研究發(fā)現(xiàn),通過調(diào)節(jié)細(xì)胞間的通信、巨噬細(xì)胞相關(guān)基因和蛋白的表達(dá),以及藥物靶向作用,M2巨噬細(xì)胞在心肌梗死中的炎癥調(diào)節(jié)作用可得到增強(qiáng),從而進(jìn)一步改善心肌修復(fù),減少心肌梗死后并發(fā)癥的發(fā)生?,F(xiàn)重點(diǎn)綜述M2巨噬細(xì)胞在缺血心肌治療中的進(jìn)展。
【關(guān)鍵詞】心肌梗死;巨噬細(xì)胞;細(xì)胞治療
【DOI】10.16806/j.cnki.issn.1004-3934.2024.06.015
Macrophage Therapy for Ischemic Myocardium
HUANG Aibao,ZHANG Shaoheng
(Guangzhou Red Cross Hospital of Jinan University,Guangzhou 510000,Guangdong,China)
【Abstract】Cardiovascular disease is the leading cause of death worldwide,and M2 macrophages play a dominant role in cardiovascular diseases.Understanding the mechanisms of M2 macrophages are beneficial for developing corresponding treatment strategies.M2 macrophages have the ability to eliminate inflammation and repair the myocardium after myocardial infarction,reducing infarct size,fibrosis after infarction,and improving myocardial remodeling.Many studies have found that the inflammatory regulation role of M2 macrophages in myocardial infarction can be enhanced by regulating cell communication,the expression of macrophage-related genes and proteins,as well as drug targeting,which could further improve myocardial repair and reduce the occurrence of complications after myocardial infarction.This review focused on the progress of M2 macrophages in the treatment of ischemic myocardium.
【Keywords】Myocardial infarction;Macrophage;Cell therapy
在全球范圍內(nèi),心血管疾病是首要的疾病死亡原因,給社會(huì)造成巨大的負(fù)擔(dān)[1]。當(dāng)心臟血液供應(yīng)減少或停止時(shí),心肌梗死(myocardial infarction,MI)就會(huì)發(fā)生,心肌細(xì)胞出現(xiàn)壞死[2]。隨之產(chǎn)生炎癥反應(yīng),引起心肌纖維化,形成瘢痕和不良重塑,引起心力衰竭和死亡的發(fā)生。盡管目前對(duì)MI的治療已有巨大突破,但其死亡率仍很高,使得有必要進(jìn)一步探索其生理及分子機(jī)制,以開發(fā)新的治療方案[3]。
1nbsp; 心肌巨噬細(xì)胞的類別
心肌含有常駐巨噬細(xì)胞(約占所有非心肌細(xì)胞的8%),主要來源于卵黃囊或胎兒肝臟,具有免疫監(jiān)測和調(diào)節(jié)心臟功能的作用[4]。同時(shí)這些巨噬細(xì)胞在穩(wěn)態(tài)下,可增殖而維持自身數(shù)量的穩(wěn)定,但出現(xiàn)心肌損傷后,它們會(huì)迅速被耗盡[5]。在心肌損傷中,心臟常駐巨噬細(xì)胞中C-C基序趨化因子受體2(C-C motif chemokine receptor 2,CCR2)陽性細(xì)胞(CCR2+)可促進(jìn)炎癥反應(yīng),而CCR2陰性細(xì)胞(CCR2-)起保護(hù)作用,促進(jìn)冠狀動(dòng)脈新生和心肌再生[6]。MI后,心臟內(nèi)皮細(xì)胞上調(diào)黏附分子和細(xì)胞因子,特別是C-C基序趨化因子配體2(C-C motif chemokine ligand 2,CCL2),后者可招募單核細(xì)胞到心肌中,隨后分化為巨噬細(xì)胞,介導(dǎo)炎癥的發(fā)生、發(fā)展和消退[7]。這種免疫反應(yīng)在MI的發(fā)病機(jī)制中起著至關(guān)重要的作用[8]。在MI導(dǎo)致的炎癥反應(yīng)過程中,分化而成的巨噬細(xì)胞參與MI后炎癥和纖維化。募集的巨噬細(xì)胞在脂多糖(lipopolysaccharide,LPS)或與輔助性T細(xì)胞1(helper T cell 1,Th1)細(xì)胞因子[如γ干擾素(interferon-γ,IFN-γ)、粒細(xì)胞-巨噬細(xì)胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)]聯(lián)合極化為M1巨噬細(xì)胞,產(chǎn)生促炎細(xì)胞因子,如白細(xì)胞介素(interleukin,IL)-1β、腫瘤壞死因子-α等。而募集的巨噬細(xì)胞在IL-4和IL-13刺激下可分化為M2巨噬細(xì)胞,產(chǎn)生IL-10和轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)等抗炎細(xì)胞因子(圖1)[9]。在心肌修復(fù)過程中,巨噬細(xì)胞介導(dǎo)兩個(gè)不同階段的炎癥反應(yīng),第一階段在缺血性損傷期間開始,壞死心肌釋放趨化因子/細(xì)胞因子,促進(jìn)中性粒細(xì)胞和促炎性M1巨噬細(xì)胞清除壞死組織;在第二階段,隨著組織修復(fù)的開始,梗死區(qū)的巨噬細(xì)胞從炎癥功能表型的M1巨噬細(xì)胞向具有抗炎和促修復(fù)功能表型M2巨噬細(xì)胞轉(zhuǎn)變,介導(dǎo)炎癥后恢復(fù)和組織修復(fù)[10]。適當(dāng)調(diào)控巨噬細(xì)胞M1/M2表型轉(zhuǎn)化是MI后組織修復(fù)的一種有前景的治療策略。
2" 巨噬細(xì)胞主導(dǎo)修復(fù)缺血心肌的作用方式
巨噬細(xì)胞通過胞葬作用吞噬死亡細(xì)胞和碎片,實(shí)現(xiàn)炎癥的消退,此過程可分為三個(gè)主要步驟:第一步,由凋亡細(xì)胞釋放“fine-me”信號(hào)吸引巨噬細(xì)胞[11],通過死亡細(xì)胞上的細(xì)胞間黏附分子3與巨噬細(xì)胞上的CD14相互作用,以及血小板反應(yīng)蛋白與CD36相互作用,促進(jìn)巨噬細(xì)胞對(duì)死亡細(xì)胞的識(shí)別;第二步,是凋亡細(xì)胞表面的“eat-me”信號(hào)(如磷脂酰絲氨酸),可促進(jìn)巨噬細(xì)胞對(duì)其特異性識(shí)別作用;第三步,可溶性配體與受體結(jié)合后,通過膜內(nèi)陷,在質(zhì)膜內(nèi)裂解包含受體和配體的囊泡,降解凋亡細(xì)胞等物質(zhì)[12]。
MI后,巨噬細(xì)胞不僅通過胞葬作用吞噬凋亡的心肌細(xì)胞,還可促進(jìn)心肌細(xì)胞增殖和再生,CCR2-巨噬細(xì)胞通過黏著斑復(fù)合體標(biāo)記物(如整合素β)與心肌細(xì)胞相互作用,增加左心室及心肌壁壓力。這些機(jī)械刺激激活瞬時(shí)受體電位香草酸受體亞型4(transient receptor potential vanilloid 4,TRPV4),激發(fā)巨噬細(xì)胞生長因子表達(dá),促進(jìn)缺血心肌修復(fù)[13]。在心肌愈合階段,巨噬細(xì)胞產(chǎn)生血管緊張素Ⅱ,后者可與肌成纖維細(xì)胞的血管緊張素Ⅱ1型受體結(jié)合,上調(diào)TGF-β1,促進(jìn)缺血心肌修復(fù)[14]。在冠狀動(dòng)脈發(fā)育方面,CCR2-巨噬細(xì)胞可被募集到冠狀動(dòng)脈血管中,通過胰島素樣生長因子促進(jìn)巨噬細(xì)胞發(fā)揮促血管生成特性,改善冠狀動(dòng)脈重構(gòu),增加心肌供血[15]。在心臟淋巴管形成方面,巨噬細(xì)胞可分泌血管內(nèi)皮生長因子C,促進(jìn)淋巴管生成,改善缺血心肌功能[16]。綜上所述,越來越多研究表明,在急性MI后,巨噬細(xì)胞可調(diào)節(jié)炎癥反應(yīng),修復(fù)缺血心肌和重塑組織,降低心肌損傷程度和改善MI預(yù)后。
3" 不同因素介導(dǎo)巨噬細(xì)胞修復(fù)缺血心肌的作用方式
3.1" 干細(xì)胞修復(fù)缺血心肌的作用方式
目前已證實(shí)干細(xì)胞可修復(fù)梗死心肌,同時(shí)參與免疫調(diào)節(jié)作用。最近研究[17]表明,骨髓間充質(zhì)干細(xì)胞和脂肪干細(xì)胞來源的趨化因子和外泌體可促進(jìn)炎癥細(xì)胞和干細(xì)胞之間的交流,誘導(dǎo)干細(xì)胞分化為組織再生或修復(fù)所需的細(xì)胞類型。巨噬細(xì)胞在誘導(dǎo)性多能干細(xì)胞增殖和心肌再生中發(fā)揮關(guān)鍵作用,通過改善肌小節(jié)結(jié)構(gòu)、增加心肌收縮和離子轉(zhuǎn)運(yùn)相關(guān)基因的表達(dá)、增強(qiáng)線粒體呼吸,促進(jìn)誘導(dǎo)性多能干細(xì)胞分化的心肌細(xì)胞成熟。M2巨噬細(xì)胞在此過程中起到關(guān)鍵作用[18]。不同類型的干細(xì)胞調(diào)節(jié)MI后巨噬細(xì)胞的免疫作用并不一致,比如相較于間充質(zhì)干細(xì)胞外囊泡而言,心球樣細(xì)胞團(tuán)-派生細(xì)胞外囊泡在調(diào)節(jié)免疫、保護(hù)宿主免受缺血心肌損傷和急性炎癥作用上更具有優(yōu)勢[19]。有研究[20]表明在進(jìn)行心肌修復(fù)的過程中,脂肪組織來源的間充質(zhì)干細(xì)胞(adipose-derived mesenchymal stem cell,Ad-MSC)治療可誘發(fā)單核巨噬細(xì)胞免疫反應(yīng)。研究發(fā)現(xiàn)在第3天,Ad-MSC治療可上調(diào)血管生成相關(guān)基因的表達(dá)。第7天,與生理鹽水組相比,Ad-MSC治療組CCR2﹢和CD38+巨噬細(xì)胞數(shù)量增加,單核巨噬細(xì)胞相關(guān)基因的表達(dá)上調(diào)。人誘導(dǎo)多能干細(xì)胞來源的血管祖細(xì)胞通過細(xì)胞外囊泡降低促炎細(xì)胞因子IL-1α、IL-2和IL-6表達(dá),增加抗炎細(xì)胞因子IL-10表達(dá),減少促炎單核細(xì)胞和M1巨噬細(xì)胞的數(shù)量,同時(shí)增加了抗炎M2巨噬細(xì)胞的數(shù)量,調(diào)節(jié)單核巨噬細(xì)胞,抑制炎癥反應(yīng),為人血管內(nèi)皮祖細(xì)胞來源的細(xì)胞外囊泡修復(fù)心臟的臨床應(yīng)用提供治療靶點(diǎn)(圖2)[21]。骨皮質(zhì)干細(xì)胞分泌的旁分泌因子處理巨噬細(xì)胞可增強(qiáng)其抗炎、吞噬能力,抑制成纖維細(xì)胞活化及增殖,減小瘢痕面積,改善缺血心肌功能[22]。不同類型的干細(xì)胞可通過細(xì)胞外囊泡或其他途徑調(diào)節(jié)巨噬細(xì)胞相關(guān)炎癥反應(yīng),促進(jìn)心肌修復(fù),這提示可通過調(diào)控巨噬細(xì)胞與干細(xì)胞的協(xié)同作用,增強(qiáng)心肌修復(fù)功能,改善心臟重構(gòu)。
3.2" 核因子κB信號(hào)通路介導(dǎo)巨噬細(xì)胞修復(fù)缺血心肌的作用方式
核因子κB(nuclear factor-κB,NF-κB)信號(hào)通路可調(diào)節(jié)心臟MI和缺血再灌注損傷中巨噬細(xì)胞參與的炎癥反應(yīng)[23]。最近研究[24]表明,IL-34缺陷抑制了經(jīng)典和非經(jīng)典NF-κB信號(hào)通路,顯著降低磷酸化核因子κB抑制蛋白激酶β和磷酸化核因子κB抑制蛋白激酶α水平,下調(diào)NF-κB p65、RelB、p52表達(dá),下調(diào)CCL2表達(dá),抑制了巨噬細(xì)胞募集和極化,減輕心肌再灌注損傷(圖3)。TGF-β1可誘導(dǎo)巨噬細(xì)胞產(chǎn)生神經(jīng)肽Y,神經(jīng)肽Y可通過神經(jīng)肽Y1受體信號(hào)傳導(dǎo)抑制p38/NF-κB介導(dǎo)的M1巨噬細(xì)胞活化,促進(jìn)M1巨噬細(xì)胞向M2巨噬細(xì)胞轉(zhuǎn)化,促進(jìn)血管生成及緩解心臟功能惡化[25]。炎癥反應(yīng)在MI過程中發(fā)揮重要作用,在此過程中,巨噬細(xì)胞被募集到缺血心肌組織中,參與炎癥反應(yīng)與心肌修復(fù)[26]。NF-κB p65通路可啟動(dòng)脾臟和心肌組織炎癥反應(yīng),加重心肌組織炎性損傷[27]。芪參顆??赏ㄟ^抑制TLR4-MyD88-NF-κB p65信號(hào)通路,減少M(fèi)I小鼠脾臟單核細(xì)胞釋放,調(diào)節(jié)MI區(qū)M1/M2巨噬細(xì)胞比例,減輕心肌細(xì)胞炎癥損傷[28]。這提示調(diào)節(jié)抗炎和維持巨噬細(xì)胞極化的平衡是MI后修復(fù)的關(guān)鍵。NF-κB信號(hào)通路在調(diào)節(jié)抗炎作用中發(fā)揮極為重要的作用。諸多研究證明,藥物等物質(zhì)可通過抑制NF-κB信號(hào)通路相關(guān)基因表達(dá),調(diào)節(jié)MI區(qū)M1/M2巨噬細(xì)胞比例,促進(jìn)心肌修復(fù)。在心肌炎癥反應(yīng)中,除了NF-κB信號(hào)通路外,仍有許多其他信號(hào)通路參與,有待進(jìn)一步探討。
注:p-IKK,磷酸化核因子κB抑制蛋白激酶;p-IκBα,磷酸化核因子κB抑制蛋白α;,磷酸基團(tuán)。
3.3" 藥物介導(dǎo)巨噬細(xì)胞修復(fù)缺血心肌的作用方式
在巨噬細(xì)胞修復(fù)心肌的相關(guān)研究中,除了干細(xì)胞和相關(guān)信號(hào)通路介導(dǎo)的修復(fù)作用外,藥物在增強(qiáng)巨噬細(xì)胞調(diào)節(jié)MI后炎癥反應(yīng)的作用方面有著廣泛應(yīng)用前景。最近研究[29]表明,常用降血糖藥二甲雙胍可顯著減少小鼠MI后纖維化和CD68+細(xì)胞數(shù)量,同時(shí)可抑制衰竭心肌中促纖維化基因程序的激活,減輕MI后心肌纖維化。常用降血脂藥阿托伐他汀預(yù)處理的間充質(zhì)干細(xì)胞來源的細(xì)胞外囊泡修復(fù)MI心臟效果顯著,其機(jī)制為通過上調(diào)miR-139-3p表達(dá),抑制STAT1通路的表達(dá)和活化,促使巨噬細(xì)胞從M1向M2轉(zhuǎn)化,促進(jìn)梗死后心臟修復(fù)[30]。在關(guān)注西藥通過調(diào)節(jié)巨噬細(xì)胞修復(fù)缺血心肌作用的同時(shí),不應(yīng)忘記中國博大精深的中藥寶庫,正如中藥提取物中的人參皂苷Rd可通過激活A(yù)kt/mTOR信號(hào)通路顯著降低CCL2/CCR2蛋白表達(dá),抑制心肌炎性Ly6Chigh單核細(xì)胞/巨噬細(xì)胞浸潤,增強(qiáng)小鼠MI后Ly6Chigh單核細(xì)胞/巨噬細(xì)胞向Ly6Clow單核細(xì)胞/巨噬細(xì)胞轉(zhuǎn)化,促進(jìn)梗死心臟修復(fù)[31]。姜黃素可通過巨噬細(xì)胞抑制IL18-p-SMAD2/3信號(hào)途徑通路,抑制心肌纖維化[32]。諸多實(shí)驗(yàn)表明,通過藥物介導(dǎo)巨噬細(xì)胞在心肌修復(fù)過程中調(diào)控炎癥、抑制纖維化及改善心肌重構(gòu),為探索開發(fā)治療MI的藥物提供了一定的啟發(fā)。
3.4" 生物材料介導(dǎo)巨噬細(xì)胞修復(fù)缺血心肌的作用方式
MI由于對(duì)重要器官的血液灌注不足,可導(dǎo)致致命的不良預(yù)后,為此科學(xué)家們開展了一項(xiàng)新的治療方案——納米材料的研究,其廣泛應(yīng)用于MI后的治療,包括高精度檢測、促血管生成、調(diào)節(jié)免疫穩(wěn)態(tài)以及miRNA和干細(xì)胞遞送載體,還存在一些有前景的其他研究熱點(diǎn),如將促血管生成元素與納米顆粒結(jié)合構(gòu)建藥物載體,開發(fā)靶向梗死心肌或免疫細(xì)胞的納米藥物等[33]。最近研究[34]顯示,α-gal納米顆粒通過激活補(bǔ)體和募集巨噬細(xì)胞,介導(dǎo)內(nèi)源性干細(xì)胞歸巢,修復(fù)和再生損傷心肌,在缺血損傷后心室壁注射α-gal納米顆粒,幾乎完全再生損傷心肌。雙肽功能化的縮醛化葡聚糖基納米顆??赡技奘杉?xì)胞,靶向作用于梗死的心臟組織,同時(shí)M2巨噬細(xì)胞可優(yōu)先攝取該顆粒,修復(fù)缺血心肌[35]。此外,天然生物材料也有應(yīng)用于心臟修復(fù)過程中,天然黑色素/海藻酸鹽水凝膠通過清除活性氧基團(tuán)保護(hù)心肌,免受氧化應(yīng)激損傷,并通過激活PI3K/Akt1/mTOR信號(hào)通路誘導(dǎo)M2巨噬細(xì)胞極化,修復(fù)心臟[36]。樹突狀細(xì)胞來源的水凝膠負(fù)載外泌體通過延長樹突狀細(xì)胞源性外泌體在梗死區(qū)的存留時(shí)間并誘導(dǎo)調(diào)節(jié)性T細(xì)胞及巨噬細(xì)胞極化,改善心臟功能[37]。也有研究[38]通過將間充質(zhì)干細(xì)胞來源的外泌體富集到彈性心肌包裹支架上,增強(qiáng)間充質(zhì)干細(xì)胞的傷口愈合能力并正向調(diào)節(jié)M2巨噬細(xì)胞的抗炎作用。免疫補(bǔ)片也有應(yīng)用于延長干細(xì)胞存活和增強(qiáng)細(xì)胞間通信。研究[39]表明,具有免疫代謝調(diào)節(jié)作用的2-脫氧葡萄糖補(bǔ)片通過激活M2巨噬細(xì)胞減輕炎癥反應(yīng),延長間充質(zhì)干細(xì)胞的滯留時(shí)間,還可直接促進(jìn)移植的間充質(zhì)干細(xì)胞的旁分泌,增強(qiáng)其促血管生成和免疫調(diào)節(jié)作用。細(xì)胞膜片可促進(jìn)人臍帶間充質(zhì)干細(xì)胞的生物學(xué)功能,提供人臍帶間充質(zhì)干細(xì)胞的局部滯留和存活,調(diào)節(jié)MI周邊區(qū)域巨噬細(xì)胞炎癥反應(yīng),抑制病理性重構(gòu)[40]。
現(xiàn)階段,與巨噬細(xì)胞治療MI相關(guān)的新興研究主要集中在生物材料方面,包括可注射水凝膠、支架、明膠涂片及納米材料等。生物材料作為一種藥物載體或遞送載體,可通過富集干細(xì)胞來源的外泌體,將外泌體遞送到缺血心肌并延長外泌體存留時(shí)間,募集巨噬細(xì)胞,正向調(diào)節(jié)巨噬細(xì)胞炎癥反應(yīng)與修復(fù)心肌。未來,合成生物學(xué)、基因編輯技術(shù)、細(xì)胞-細(xì)胞間通信、藥物靶向治療在正向調(diào)節(jié)巨噬細(xì)胞參與心肌修復(fù)和再生中將會(huì)是極具前景的聯(lián)合治療研究方向。
4" 總結(jié)與展望
巨噬細(xì)胞在MI的免疫調(diào)節(jié)中具有重要作用,可與干細(xì)胞及其分泌的外泌體協(xié)同,發(fā)揮抗炎、改善心肌纖維化和心肌修復(fù)作用。同時(shí)巨噬細(xì)胞在機(jī)體內(nèi)可通過調(diào)控NF-κB等諸多信號(hào)通路相關(guān)基因、蛋白表達(dá),促進(jìn)其在梗死區(qū)聚集并向M2巨噬細(xì)胞轉(zhuǎn)化,改善心肌修復(fù)過程。此外,藥物在增強(qiáng)巨噬細(xì)胞調(diào)節(jié)MI后炎癥反應(yīng)的作用上有著廣泛應(yīng)用前景。但考慮藥物的半衰期及給藥方式對(duì)藥物療效的影響,納米技術(shù)與藥物構(gòu)建的載體、生物材料與細(xì)胞分泌的外泌體結(jié)合等措施具有廣泛的應(yīng)用前景。未來,合成生物學(xué)、基因編輯技術(shù)、細(xì)胞-細(xì)胞間通信、藥物靶向治療在巨噬細(xì)胞參與心肌修復(fù)和再生中極具前景。
然而,目前的研究仍處于早期階段,需進(jìn)一步探索和研究,克服一些挑戰(zhàn)與困難,如巨噬細(xì)胞如何精準(zhǔn)作用于MI區(qū)域,巨噬細(xì)胞的數(shù)量、存活,外泌體的遞送等。此外,安全性和有效性也需認(rèn)真考慮。盡管如此,巨噬細(xì)胞在治療缺血心肌中仍存在巨大潛力,有待進(jìn)一步展開研究。
參考文獻(xiàn)
[1]GBD 2019 Diseases and Injuries Collaborators.Global burden of 369 diseases and injuries in 204 countries and territories,1990—2019:a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet,2020,396(10258):1204-1222.
[2]Weissman D,Maack C.Mitochondrial function in macrophages controls cardiac repair after myocardial infarction[J].J Clin Invest,2023,133(4):e167079.
[3]Zhang Z,Tang J,Cui X,et al.New insights and novel therapeutic potentials for macrophages in myocardial infarction[J].Inflammation,2021,44(5):1696-1712.
[4]Chen R,Zhang S,Liu F,et al.Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1[J].Acta Pharm Sin B,2023,13(1):128-141.
[5]Kologrivova I,Shtatolkina M,Suslova T,et al.Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J].Front Immunol,2021,12:664457.
[6]Li L,Cao J,Li S,et al.M2 macrophage-derived sEV regulate pro-inflammatory CCR2+ macrophage subpopulations to favor post-AMI cardiac repair[J].Adv Sci (Weinh),2023,10(14):2202964.
[7]Li R,F(xiàn)rangogiannis NG.Chemokines in cardiac fibrosis[J].Curr Opin Physiol,2021,19:80-91.
[8]Ohayon L,Zhang X,Dutta P.The role of extracellular vesicles in regulating local and systemic inflammation in cardiovascular disease[J].Pharmacol Res,2021,170:105692.
[9]Kim Y,Nurakhayev S,Nurkesh A,et al.Macrophage polarization in cardiac tissue repair following myocardial infarction[J].Int J Mol Sci,2021,22(5):2715.
[10]Wagner MJ,Khan M,Mohsin S.Healing the broken heart;the immunomodulatory effects of stem cell therapy[J].Front Immunol,2020,11:639.
[11]Chen W,Li L,Wang J,et al.The ABCA1-efferocytosis axis:a new strategy to protect against atherosclerosis[J].Clin Chim Acta,2021,518:1-8.
[12]Jia D,Chen S,Bai P,et al.Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction[J].Circulation,2022,145(20):1542-1556.
[13]Wong NR,Mohan J,Kopecky BJ,et al.Resident cardiac macrophages mediate adaptive myocardial remodeling[J].Immunity,2021,54(9):2072-2088.e7.
[14]Ma X,Meng Q,Gong S,et al.IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction[J].Heliyon,2023,9(6):e17099.
[15]Zeng B,Liao X,Liu L,et al.Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway[J].Life Sci,2021,267:118977.
[16]Glinton KE,Ma W,Lantz C,et al.Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation[J].J Clin Invest,2022,132(9):e140685.
[17]Kawaguchi N,Nakanishi T.Stem cell studies in cardiovascular biology and medicine:a possible key role of macrophages[J].Biology (Basel),2022,11(1):122.
[18]Long C,Guo R,Han R,et al.Effects of macrophages on the proliferation and cardiac differentiation of human induced pluripotent stem cells[J].Cell Commun Signal,2022,20(1):108.
[19]Walravens AS,Smolgovsky S,Li L,et al.Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA[J].Sci Rep,2021,11(1):8666.
[20]Follin B,Hoeeg C,Hjgaard LD,et al.The initial cardiac tissue response to cryopreserved allogeneic adipose tissue-derived mesenchymal stromal cells in rats with chronic ischemic cardiomyopathy[J].Int J Mol Sci,2021,22(21):11758.
[21]Lima Correa B,El Harane N,Gomez I,et al.Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts[J].Cardiovasc Res,2021,117(1):292-307.
[22]Hobby ARH,Berretta RM,Eaton DM,et al.Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype[J].Am J Physiol Heart Circ Physiol,2021,321(4):H684-H701.
[23]Yao Y,Li F,Zhang M,et al.Targeting CaMKⅡ-δ9 ameliorates cardiac ischemia/reperfusion injury by inhibiting myocardial inflammation[J].Circ Res,2022,130(6):887-903.
[24]Zhuang L,Zong X,Yang Q,et al.Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization[J].EBioMedicine,2023,95:104744.
[25]Qin YY,Huang XR,Zhang J,et al.Neuropeptide Y attenuates cardiac remodeling and deterioration of function following myocardial infarction[J].Mol Ther,2022,30(2):881-897.
[26]Jian Y,Zhou X,Shan W,et al.Crosstalk between macrophages and cardiac cells after myocardial infarction[J].Cell Commun Signal,2023,21(1):109.
[27]Wang X,Guo D,Li W,et al.Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure[J].J Cell Mol Med,2020,24(18):10677-10692.
[28]Li Y,Li X,Chen X,et al.Qishen granule (QSG) inhibits monocytes released from the spleen and protect myocardial function via the TLR4-MyD88-NF-κB p65 pathway in heart failure mice[J].Front Pharmacol,2022,13:850187.
[29]Loi H,Kramar S,Laborde C,et al.Metformin attenuates postinfarction myocardial fibrosis and inflammation in mice[J].Int J Mol Sci,2021,22(17):9393.
[30]Ning Y,Huang P,Chen G,et al.Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J].BMC Med,2023,21(1):96.
[31]Zhao T,Wang X,Liu Q,et al.Ginsenoside Rd promotes cardiac repair after myocardial infarction by modulating monocytes/macrophages subsets conversion[J].Drug Des Devel Ther,2022,16:2767-2782.
[32]Zhao J,Chen Y,Chen Q,et al.Curcumin ameliorates cardiac fibrosis by regulating macrophage-fibroblast crosstalk via IL18-p-SMAD2/3 signaling pathway inhibition[J].Front Pharmacol,2022,12:784041.
[33]Shi HT,Huang ZH,Xu TZ,et al.New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials[J].EBioMedicine,2022,78:103968.
[34]Galili U,Goldufsky JW,Schaer GL.α-Gal nanoparticles mediated homing of endogenous stem cells for repair and regeneration of external and internal injuries by localized complement activation and macrophage recruitment[J].Int J Mol Sci,2022,23(19):11490.
[35]Torrieri G,F(xiàn)ontana F,F(xiàn)igueiredo P,et al.Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction[J].Nanoscale,2020,12(4):2350-2358.
[36]Zhou J,Liu W,Zhao X,et al.Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization[J].Adv Sci (Weinh),2021,8(20):2100505.
[37]Zhang Y,Cai Z,Shen Y,et al.Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction[J].J Nanobiotechnology,2021,19(1):271.
[38]Chachques JC,Gardin C,Lila N,et al.Elastomeric cardiowrap scaffolds functionalized with mesenchymal stem cells-derived exosomes induce a positive modulation in the inflammatory and wound healing response of mesenchymal stem cell and macrophage[J].Biomedicines,2021,9(7):824.
[39]Xiao W,Chen M,Zhou W,et al.An immunometabolic patch facilitates mesenchymal stromal/stem cell therapy for myocardial infarction through a macrophage-dependent mechanism[J].Bioeng Transl Med,2023,8(3):e10471.
[40]Guo R,Wan F,Morimatsu M,et al.Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material[J].Bioact Mater,2021,6(9):2999-3012.
收稿日期:2023-11-16