• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overview of SPH-ALE applications for hydraulic turbines in ANDRITZ Hydro*

    2018-04-13 12:03:36RentschlerMarongiuNeuhauserParkinson
    關(guān)鍵詞:連江縣經(jīng)營管理者實(shí)地考察

    M. Rentschler, J.C. Marongiu, M. Neuhauser, E. Parkinson

    ?

    Overview of SPH-ALE applications for hydraulic turbines in ANDRITZ Hydro*

    M. Rentschler, J.C. Marongiu, M. Neuhauser, E. Parkinson

    ,,,

    Over the past 13 years, ANDRITZ Hydro has developed an in-house tool based on the SPH-ALE method for applications in flow simulations in hydraulic turbines. The initial motivation is related to the challenging simulation of free surface flows in Pelton turbines, where highly dynamic water jets interact with rotating buckets, creating thin water jets traveling inside the housing and possibly causing disturbances on the runner.The present paper proposes an overview of industrial applications allowed by the developed tool, including design evaluation of Pelton runners and casings, transient operation ofPelton units and free surface flows in hydraulic structures.

    Pelton turbine, two-phase folw, smoothed particle hydrodynamics (SPH), arbitrary Lagrange-Euler (ALE)

    Introduction

    The Pelton turbine is a hydraulic impulse machine that is best adapted for high head (from 200 m to around 2000 m)and low discharge installations (up to 50 m3/s). The largest units worldwide of BIEUDRON in Switzerland can deliver up to 420MW each, thanks to a water head of more than 1800 m. The main components of a Pelton turbine are the distributor, the injectors (up to 6), the runner and the housing (Fig. 1). While the flow is confined in the distributor and injectors, a free jet of water exits from the injectors’ nozzles and a free surface flow develops in the rotating runner and the housing. The runner is composed of buckets whose design is of primary importance for the proper conversion of kinetic energy of water jets into mechanical energy of the turbine shaft. However each component influences the overall performance of the machine. Consequently each com-ponent is analysed with numerical simulation.

    Components of a Pelton turbine involving an internal flow can be simulated with state of the art mesh-based solvers, giving a good prediction of their behaviour[1, 2].These numerical approaches can also represent the free surface boundary condition, either implicitlythroughatwo-phasemodeltreatingthefree surfaceasaninterfacebetweenphases[3, 4],orexpli- citly through single phase models as for example when using deformable meshes[5, 6].It is technically feasible to simulate free surface flows inside a Pelton turbine with classical mesh-basedCFD tools. How-ever a proper tracking of the water inside the housing is very demanding, asmesh-based techniques natu-rally diffuse the free surface. Moreover, the meshing of a Pelton casingrequires time and expertise, while mesh quality can strongly influence the numerical flow. Theseintrinsic characteristics push classical CFD tools to the limit of their cost-effectiveness.

    Fig. 1 (Color online) Exemplary layout of 2 units of 2-jet hori- zontal Pelton turbine

    The SPH approach presents intrinsically attrac-tive features for the proper handling of free surface flows in Pelton turbines. Its complete mesh-free nu-merical stencil offers great flexibility and robustness for highly distorted media. The ability of solving free surface flows with calculation points only in the liquid phase can trigger great computational costs savings when the liquid occupies only a small volume in the simulation domain. For these reasons, ANDRITZ Hydro has been developing along the last 13 years an in-house simulation tool based on the SPH-ALE numerical method. The main features of this method will be recalled in Section 1. The tool is nowadays embedded in the design and verification processes of Pelton turbine components. Section 2 will present some applications illustrating the usage of the mesh-less approach for hydraulic turbines.

    1. SPH-ALE method

    1.1 Arbitrary Lagrange-Euler description

    1.2 System of discrete equations

    (4)

    Equations(3) and (4) translate the mass and momentum conservation, respectively. It should be noted that these two equations involve convective mass and momentum flux terms which do not neces-sarily vanish even when adopting a Lagrangian trans-port velocity. As a consequence the SPH-ALE method allows variations of particles’ mass, contrarily to the classical SPH approach where particles have a constant mass. Nevertheless both approaches conserve mass globally.

    The system requires an equation of state to relate pressure and density, the popular so-called Tait equa-tion is used

    1.3 Computing particle interactions

    There are numerous Riemann solvers that can be used efficiently and equivalently. Experience has shown that for weakly compressible cases, the exact solver is not necessary and linearized solvers are sufficient. Pre-conditioning techniques can be intro-duced to improve the quality of results in regions with very low dynamics[9].

    A simple linear Riemann solver can be written as:

    1.4 Time integration

    The system of Eqs.(1) to (4) is updated with an explicit time integration scheme. For stability and accuracy reasons, 3rd and 4th order Runge-Kutta schemes are favoured.

    1.5 High order schemes

    1.5.1 High order numerical fluxes

    However this approach suffers the limited accuracy of the SPH approximation of field gradients Eq. (8) and further improvements to the solution can be obtained by replacing SPH with moving least squares (MLS) approximates for the field gradient. Indeed MLS not only enforce accurate computation of the gradient of a function (Fig. 3) but also allows higher order (polynomial) representation of functions. Difficulties arise from the possibly disordered or truncated set of particles over which the MLS methodology is applied.In the frame of SPH-ALE it is necessary to implement order and space adaptation procedures so that stability and robustness are enforced (the detailed development and validation of these procedures can be found in Ref. [11]).

    Fig. 3 Simulation of a water jet impacting a flat plate in 2-D

    1.5.2 High order flux summation

    Limitations highlighted above about the low accuracy of the SPH approximation of gradients Eq. (8) are valid also for the SPH divergence operators appearing in Eqs. (2)-(4) and which are key ingre- dients for the summation of numerical fluxes. In particular, and despite the use of high order numerical fluxes, the overall convergence order of the method is not enforced[12]. It is possible to derive divergence operators from the MLS methodology fulfilling completeness requirements and restoring the global convergence order of the complete method.

    Numerical experiments have demonstrated the capability of the high order approach to improve the quality of results. In particular it was observed a reduction in both the numerical viscosity and the noise of the pressure field (Fig. 3).

    1.5.3 Boundary conditions

    The general approach of boundary conditions in SPH-ALE is to account for their contribution in the flux summation through a surface integral term. This is rooted in the derivation of gradient and divergence operators with SPH

    Boundary fluxes are computed with partial Riemann solvers in the case of wall boundary con- ditions[9]. Open boundaries (inlet and outlet) are managed according a Non ReflectingCharacteristic Boundary Condition derived from Ref. [12].

    2. Free surface applications for hydraulic turbines

    2.1 Hydraulic and mechanical assessment of Pelton runners

    A proper design procedure of a Pelton runner aims at maximizing the hydraulic efficiency while ensuring safety and reliability of operation. On the one side thinner buckets are known to deliver a higher efficiency but on the other side thinner structures are submitted to higher stresses. Therefore the hydraulic engineer needs to make a trade-off between the optimal hydraulic design and the fatigue that limits the lifetime of a runner.

    Fig. 4 Design loop based on CFD.FEM evaluation

    Fig. 5 (Color online) Initial configuration of the jet and buckets

    A complete numerical evaluation has been deve- loped that combines the prediction of hydraulic performance with SPH-ALE and the prediction of mechanical stresses in the bucket with Finite Element Analysis. This evaluation is fully automatic including meshing and post-processing. At the end of the process an internal report is generated to document the result. (seeFig.4)

    一是加強(qiáng)培訓(xùn)和實(shí)地考察。除了對醫(yī)務(wù)人員、教育工作者加強(qiáng)人才交流外,還應(yīng)強(qiáng)加對村黨組書記、貧困村致富帶頭人、企業(yè)經(jīng)營管理者的培訓(xùn)、跟班進(jìn)修和實(shí)地考察,全面學(xué)習(xí)東南沿海發(fā)達(dá)地區(qū)先進(jìn)的發(fā)展理念、生產(chǎn)經(jīng)營模式、醫(yī)療和教育管理經(jīng)驗(yàn)及技術(shù),進(jìn)一步開闊眼界、啟迪思維、加深交流、提升素質(zhì)。二是加強(qiáng)技術(shù)指導(dǎo)。邀請連江縣農(nóng)業(yè)技術(shù)方面的專家到隴西縣開展種植、養(yǎng)殖等方面的技術(shù)培訓(xùn)及指導(dǎo),幫助提高隴西縣專業(yè)技術(shù)人才的綜合素養(yǎng)和產(chǎn)業(yè)發(fā)展水平。

    The typical configuration is composed of a runner sector (four to six buckets) fed with one water jet (Fig. 5). A symmetry condition is imposed at the mid-plane of the runner. Only possibly wetted sur- faces are included in the simulation. The simulation is done in pure Lagrangian mode and only the liquid phase is discretized.

    To predict the stresses in the runner, it is neces- sary to sufficiently resolve the flow to predict local pressures. This pressure distribution is then used as a boundary condition for a structural calculation to predict the stresses in the runner.

    The pressure maps as an outcome of the SPH-ALE simulation were validated against measurements. For those measurements a model scale runner was instrumented with pressure sensors.

    Fig. 6 (Color online) Validation of the pressure signals from CFD compared with model measurements

    Fig. 7 (Color online) Detailed flow in a Pelton runner as used in the design process

    Fig. 8(Color online) Observing casing flow in a model test

    Figure 6 shows the comparison of the experiment signal and the SPH-ALE result. The red dot is the position of the pressure sensor on the internal face of the bucket.

    The pressure map is then used as a boundary condition for a FEM simulation that calculates the stresses for several positions of the runner/jet in a quasi-static approach. A safety factor is added to account for inertial effects due to the cyclic loading of the buckets.

    The use of the SPH-ALE method reduces the calculation time from several days, with standard finite volumes methods to several hours using the SPH-ALE method. Due to the Lagrangian description no rotor-stator interface is necessary. A rotor-stator interface may be unstable for two-phase simulations. Robustness of the simulation process is essential for its usability in an industrial environment. Hydraulic designers require reliable and efficient tools delivering hydraulic and mechanical assessment results.Such a required robustness to simulate the flow in a Pelton bucket is difficultto achieve by a finite volume code.

    2.2 Hydraulic assessment of Pelton casings

    The flow in the casing of a Pelton turbine is an essential element in the overall efficiency of the turbine (see Fig.7). The visualization of the flow in the laboratory is a challenge due to the presence of bubbles in the water that makes the water opaque. Figure 8 illustrates the possible observations of a model test in the ANDRITZ Pelton laboratory. The impact zone of the water is indicated by the arrow.

    Simulating the casing flow using finite volume methods is computationally very expensive as the free surface needs to be captured explicitly. A fine mesh is required to represent the details of free surface using finite volume methods. The computational effort to capture major features of the casing flow is in the order of magnitude of 105cpu h. This makes it impossible to be used in a project time frame.

    The use of SPH-ALE decreases the simulation time to several days of simulation, which is affordable in the time-scale of a project. As a result the flow in the casing can be easily analysed in three dimensions (Fig. 9 and Fig. 10) and the casing can be adapted and optimized by inserting steel plates that guides the water out of the casing.

    Fig. 9 (Color online) SPH-ALE simulation of casing flows in a horizontal 2-jets Pelton unit

    Fig. 10 (Color online) SPH-ALE simulation of a casing flows in a vertical 2-jets Pelton unit

    The velocity range for those simulations span two orders of magnitude, from above 100 m/s in the jets to below 1 m/s on the casing walls. For the low Mach numbers, numerical dissipation easily domi- nates the flow and imposes the use of higher order schemes to prevent numerical artefacts[13].

    For Pelton turbines with vertical rotation axis, inserts play a minor role due to axial or cyclic symmetry of the casing. The overall flow can however create water flowing back on the runner, which reduces the hydraulic efficiency of the machine. Detailed simulations are necessary to verify that the flow in the casing will not impact in a negative way the efficiency of the machine (see Fig. 10). Especially for rehabilitation projects, the prediction of the casing flow is of value, as often no experience is available with some types of vertical Pelton machine casings.

    2.3 Deflector simulation

    In case of an emergency a deflector deviates the jet away from the Pelton runner in order to prevent further acceleration of the runner. Although this device is very simple and does not require a complex hydraulic engineering in itself, it creates a high energy flow in the casing which might create leakage or damages on the installation.

    Fig. 11 (Color online) Flow analysis of a deflecting security device and its interaction with a Pelton runner

    Especially when effects far from the deflector are of interest, then the Lagrangian character of the SPH-ALE method permits to simulate those flows at reasonable costs. This leads to some standard checks during design phase of the Pelton turbine, to prevent issues during commissioning.

    One example for such a standard check is the simulation of the deflected water jet hitting the following deflector. During the commissioning of a refurbished installation, strong vibrations were obser- ved. To understand the phenomena, SPH-ALE simula- tion was used to simulate a system of deflectors (seeFig. 11 for a close-up view of the deflected jet andFig. 12 for the complete view of the six deflected jets and interactions with following injector).

    It could be observed that the deflected water sheet from one deflector interacted slightly with the runner before hitting the next deflector. The impact of the water sheet slightly moved the next water sheet which then hit a third deflector and so on. The conclusion was to modify the roof of the injector in order to protect the deflectors from direct impacts from the previous deflector.

    Fig. 12 (Color online) SPH-ALE simulation of runner and a system of deflectors for root cause analysis

    Fig. 13 (Color online) SPH-ALE simulation of a braking jet impacting a rotating Pelton runner

    2.4 Brake jet

    To slow down the Pelton units quickly, they may be equipped with so-called braking jets that impact the runner in the opposite direction of the runner rotation. This normally is only meant to be a security device which should only be used in case of emergency (see Fig.13).

    However this configuration may endanger the structural integrity because the relative velocity of the buckets and the braking jet is three times higher than the normal “driving” jet, and buckets are not designed to sustain loading on their rear side. In general the setup of the simulation is identical to what is pre- sented in Section 2.1. The only difference is that the direction of the jet is inverted.

    The high velocity impact and high frequency pressure variations make it difficult to setup such a simulation with a commercial finite volume code. Very small time steps would be required to simulate this configuration, and consequently the correspon- ding computational load with finite volumes methods would be much higher than with SPH-ALE.

    Also for that application the pressure fields obtained from the SPH-ALE simulation are trans- ferred as boundary conditions to the FE solver to calculate the stresses in the runner, even if this application is on the limit of the applicability of the quasi static FEM approach.

    2.5 Start-up of a Pelton unit

    Since the implementation of SPH-ALE on GPU the start-up of a Pelton machine including the casing can be simulated. At low rotational speed, the water leaving the runner has a high velocity and a direction which is not the one obtained at nominal speed, and therefore creates high stresses in parts of the machine. At higher runner speed, the stresses due to water impacts on static components reduce, but the periodi- city of the flow increase at the frequency of the “bucket passage frequency”, which creates a high number of cycles. For the structural integrity it is therefore not always evident which runner rotational speed generates the most critical solicitations. The simulation of the full start up sequence of the machine allows the quantitative structural analysis and allows the optimisation of the sequence to guarantee a given lifetime of the machine.

    To obtain a fast acceleration of the runner it is of value to increase the power on the runner as fast as possible. The simulation (Fig. 14) of the start-up and the stresses in the runner are helpful to define a start-up scenario to accelerate the runner as fast as possible while keeping the stresses in an acceptable range.

    SPH-ALE can also be used to study water intakesandother hydraulic structures of hydropower plants. Secondary flow structures like recirculation or vortices that may be present at the inlet of the penstock are carried down to the turbine units and may influence dramatically the overall performance and behaviour of the installation. For low head ma- chines the flow in the intake directly impacts the efficiency of the turbine.

    Fig. 14 (Color online) Start-up of a Pelton machine

    Fig. 15 (Color online) SPH simulation of an intake to a hydro power plant

    The setup of the simulation of an intake of a Hydro power plant includes a detailed bathymetry of the river bed and a detailed CAE model of the installation (see Fig. 15). The discharge is imposed at the inlet and various outlet conditions may be imposed depending on the cases, including an artificial weir which may be used downstream to control the water height close to the outlet.

    As the domain occupied by the volume of liquid is compact and the free surface is almost static in normal flow conditions, such a flow simulation could efficiently be done using a finite volume code. How- ever in that case the meshgeneration process might be a time consuming interactivework for a calculation engineer. SPH-ALE can propose an alternative app- roach requiring less involvement from simulation engineers.

    3. Conclusion

    The development of the SPH-ALE over the last 13 years has been presented with an emphasis on its applications to hydraulic machinery and especially for Pelton turbines. For the Pelton turbines this new method has become an integral part of the design process. The method has proven its accuracy and robustness during the last years by being applied to numerous projects in this industrial environment. Especially the interaction of this tool with structural analysis has shown its benefit for the projects. The implementation of the method on GPU accelerated the overall execution time and helped to further extend the field of applications and the usability in industrial projects.

    [1] ParkinsonE., Bissel C., Popescu E. et al.Upgrading Pelton turbines of LOTRU-CIUNGET HPP, Romania [C]., Prague, Czech Republic, 2011.

    [2] ParkinsonE, RentschlerM., LaisS. et al. Life cycle of a Pelton runner [C]., Colombo, Sri Lanka, 2014.

    [3] SussmanM., SmerekaP., OsherS.A level set approach for computing solutions to incompressible two-phase flow [J]., 1994, 114(1): 146-159.

    [4] HirtC.W., NicholsB.D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]., 1981, 39(1): 201-225.

    [5] HirtC. W., AmsdenA., CookJ.L.An Arbitrary Lagran- gian-Eulerian computing method for all flow speeds [J].,1997, 135(2): 203-216.

    [6] MünchC., AusoniP., BraunO. et al. Fluid-structure coupling for an oscillating hydrofoil [J]., 2010, 26(6): 1018-1033.

    [7] DoneaJ., HuertaA., Ponthot J. et al. Arbitrary Lagran- gian-Eulerian methods (SteinE., DeBorst R., HughesT. Encyclopedia of computational mechanics) [M]. Chicester, UK: John Wiley and Sons, 2004.

    [8] VilaJ.P.On particle weighted methods and smoothed particle hydrodynamics [J]., 1999, 9(2): 161-210.

    [9] MarongiuJ.C., LeboeufF., CaroJ. Free surface flows simulations in Pelton turbines using an hybrid SPH-ALE method [J]., 2010, 48(Sup1): 40-49.

    [10] Van LeerB.Towards the ultimate conservative difference scheme V: A second-order sequel to Godunov’s method [J]., 1979, 32(1): 101-136.

    [11] RenautG.A., MarongiuJ.C., AubertS. High-order and adaptive procedures for SPH-ALE simulations based on moving least squares method [C]., Parma, Italy, 2015.

    [12]SelleL., NicoudF., PoinsotT. Actual impedance of nonreflecting boundary conditions: Implications for com- putation of resonators [J]., 2004, 42(5): 958-964.

    [13] RentschlerM., NeuhauserM., MarongiuJ.C. et al. Under- standing casing flow in Pelton turbines by numerical simulation [J]., 2016, 49(2): 022004.

    (October 22, 2017, Accepted December 9, 2017)

    ?China Ship Scientific Research Center 2018

    M. Rentschler (1973-), Male, Ph. D.

    M. Rentschler,

    E-mail:martin.rentschler@andritz.com

    猜你喜歡
    連江縣經(jīng)營管理者實(shí)地考察
    海上牧場
    海峽姐妹(2021年10期)2021-11-15 04:14:33
    二污普數(shù)據(jù)在連江縣大氣管理工作中的利用
    蕭梅老師實(shí)地考察相關(guān)論文綜述
    戲劇之家(2018年23期)2018-11-26 11:08:26
    連江縣革命委員會(huì)成立舊址外澳尊王宮修復(fù)竣工慶典舉行
    紅土地(2018年9期)2018-02-16 07:38:18
    電商精準(zhǔn)扶貧的現(xiàn)狀分析和對策解析——基于井岡山市的實(shí)地考察
    市場周刊(2017年1期)2017-02-28 14:13:33
    Foreign Experts on Sightseeing Tour around Zhejiang
    文化交流(2016年10期)2016-10-27 03:10:44
    探究我國國有企業(yè)經(jīng)營管理者選任機(jī)制的完善
    從經(jīng)營管理者入手強(qiáng)化油田公司內(nèi)部控制
    怎樣認(rèn)識企業(yè)財(cái)務(wù)關(guān)系
    高層管理者培訓(xùn)需求迫切
    成人国产麻豆网| 亚洲,一卡二卡三卡| 免费黄色在线免费观看| 最近的中文字幕免费完整| 久久久久网色| 中文字幕免费在线视频6| 午夜免费观看性视频| 成年美女黄网站色视频大全免费 | 少妇人妻一区二区三区视频| 99热国产这里只有精品6| 婷婷色麻豆天堂久久| 街头女战士在线观看网站| 国产国拍精品亚洲av在线观看| 人妻人人澡人人爽人人| 97在线人人人人妻| 成年美女黄网站色视频大全免费 | 丰满少妇做爰视频| 精品亚洲成国产av| 高清午夜精品一区二区三区| 美女国产视频在线观看| 亚洲高清免费不卡视频| av线在线观看网站| 成年女人在线观看亚洲视频| 久久狼人影院| 国产精品99久久久久久久久| 亚洲一区二区三区欧美精品| 久久ye,这里只有精品| a 毛片基地| 少妇人妻精品综合一区二区| 亚洲欧美成人精品一区二区| 亚洲熟女精品中文字幕| 久久97久久精品| 免费在线观看成人毛片| 韩国高清视频一区二区三区| 国产淫片久久久久久久久| 成人无遮挡网站| 99久久综合免费| 日本vs欧美在线观看视频 | 亚洲精品日本国产第一区| 在现免费观看毛片| 老司机亚洲免费影院| 免费在线观看成人毛片| 99热这里只有精品一区| tube8黄色片| 欧美老熟妇乱子伦牲交| 免费大片黄手机在线观看| 一级毛片黄色毛片免费观看视频| 伊人亚洲综合成人网| 久久99精品国语久久久| 国产伦精品一区二区三区视频9| 丰满人妻一区二区三区视频av| 亚洲欧洲国产日韩| 看非洲黑人一级黄片| 欧美日韩在线观看h| 男女边摸边吃奶| 大片电影免费在线观看免费| a级毛色黄片| 高清视频免费观看一区二区| 少妇人妻一区二区三区视频| 成人无遮挡网站| 精品亚洲成a人片在线观看| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 日本猛色少妇xxxxx猛交久久| 国产片特级美女逼逼视频| 夜夜爽夜夜爽视频| 亚洲精品,欧美精品| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| h日本视频在线播放| 亚洲国产av新网站| av女优亚洲男人天堂| 精品视频人人做人人爽| 亚洲精品自拍成人| 天美传媒精品一区二区| videos熟女内射| 国产精品久久久久久久电影| 黑人猛操日本美女一级片| 国产中年淑女户外野战色| 18+在线观看网站| 一区二区三区精品91| 免费大片18禁| 欧美 日韩 精品 国产| 黄色一级大片看看| 国产真实伦视频高清在线观看| 天堂8中文在线网| 欧美成人精品欧美一级黄| 大香蕉久久网| 亚州av有码| 久久久久网色| 欧美激情国产日韩精品一区| 99热网站在线观看| 欧美精品亚洲一区二区| 日韩,欧美,国产一区二区三区| 69精品国产乱码久久久| 性色avwww在线观看| 国产高清三级在线| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 色视频www国产| 亚洲欧美日韩东京热| 亚洲av成人精品一二三区| 王馨瑶露胸无遮挡在线观看| 久久国产精品男人的天堂亚洲 | 国产白丝娇喘喷水9色精品| 看非洲黑人一级黄片| 卡戴珊不雅视频在线播放| 成年av动漫网址| 高清午夜精品一区二区三区| 有码 亚洲区| 国产精品久久久久成人av| 精品一区二区三卡| 亚洲精品日韩av片在线观看| 午夜福利影视在线免费观看| 少妇被粗大的猛进出69影院 | 国产精品人妻久久久久久| 男女啪啪激烈高潮av片| 日日爽夜夜爽网站| 乱人伦中国视频| 美女脱内裤让男人舔精品视频| 一本—道久久a久久精品蜜桃钙片| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 嫩草影院新地址| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 色吧在线观看| 午夜激情福利司机影院| www.av在线官网国产| 国产成人免费观看mmmm| 欧美xxxx性猛交bbbb| 色5月婷婷丁香| 少妇人妻一区二区三区视频| 最近手机中文字幕大全| 国产淫语在线视频| 一区在线观看完整版| 大片免费播放器 马上看| 又黄又爽又刺激的免费视频.| 纵有疾风起免费观看全集完整版| 黑人猛操日本美女一级片| 在线观看www视频免费| 亚洲中文av在线| 美女国产视频在线观看| 水蜜桃什么品种好| av有码第一页| 国国产精品蜜臀av免费| 啦啦啦啦在线视频资源| www.av在线官网国产| av免费在线看不卡| 超碰97精品在线观看| 少妇高潮的动态图| 色哟哟·www| 人妻系列 视频| 人人妻人人爽人人添夜夜欢视频 | 欧美3d第一页| 欧美xxⅹ黑人| 免费观看无遮挡的男女| 国产淫语在线视频| 26uuu在线亚洲综合色| 成人无遮挡网站| 久热这里只有精品99| 国产精品久久久久久久电影| 亚洲精品,欧美精品| 美女主播在线视频| 在线观看国产h片| 成年人午夜在线观看视频| 91精品国产九色| 少妇被粗大的猛进出69影院 | 99热6这里只有精品| 日韩在线高清观看一区二区三区| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 成人漫画全彩无遮挡| 熟妇人妻不卡中文字幕| 久久免费观看电影| 最后的刺客免费高清国语| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 国产精品秋霞免费鲁丝片| 狂野欧美激情性xxxx在线观看| 嫩草影院新地址| 亚洲国产欧美日韩在线播放 | 国产成人aa在线观看| 精品亚洲乱码少妇综合久久| 在线精品无人区一区二区三| 91午夜精品亚洲一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 有码 亚洲区| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 精品一区在线观看国产| 中文字幕制服av| 人妻夜夜爽99麻豆av| a级一级毛片免费在线观看| 久久99蜜桃精品久久| 精品少妇内射三级| 欧美高清成人免费视频www| 婷婷色综合大香蕉| 精品人妻熟女av久视频| 女性生殖器流出的白浆| 激情五月婷婷亚洲| 亚洲国产毛片av蜜桃av| 亚洲精品亚洲一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久久久免费av| 男女国产视频网站| 免费黄网站久久成人精品| av网站免费在线观看视频| xxx大片免费视频| 久久韩国三级中文字幕| 韩国高清视频一区二区三区| 亚洲成色77777| 国产精品三级大全| 精品亚洲成a人片在线观看| 精品人妻偷拍中文字幕| 国精品久久久久久国模美| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 在现免费观看毛片| 免费av不卡在线播放| 丰满乱子伦码专区| 中文字幕人妻熟人妻熟丝袜美| 男女边摸边吃奶| 美女内射精品一级片tv| 80岁老熟妇乱子伦牲交| 亚洲av.av天堂| 麻豆精品久久久久久蜜桃| 国产一区二区三区综合在线观看 | av线在线观看网站| 国产在线视频一区二区| 欧美亚洲 丝袜 人妻 在线| 有码 亚洲区| 日韩 亚洲 欧美在线| 在线观看免费视频网站a站| 我的老师免费观看完整版| 亚洲一级一片aⅴ在线观看| 久久99热这里只频精品6学生| 午夜激情福利司机影院| 国产色婷婷99| 免费av不卡在线播放| 最黄视频免费看| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 中国三级夫妇交换| 国产91av在线免费观看| 亚洲精品久久久久久婷婷小说| 18禁在线无遮挡免费观看视频| 久久久精品免费免费高清| 日韩伦理黄色片| 亚洲欧美中文字幕日韩二区| 黄色日韩在线| 久久99热这里只频精品6学生| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区 | 国产有黄有色有爽视频| 久久97久久精品| 免费人成在线观看视频色| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| 国产一级毛片在线| 日本黄色日本黄色录像| 日韩制服骚丝袜av| 另类精品久久| 大话2 男鬼变身卡| 久久午夜福利片| 欧美变态另类bdsm刘玥| 爱豆传媒免费全集在线观看| 精品99又大又爽又粗少妇毛片| 伊人亚洲综合成人网| 卡戴珊不雅视频在线播放| av视频免费观看在线观看| 色婷婷av一区二区三区视频| 纯流量卡能插随身wifi吗| 在线观看av片永久免费下载| 99久久精品国产国产毛片| 亚洲在久久综合| 国产精品免费大片| 国产成人精品一,二区| 精品国产乱码久久久久久小说| 狂野欧美白嫩少妇大欣赏| 大陆偷拍与自拍| 精品少妇久久久久久888优播| 午夜免费观看性视频| 最近最新中文字幕免费大全7| 另类精品久久| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 欧美日本中文国产一区发布| 我要看日韩黄色一级片| 日韩精品免费视频一区二区三区 | 黑丝袜美女国产一区| 天美传媒精品一区二区| 午夜福利,免费看| 色哟哟·www| 91成人精品电影| 精品久久久久久久久亚洲| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 免费观看在线日韩| 午夜激情久久久久久久| 午夜老司机福利剧场| 免费黄频网站在线观看国产| av.在线天堂| 2018国产大陆天天弄谢| 亚洲成人一二三区av| 欧美最新免费一区二区三区| 黑人高潮一二区| 国产成人aa在线观看| 成年人免费黄色播放视频 | 欧美成人午夜免费资源| 少妇人妻一区二区三区视频| 亚洲精品成人av观看孕妇| 全区人妻精品视频| 大片免费播放器 马上看| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 我要看黄色一级片免费的| 亚洲三级黄色毛片| 久久久久久久久久久久大奶| 夫妻午夜视频| 秋霞在线观看毛片| 不卡视频在线观看欧美| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 中文字幕久久专区| 免费高清在线观看视频在线观看| 午夜免费鲁丝| 99久久人妻综合| 高清午夜精品一区二区三区| 国产亚洲91精品色在线| 亚洲人与动物交配视频| 免费看光身美女| 日日撸夜夜添| 日韩一区二区三区影片| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 国产一级毛片在线| 久久久国产精品麻豆| 丰满人妻一区二区三区视频av| 久久精品夜色国产| 中文乱码字字幕精品一区二区三区| 麻豆成人av视频| 亚洲精品国产色婷婷电影| 80岁老熟妇乱子伦牲交| 国国产精品蜜臀av免费| av视频免费观看在线观看| 久久人人爽人人爽人人片va| 日韩一区二区视频免费看| 大码成人一级视频| 欧美97在线视频| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 一区二区av电影网| 亚洲av在线观看美女高潮| 3wmmmm亚洲av在线观看| 亚洲av综合色区一区| 欧美亚洲 丝袜 人妻 在线| 久久精品国产亚洲网站| 最新的欧美精品一区二区| 水蜜桃什么品种好| 亚洲精品自拍成人| 三级国产精品片| av在线观看视频网站免费| 久久精品夜色国产| 亚洲精品久久久久久婷婷小说| 精品人妻熟女av久视频| 中文天堂在线官网| 国产精品一区www在线观看| 国产成人精品无人区| 2021少妇久久久久久久久久久| 黄色日韩在线| 美女cb高潮喷水在线观看| 在线天堂最新版资源| 精品久久久精品久久久| 全区人妻精品视频| 亚洲精品国产av成人精品| 99精国产麻豆久久婷婷| 中文字幕精品免费在线观看视频 | 伦精品一区二区三区| 一级二级三级毛片免费看| 国产午夜精品一二区理论片| 丰满乱子伦码专区| 尾随美女入室| 亚洲情色 制服丝袜| 91精品一卡2卡3卡4卡| a级毛片免费高清观看在线播放| 日韩一区二区视频免费看| 色哟哟·www| 精品亚洲成国产av| 欧美日韩视频精品一区| 亚洲四区av| 国产在线男女| 国产欧美日韩综合在线一区二区 | 秋霞伦理黄片| 国产一区二区在线观看日韩| 欧美 亚洲 国产 日韩一| h日本视频在线播放| 在线观看免费高清a一片| 亚洲中文av在线| 国产成人免费无遮挡视频| 国产精品一区二区三区四区免费观看| 久久韩国三级中文字幕| 大陆偷拍与自拍| av国产精品久久久久影院| 久热这里只有精品99| 日本wwww免费看| 日韩亚洲欧美综合| 免费看光身美女| 久久久国产一区二区| 欧美日韩亚洲高清精品| 中文天堂在线官网| 久久6这里有精品| 秋霞伦理黄片| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 亚洲欧美一区二区三区黑人 | 99九九在线精品视频 | 国产视频首页在线观看| 91成人精品电影| 成人黄色视频免费在线看| 久久热精品热| 久久ye,这里只有精品| 亚洲精品一区蜜桃| 国产 一区精品| 国产精品嫩草影院av在线观看| 亚洲,欧美,日韩| 大片电影免费在线观看免费| 三上悠亚av全集在线观看 | 精品人妻熟女av久视频| 最近中文字幕2019免费版| 人人澡人人妻人| 国产免费又黄又爽又色| 美女国产视频在线观看| 国产成人精品一,二区| 国产男女内射视频| 亚洲,欧美,日韩| 日日爽夜夜爽网站| 全区人妻精品视频| 少妇 在线观看| 国产黄频视频在线观看| 久久久久久人妻| 十分钟在线观看高清视频www | 观看av在线不卡| 亚洲美女搞黄在线观看| av免费在线看不卡| 少妇的逼水好多| 国产日韩一区二区三区精品不卡 | 欧美xxⅹ黑人| 亚洲欧美日韩另类电影网站| 欧美日韩在线观看h| 国产深夜福利视频在线观看| 99久久中文字幕三级久久日本| 夜夜爽夜夜爽视频| 国产精品女同一区二区软件| 国产黄片美女视频| 99久国产av精品国产电影| 久久热精品热| 男人狂女人下面高潮的视频| 精品一区二区免费观看| 久久这里有精品视频免费| 在线观看国产h片| 国产在线视频一区二区| videossex国产| 高清黄色对白视频在线免费看 | 国产伦精品一区二区三区视频9| 欧美+日韩+精品| 国产极品粉嫩免费观看在线 | 99久久精品一区二区三区| 我的女老师完整版在线观看| 久久精品国产鲁丝片午夜精品| 深夜a级毛片| 国产亚洲一区二区精品| 这个男人来自地球电影免费观看 | 日韩成人av中文字幕在线观看| 国产精品99久久久久久久久| 黄色怎么调成土黄色| 亚洲久久久国产精品| 一二三四中文在线观看免费高清| 免费大片黄手机在线观看| 卡戴珊不雅视频在线播放| 亚洲经典国产精华液单| 国产免费一区二区三区四区乱码| 中文字幕精品免费在线观看视频 | 亚洲丝袜综合中文字幕| 国产精品欧美亚洲77777| 人人妻人人看人人澡| 多毛熟女@视频| 99久久精品一区二区三区| 国产精品免费大片| 在线观看一区二区三区激情| 最黄视频免费看| 午夜激情福利司机影院| 22中文网久久字幕| 亚洲综合精品二区| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 麻豆成人av视频| 成人漫画全彩无遮挡| 少妇被粗大的猛进出69影院 | 亚洲丝袜综合中文字幕| 五月玫瑰六月丁香| 亚洲精品456在线播放app| 91精品国产九色| 久久99精品国语久久久| 黄色视频在线播放观看不卡| 亚洲av日韩在线播放| 精品午夜福利在线看| 黑人巨大精品欧美一区二区蜜桃 | 中文字幕免费在线视频6| 少妇人妻 视频| 又爽又黄a免费视频| 免费不卡的大黄色大毛片视频在线观看| 国产精品99久久99久久久不卡 | 日本免费在线观看一区| 大片免费播放器 马上看| 人体艺术视频欧美日本| 免费观看的影片在线观看| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 午夜福利在线观看免费完整高清在| av不卡在线播放| 美女脱内裤让男人舔精品视频| 久久国内精品自在自线图片| 人妻夜夜爽99麻豆av| 99久国产av精品国产电影| 黄色一级大片看看| 男女国产视频网站| 在线观看免费视频网站a站| 国国产精品蜜臀av免费| 国产成人午夜福利电影在线观看| 亚洲av电影在线观看一区二区三区| 尾随美女入室| 免费观看性生交大片5| 国产成人freesex在线| 日本av手机在线免费观看| 九草在线视频观看| av卡一久久| 久久久久久久久久人人人人人人| 能在线免费看毛片的网站| 精品熟女少妇av免费看| 女性被躁到高潮视频| 精品人妻偷拍中文字幕| 在线观看www视频免费| 视频区图区小说| 色视频www国产| 国产极品天堂在线| 特大巨黑吊av在线直播| 亚洲国产精品专区欧美| 高清在线视频一区二区三区| 国产成人精品婷婷| 亚洲丝袜综合中文字幕| av一本久久久久| 亚洲精华国产精华液的使用体验| av国产精品久久久久影院| 亚洲成色77777| 一区二区三区免费毛片| 肉色欧美久久久久久久蜜桃| 老司机影院成人| 亚洲一区二区三区欧美精品| 秋霞在线观看毛片| 男人舔奶头视频| 另类精品久久| av福利片在线| 中文在线观看免费www的网站| 亚洲美女视频黄频| 国产一区有黄有色的免费视频| 少妇人妻 视频| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| kizo精华| 一区二区三区四区激情视频| 精品国产一区二区三区久久久樱花| 老司机影院成人| 亚洲一区二区三区欧美精品| 色视频www国产| 视频区图区小说| 又爽又黄a免费视频| 免费av中文字幕在线| 十八禁网站网址无遮挡 | 欧美老熟妇乱子伦牲交| 日日爽夜夜爽网站| av福利片在线观看| 久久国内精品自在自线图片| 中文天堂在线官网| 韩国av在线不卡| 日本色播在线视频| 亚洲图色成人| 久久人人爽人人爽人人片va| 中国美白少妇内射xxxbb| 国产高清有码在线观看视频| 国产精品一区二区在线观看99| 一级毛片我不卡| 91久久精品电影网| 国产精品久久久久久精品古装| 日本wwww免费看| 精品久久久噜噜| 青春草亚洲视频在线观看| 日韩视频在线欧美| 偷拍熟女少妇极品色| av有码第一页| 大香蕉97超碰在线| 日日啪夜夜撸| 99热这里只有是精品在线观看| 亚洲熟女精品中文字幕| 成年av动漫网址| 久久久久精品久久久久真实原创| 又爽又黄a免费视频| 午夜激情久久久久久久| 国产伦在线观看视频一区| 国产免费一区二区三区四区乱码| 成年美女黄网站色视频大全免费 |