• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method *

    2018-04-13 12:23:51ChengpingRao饒成平DechengWan萬德成
    水動力學研究與進展 B輯 2018年1期

    Cheng-ping Rao (饒成平), De-cheng Wan (萬德成)

    ?

    Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method*

    Cheng-ping Rao (饒成平), De-cheng Wan (萬德成)

    Slamming is the phenomenon of structure impacting the water surface. It always results in the extremely high load on the structure. This paper is mainly concerned with the slamming force caused by the wave-plate interaction. In this paper, the process of solitary wave impacting onto the horizontal plate is simulated with the help of the moving particle semi-implicit and finite element coupled method (MPS-FEM). The MPS method is adopted to calculate the fluid domain while the structural domain is solved by FEM method. In the first series of simulations, the profiles of the solitary waves with various amplitudes, which are generated in the numerical wave tank, are compared with the theoretical results. Thereafter the interaction between the solitary waves and a rigid plate is simulated. The effects of wave amplitude, as well as the elevation of the plate above the initial water level, on the slamming force are numerically investigated. The calculated results are compared with the available experimental data. Finally, the interactions between the solitary waves and the elastic plate are also simulated. The effects of the structural flexibility on the wave-induced force are analyzed by the comparison between the cases with elastic and the rigid plate.

    Slamming, moving particle semi-implicit (MPS), finite element method (FEM), fluid-structure interaction, MPSFEM- SJTU solver

    Introduction

    The wave-structure interaction is a particularly topical issue in the field of naval architecture and ocean engineering. The plate structure, such as the pier, trestle bridge or very large floating structure (VLFS), is among the most common structures suffering from the impact of the waves. The severe wave may cause considerable deformation or failure of the offshore and costal structures. The research on the slamming force during the wave-plate interaction is crucial to the design of the offshore or costal structures.

    Since the numerical simulations can provide researchers with comprehensive information and con- sume much less resources than experiments, a variety of numerical methods are developed to investigate the wave-plate interaction, especially the slamming force in this process. To name some of them, Seiffert et al.[1]analysed the slamming force on a flat plate under the solitary wave based on the finite-volume method (FVM) with the help of the open source computational fluid dynamics (CFD) platform-OpenFOAM. Greco et al.[2]employed the boundary element method (BEM) to investigate the coupling between the motion of a VLFS and the bottom slamming force. However, the aforementioned researches ignored the flexibility of the plate. Actually, the deformation of the structure could exert significant influences on the flow and the slamming force. According to Abrate’s statement[3], the vibration of the elastic structure could cause the oscillation of the slamming force. To take the structu- ral deformation into consideration, scholars are requi- red to implement structure calculation on the basis of original CFD solvers. Liu and Sakai[4]studied the hydroelastic responses of a 2-D flexible plate exposed to waves based on the BEM and the FEM. Korobkin and Khabakhpasheva[5]studied the regular waves im- pacting on an elastic plate in the context of linear potential-flow theory and Euler beam theory. Liao and Hu[6]combined the finite difference method (FDM) with the FEM method to investigate the interplay between the surface flow and a thin elastic plate.

    In general, the problems in the naval architecture and ocean engineering can be characterized by free surface, multiphase flow or material discontinuities[7]which require extra treatments on tracking the boun- daries of water surface and structure. Despite the mesh-based methods are of effectiveness in the simu- lation of fluid evolution, they may suffer from the difficulties such as the adjustment or regeneration of mesh while tracking the complex boundaries. Owing to the Lagrangian property, some newly emerged mesh-free methods can exactly overcome the difficul- ties regarding the mesh-based method. The smoothed particle hydrodynamics (SPH)[8,9]and the moving par- ticle semi-implicit (MPS) method[10]are two typical particle-based mesh-free methods. These mesh-free methods demonstrate many advantages while dealing with the problems of large deformation or intense free surface because the boundaries of material can be tracked by particles automatically[11]. Although the SPH-FEM model was first proposed by Attaway et al.[12]to investigate the structure-structure interaction, it was subsequently applied into fluid-structure inte- raction (FSI) problems by scholars[13-15].

    Some preliminary researches on FSI have been conducted in the context of the MPS method. Sun et al.[16]proposed MPS-modal superposition method in which the elastic deformation of structure is computed through a mode superposition formulation. In contrast, more scholars chose to combine the MPS with the FEM method in order to address complicated FSI problem. Lee et al.[17]successfully simulated the inte- raction between dam-break and sloshing flow through the coupled MPS-FEM method. Rao et al.[18]investi- gated the solitary wave impact onto a vertical elastic plate using our in-house MPSFEM-SJTU solver[18-21]. Some other researches performing the MPS-FEM model[19, 22, 23]also displayed fair agreement with avai- lable experimental results.

    The present paper aims at investigating the slam- ming force during the interaction between the solitary wave and a horizontal elastic plate numerically. The theories of our in-house solver MPSFEM-SJTU, as well as its coupling strategy, are introduced. Then the performance of the solitary wave generation is ex- amined to make sure that desired wave can be gene- rated. In the FSI analysis, the interaction between the solitary wave and rigid plate is simulated. The wave amplitude, together with the vertical position of the plate, varies in different cases in order to investigate their effects on the wave-induced slamming force. Finally the solitary wave impacting onto the elastic plate is investigated. The peculiar phenomena in the elastic case are primarily discussed.

    1. Numerical methods

    1.1 The moving particle semi-implicit method

    1.1.1 Governing equations

    The governing equations of viscous incompres- sible fluid are composed of continuity equation and Navier-Stokes equation:

    1.1.2 Models of particle interaction

    In particle-based method, the fluid domain is rep- resented by thousands of particles. Thus, the governing equations are required to be transformed into the form of particle interactions. The particle interaction models are implemented based on the kernel function. In present paper, a modified kernel function proposed by Zhang and Wan[24]is adopted.

    1.1.3 Models of mathematical operator

    In MPS method, the models of particle interaction involve gradient model, divergence model and Laplacian model. They are written as:

    1.1.4 Model of incompressibility

    As mentioned before, the MPS method is used to simulate the incompressible flow. To impose the in- compressibe condition on the fluid, the semi-implicit algorithm is adopted and the pressure of each particle can be obtained through solving the Poisson’s pressure equation (PPE). In this paper, we employ a mixed source term method combining the velocity diver- gence-free condition and the constant particle number density condition. It is proposed by Tanaka and Masunaga, and rewritten by Lee et al.[25, 26]

    Table1Computational parameters for MPS

    1.1.5 Detection of surface particles

    1.1.6 Solving procedure of MPS

    In the solving procedure of MPS method, the pro- jection-correction algorithm is employed. The proce- dure is presented step by step as follows:

    (3) Solve the Poisson’s pressure equation and obtain the particle pressure at next time step.

    (4) Correct the velocity and position of particles implicitly based on the obtained pressure

    1.2 The finite element method

    According to the FEM theory, the spatially discre- tized structural dynamic equations, which governing the motion of structural nodes, can be expressed as[27]:

    Detailed calculating equations can be found in our previous publication[29].

    1.3 Partitioned coupling strategy for FSI

    Fig. 2(Color online) Geometric model of the numerical wave tank

    On the other hand, to impose the boundary con- dition of structure domain on the fluid, the structure domain is updated every structural timestep. It should be noted that the boundary particles are involved in the solving of Poisson’s pressure equation. In this way, the boundary information of structure domain can be passed to the fluid domain successfully.

    2. Numerical simulations

    The interaction between the solitary wave and a horizontal plate is simulated using the in-house solver in this section. The geometric model of the wave tank, aswellasthehorizontalplate,isdepictedinFig. 2.

    Fig. 3Comparison of the wave profile between the calculated and theoretical solution

    2.1 Numerical wave generations

    Figure 3 shows the comparison of the wave pro- file between the numerical simulation and the theore- tical solution. It can be seen that the wave crest of the simulation agrees well with the theoretical solution presented by Goring[30]. Besides, there is no evident decay in the wave crest as it propagates downstream. However, there are still some slight distinctions, such as in the ascending portion of the curve, owing to the finite length and depth of the wave tank. It can be concluded that desired solitary wave can be generated based on MPS method.

    2.2 Interaction between waves and a rigid plate

    Table2Configurations in all cases

    Fig. 4 Slamming force history on plate (, )

    Fig. 5 (Color online) Snapshots of the simulation (,, rigid plate)

    Fig. 6The maximum slamming forces on the plate

    To investigate the effects of the wave amplitude and plate elevation on the wave-induced slamming force, the maximum value of the slamming force history in each case is collected. The comparison of the computed and experimental result is shown in Fig. 6. It can be seen that the slamming force on the plate is in proportion to the wave amplitude. However the maxi- mum slamming forces in the cases of different eleva- tion are close to each other, which indicate that the maximum slamming force is not as sensitive to the plate elevation as to the wave amplitude. Although the comparison shows good agreement, the computed maximum slamming force in each case is higher than the experimental result. It is partly due to the surface elevation resulting from the movement of the piston- type wavemaker. The length of the wave tank is rela- tively short compared with the experimental condition and the effects of the surface elevation cannot be neglected.

    2.3 Interaction between waves and an elastic plate

    To study the effects of structural flexibility on the slamming force, the simulation of the solitary wave interacting with an elastic plate is conducted in this sub-section. The present FSI solver employed has proved to be reliable in our previous research[18, 21, 29]. The setup of the wave amplitude and plate elevation is identical to that in the former subsection, which is shown in Table 2. However, the former rigid plate is replaced by an elastic plate with its ends clamped. The 2-D plate is divided into 152 planar beam elements in the structure analysis. The fluid parameter is the same as the one in the former simulations, which is shown in Table 1. The structural parameter is shown in Table 3.

    Table3Computational parameters for FEM

    3. Conclusions

    Fig. 8 (Color online) Snapshots of the wave-plate interaction (,,flexible plate)

    Fig.9(Color online)Themaximumslammingforcesandthe MF

    Acknowledgements

    This work was supported by the Chang Jiang ScholarsProgram(GrantNo.T2014099),the Shanghai Excellent Academic Leaders Program (Grant No. 17XD1402300), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institu- tions of Higher Learning (Grant No. 2013022), the Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(GrantNo.2016-23/09)andtheLloyd’s Register Foundation for Doctoral Candidate, to which the authors are most grateful.

    [1] Seiffert B., Hayatdavoodi M., Ertekin R. C. Experiments and computations of solitary-wave forces on a coastal- bridge deck. Part I: Flat plate [J]., 2014, 88: 194-209.

    [2] Greco M., Colicchio G., Faltinsen O. M. Bottom slam- ming for a very large floating structure: coupled global and slamming analyses [J]., 2009, 25(2): 420-430.

    [3] Abrate S. Hull Slamming [J]., 2011, 64(6): 060803.

    [4] Liu X., Sakai S. Time domain analysis on the dynamic response of a flexible floating structure to waves [J]., 2002, 128(1): 48-56.

    [5] Korobkin A. A., Khabakhpasheva T. I. Regular wave impact onto an elastic plate [J]., 2006, 55(1-4): 127-150.

    [6] Liao K., Hu C. A coupled FDM-FEM method for free surface flow interaction with thin elastic plate [J]., 2013, 18(1): 1-11.

    [7] Zhang A. M., Sun P. N., Ming F. R. et al. Smoothed particle hydrodynamics and its applications in fluid-struc- ture interactions [J]., 2017, 29(2): 187-216.

    [8] Lucy L. B. A numerical approach to the testing of the Fission hypothesis [J]., 1977, 82: 1013-1024.

    [9] Gingold R. A., MonaghanJ. J. Smoothed particle hydrody- namics: Theory and application to non-spherical stars [J]., 1977,181(3): 375-389.

    [10] Koshizuka S., Oka Y. Moving-particle semi-implicit me- thod for fragmentation of incompressible fluid [J]., 1996, 123(3): 421-434.

    [11] Liu M. B., Li S. M. On the modeling of viscous income- pressible flows with smoothed particle hydrodynamics [J]., 2016, 28(5): 731-745.

    [12] Attaway S. W., Heinstein M. W., Swegle J. W. Coupling of smooth particle hydrodynamics with the finite element method [J]., 1994, 150(2-3): 199-205.

    [13] Antoci C., Gallati M., Sibilla S. Numerical simulation of fluid–structure interaction by SPH [J]., 2007, 85(11): 879-890.

    [14]Fourey G., Oger G., Le Touzé D. et al. Violent fluid- structure interaction simulations using a coupled SPH/ FEM method [J]., 2010, 10(1): 012041.

    [15] Yang Q., Jones V., McCue L. Free-surface flow interac- tions with deformable structures using an SPH-FEM model [J]., 2012, 55(15): 136-147.

    [16] Sun Z., Djidjeli K., Xing J. et al.Coupled MPS-modal su- perposition method for 2D nonlinear fluid-structure interaction problems with free surface [J]., 2016, 61: 295-323.

    [17] Lee C. J. K., Noguchi H., Koshizuka S. Fluid–shell struc- ture interaction analysis by coupled particle and finite element method [J]., 2007, 85(11): 688-697.

    [18]Rao C., Zhang Y., Wan D. Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method [J]., 2017, 16: 1-10.

    [19] Zhang Y., Chen X., Wan D. An MPS-FEM coupled me- thod for the comparative study of liquid sloshing flows interacting with rigid and elastic baffles [J]., 2016, 37(12): 1359-1377.

    [20]Zhang Y., Tang Z., Wan D. Numerical investigations of waves interacting with free rolling body by modified MPS method [J]., 2016, 13(4): 1641013.

    [21] Zhang Y., Wan D. Numerical study of interactions bet- ween waves and free rolling body by IMPS method [J]., 2017, 155: 124-133.

    [22] Mitsume N., Yoshimura S., Murotani K. et al. Improved MPS-FE fluid-structure interaction coupled method with MPS polygon wall boundary model [J]., 2014, 101(4): 229-247.

    [23]Hwang S. C., Khayyer A., Gotoh H. et al. Development of a fully Lagrangian MPS-based coupled method for simu- lation of fluid-structure interaction problems [J]., 2014, 50(2): 497-511.

    [24] Zhang Y., Wan D. Apply MPS method to simulate liquid sloshing in LNG tank [J]., 2012, 29(12): 1843-1857.

    [25] Tanaka M., Masunaga T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility [J]., 2010, 229(11): 4279-4290.

    [26] Lee B. H., Park J. C., Kim M. H.et al. Step-by-stepim- provement of MPS method in simulating violent free-sur- facemotions and impact-loads [J]., 2011, 200(9-12): 1113-1125.

    [27] Iura M., Atluri S. N. Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames [J]., 1995, 55(3): 453-462.

    [28] Hsiao K. M., Lin J. Y., Lin W. Y. A consistent co-rota- tional finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams [J]., 1999, 169(1-2): 1-18.

    [29] Rao C., Zhang Y., Wan D. FSI analysis of solitary wave interacting with horizontal flexible plate by MPS-FEM method [C]., San Francisco, California, USA, 2017, 263-272.

    [30]Goring D. G. Tsunamis-the propagation of long waves onto a shelf [D]. Doctoral Thesis, Pasadena, California, USA: California Institute of Technology, 1978.

    (October 22, 2017, Accepted November 22, 2017)

    ?China Ship Scientific Research Center 2018

    * Project supported by the National Natural Science Foun- dation of China (Grant Nos. 51490675, 11432009, 51579145 and 51379125).

    Cheng-ping Rao (1995-), Male, Master Candidate,

    E-mail: rao199547@sjtu.edu.cn

    De-cheng Wan,

    E-mail:dcwan@sjtu.edu.cn

    18禁观看日本| 日韩精品中文字幕看吧| 伊人久久大香线蕉亚洲五| 免费av毛片视频| 亚洲九九香蕉| 欧美中文日本在线观看视频| 香蕉久久夜色| 人人妻人人澡欧美一区二区 | 精品欧美一区二区三区在线| 午夜福利影视在线免费观看| 嫩草影视91久久| 久久精品影院6| 日本 欧美在线| 大码成人一级视频| 一边摸一边抽搐一进一出视频| 神马国产精品三级电影在线观看 | 国产主播在线观看一区二区| 日本 欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 在线观看舔阴道视频| 欧美+亚洲+日韩+国产| 一二三四社区在线视频社区8| 电影成人av| 欧美一级毛片孕妇| 国产乱人伦免费视频| 亚洲国产精品999在线| 亚洲av电影在线进入| bbb黄色大片| 欧美一级a爱片免费观看看 | 麻豆成人av在线观看| 波多野结衣av一区二区av| av有码第一页| 成人手机av| 亚洲七黄色美女视频| 国产一区二区在线av高清观看| 国产欧美日韩一区二区精品| 精品久久久久久成人av| 欧美性长视频在线观看| 成人亚洲精品一区在线观看| 嫁个100分男人电影在线观看| 十分钟在线观看高清视频www| 正在播放国产对白刺激| 国产精品亚洲一级av第二区| 丁香欧美五月| 91成年电影在线观看| 午夜福利在线观看吧| 一进一出抽搐动态| 91大片在线观看| 国产伦一二天堂av在线观看| 黑人巨大精品欧美一区二区蜜桃| 男女床上黄色一级片免费看| 电影成人av| 免费在线观看黄色视频的| 色尼玛亚洲综合影院| 国产伦一二天堂av在线观看| 亚洲自拍偷在线| 久久中文看片网| 啪啪无遮挡十八禁网站| 极品人妻少妇av视频| 九色国产91popny在线| 久久久久国产精品人妻aⅴ院| 日韩免费av在线播放| 免费少妇av软件| 亚洲无线在线观看| 一进一出抽搐动态| 国产精品野战在线观看| 亚洲中文字幕日韩| 他把我摸到了高潮在线观看| 国产成人精品久久二区二区91| 欧美中文日本在线观看视频| 超碰成人久久| 韩国精品一区二区三区| 成人亚洲精品一区在线观看| 麻豆国产av国片精品| 亚洲欧洲精品一区二区精品久久久| 无限看片的www在线观看| 麻豆久久精品国产亚洲av| 他把我摸到了高潮在线观看| 久久久久国内视频| 日本三级黄在线观看| 久久 成人 亚洲| 久久精品91蜜桃| 久热这里只有精品99| 久久中文字幕一级| 两性夫妻黄色片| 国产精品 欧美亚洲| 免费在线观看视频国产中文字幕亚洲| 人人妻人人澡欧美一区二区 | 久久香蕉激情| 人人澡人人妻人| 国产一区二区三区视频了| 久久欧美精品欧美久久欧美| 18禁美女被吸乳视频| 免费在线观看亚洲国产| 可以在线观看毛片的网站| 大型黄色视频在线免费观看| 91成年电影在线观看| 青草久久国产| 18禁黄网站禁片午夜丰满| 黄色片一级片一级黄色片| 亚洲国产欧美一区二区综合| 琪琪午夜伦伦电影理论片6080| 久久久国产欧美日韩av| 99re在线观看精品视频| 免费少妇av软件| 欧美黑人精品巨大| 免费在线观看完整版高清| 国产一区二区三区综合在线观看| 欧美激情极品国产一区二区三区| 亚洲无线在线观看| 国产高清有码在线观看视频 | 无限看片的www在线观看| 超碰成人久久| 婷婷精品国产亚洲av在线| 欧美日本中文国产一区发布| 久久这里只有精品19| 亚洲在线自拍视频| 久久婷婷成人综合色麻豆| 欧美激情 高清一区二区三区| 久久精品国产亚洲av高清一级| 国产麻豆69| 免费观看精品视频网站| 色哟哟哟哟哟哟| 国产一卡二卡三卡精品| 在线观看午夜福利视频| 久久久久精品国产欧美久久久| 久久精品亚洲精品国产色婷小说| 亚洲精品在线观看二区| 黑丝袜美女国产一区| 欧美成狂野欧美在线观看| 正在播放国产对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 国产成人精品久久二区二区免费| 国产三级在线视频| 一个人免费在线观看的高清视频| 在线观看日韩欧美| 91老司机精品| 在线观看免费视频日本深夜| 中文字幕人妻丝袜一区二区| 欧美成人一区二区免费高清观看 | 亚洲伊人色综图| 久久久水蜜桃国产精品网| 成人手机av| 精品第一国产精品| 12—13女人毛片做爰片一| 深夜精品福利| 国产av又大| xxx96com| 身体一侧抽搐| 国产黄a三级三级三级人| 在线观看午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 女同久久另类99精品国产91| 中文字幕人妻丝袜一区二区| 欧美日本亚洲视频在线播放| 大陆偷拍与自拍| 欧美色欧美亚洲另类二区 | 女人高潮潮喷娇喘18禁视频| 亚洲精品国产精品久久久不卡| 国产欧美日韩综合在线一区二区| 国产亚洲精品综合一区在线观看 | 99久久精品国产亚洲精品| 看黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 免费看美女性在线毛片视频| 99久久综合精品五月天人人| 国产成+人综合+亚洲专区| 12—13女人毛片做爰片一| 亚洲精品美女久久av网站| 69精品国产乱码久久久| 精品国内亚洲2022精品成人| 悠悠久久av| 欧美激情极品国产一区二区三区| 久久精品国产99精品国产亚洲性色 | 国产成人欧美在线观看| 亚洲午夜精品一区,二区,三区| 午夜福利欧美成人| 一级,二级,三级黄色视频| 日本在线视频免费播放| 999精品在线视频| 免费av毛片视频| 国产亚洲欧美在线一区二区| 午夜精品久久久久久毛片777| 桃色一区二区三区在线观看| 女性被躁到高潮视频| 亚洲国产看品久久| 啪啪无遮挡十八禁网站| 国产在线精品亚洲第一网站| 精品国产亚洲在线| 1024香蕉在线观看| 午夜福利在线观看吧| 制服人妻中文乱码| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人性av电影在线观看| 多毛熟女@视频| 九色亚洲精品在线播放| 国产精品一区二区三区四区久久 | 桃红色精品国产亚洲av| 国产激情欧美一区二区| 国产精品影院久久| 91成年电影在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品合色在线| 亚洲激情在线av| 久久久久国内视频| 久久久久久久久中文| 国产野战对白在线观看| 99国产精品一区二区蜜桃av| 黄色丝袜av网址大全| 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 两个人视频免费观看高清| 欧美日韩一级在线毛片| 久久久久国产一级毛片高清牌| 人妻久久中文字幕网| 欧美中文日本在线观看视频| 啦啦啦观看免费观看视频高清 | 午夜福利高清视频| 亚洲伊人色综图| 国产精品香港三级国产av潘金莲| 国产精品二区激情视频| 免费人成视频x8x8入口观看| 久久精品91无色码中文字幕| 国产精品秋霞免费鲁丝片| 成人18禁在线播放| 好看av亚洲va欧美ⅴa在| 亚洲人成网站在线播放欧美日韩| av有码第一页| 操美女的视频在线观看| 国产精品免费视频内射| 国产一区二区激情短视频| 极品人妻少妇av视频| 天天一区二区日本电影三级 | 久久精品影院6| 国产精品秋霞免费鲁丝片| 99国产精品一区二区三区| 国产高清激情床上av| 黄片大片在线免费观看| 在线国产一区二区在线| 日韩欧美一区视频在线观看| 精品欧美国产一区二区三| 久久久久久久久中文| 丁香欧美五月| 18美女黄网站色大片免费观看| 高清在线国产一区| 国产欧美日韩一区二区三区在线| 男女下面插进去视频免费观看| 国产高清videossex| 亚洲一区二区三区色噜噜| 国产黄a三级三级三级人| 久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 热99re8久久精品国产| 午夜日韩欧美国产| 在线观看一区二区三区| 好男人在线观看高清免费视频 | 免费在线观看视频国产中文字幕亚洲| 国产欧美日韩一区二区三| av福利片在线| 亚洲国产精品合色在线| 日韩欧美三级三区| 国产97色在线日韩免费| 一区二区三区国产精品乱码| svipshipincom国产片| 高清毛片免费观看视频网站| 中文字幕人妻熟女乱码| 热99re8久久精品国产| 精品久久蜜臀av无| 多毛熟女@视频| 好看av亚洲va欧美ⅴa在| 久久人人97超碰香蕉20202| 在线观看一区二区三区| 国产精品香港三级国产av潘金莲| 欧美黑人精品巨大| 久久香蕉国产精品| 亚洲黑人精品在线| 可以在线观看的亚洲视频| 亚洲精品国产一区二区精华液| 看免费av毛片| 91九色精品人成在线观看| 777久久人妻少妇嫩草av网站| 亚洲人成网站在线播放欧美日韩| 亚洲成人久久性| 国产真人三级小视频在线观看| 国产精品免费一区二区三区在线| 叶爱在线成人免费视频播放| 真人一进一出gif抽搐免费| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区不卡视频| 不卡av一区二区三区| 麻豆久久精品国产亚洲av| 两个人免费观看高清视频| 国产亚洲欧美在线一区二区| 日韩高清综合在线| 国产亚洲欧美98| 欧美大码av| 欧美一级a爱片免费观看看 | 国产亚洲精品av在线| 精品少妇一区二区三区视频日本电影| 国产精品香港三级国产av潘金莲| 免费女性裸体啪啪无遮挡网站| 很黄的视频免费| 国产精品电影一区二区三区| 夜夜看夜夜爽夜夜摸| 一区二区日韩欧美中文字幕| 久久久国产精品麻豆| bbb黄色大片| 99精品在免费线老司机午夜| 动漫黄色视频在线观看| 18禁国产床啪视频网站| 黄片大片在线免费观看| 国产1区2区3区精品| 一a级毛片在线观看| 成人手机av| 又黄又爽又免费观看的视频| 欧美日韩乱码在线| 中文字幕久久专区| 男人舔女人下体高潮全视频| 69精品国产乱码久久久| 手机成人av网站| 日韩三级视频一区二区三区| www.熟女人妻精品国产| 国产三级在线视频| 欧美乱妇无乱码| 精品久久久精品久久久| 国产一区二区在线av高清观看| svipshipincom国产片| 一级黄色大片毛片| 自线自在国产av| 久久久久久大精品| 女人被狂操c到高潮| 91字幕亚洲| 满18在线观看网站| 91九色精品人成在线观看| 久久久久久大精品| 久久久久精品国产欧美久久久| 999久久久国产精品视频| 又大又爽又粗| 亚洲色图综合在线观看| 免费av毛片视频| 99riav亚洲国产免费| 国内精品久久久久精免费| 好男人电影高清在线观看| 日日干狠狠操夜夜爽| 50天的宝宝边吃奶边哭怎么回事| av视频免费观看在线观看| 波多野结衣一区麻豆| 欧美绝顶高潮抽搐喷水| 国产精品日韩av在线免费观看 | 久热爱精品视频在线9| 久久久久久大精品| 中文字幕久久专区| 宅男免费午夜| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 中国美女看黄片| 亚洲最大成人中文| 国产精品日韩av在线免费观看 | 欧美国产精品va在线观看不卡| 99精品欧美一区二区三区四区| 成年女人毛片免费观看观看9| 亚洲国产欧美日韩在线播放| 18美女黄网站色大片免费观看| 一本大道久久a久久精品| 美女免费视频网站| 国产麻豆成人av免费视频| 纯流量卡能插随身wifi吗| 一边摸一边抽搐一进一小说| 国产精品国产高清国产av| 淫秽高清视频在线观看| 成人18禁高潮啪啪吃奶动态图| 巨乳人妻的诱惑在线观看| 黄色片一级片一级黄色片| 777久久人妻少妇嫩草av网站| 亚洲性夜色夜夜综合| 制服人妻中文乱码| 久久精品国产亚洲av香蕉五月| 欧美丝袜亚洲另类 | 欧美久久黑人一区二区| 精品国产美女av久久久久小说| 亚洲免费av在线视频| 少妇粗大呻吟视频| 桃红色精品国产亚洲av| 国产精品国产高清国产av| 黑丝袜美女国产一区| www.熟女人妻精品国产| 精品国产一区二区三区四区第35| 无人区码免费观看不卡| 午夜精品国产一区二区电影| 18禁裸乳无遮挡免费网站照片 | 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 精品国产乱码久久久久久男人| 黑人操中国人逼视频| 亚洲少妇的诱惑av| 99香蕉大伊视频| 黄网站色视频无遮挡免费观看| 欧美在线一区亚洲| 亚洲av成人一区二区三| 亚洲熟妇熟女久久| 两个人看的免费小视频| 99久久精品国产亚洲精品| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 亚洲熟女毛片儿| 黄频高清免费视频| 国产免费男女视频| 一个人免费在线观看的高清视频| 人妻丰满熟妇av一区二区三区| av欧美777| 国产亚洲欧美98| 天天躁夜夜躁狠狠躁躁| 99香蕉大伊视频| 久久精品91蜜桃| 又大又爽又粗| 久久国产精品影院| 51午夜福利影视在线观看| 在线国产一区二区在线| 亚洲精品国产精品久久久不卡| xxx96com| 亚洲激情在线av| 校园春色视频在线观看| 神马国产精品三级电影在线观看 | 欧美精品啪啪一区二区三区| 日本a在线网址| 好看av亚洲va欧美ⅴa在| 亚洲av日韩精品久久久久久密| 18禁国产床啪视频网站| 精品欧美一区二区三区在线| avwww免费| 欧美日韩亚洲国产一区二区在线观看| 免费av毛片视频| 国产精品 欧美亚洲| 色在线成人网| www.精华液| avwww免费| 欧美日韩亚洲国产一区二区在线观看| 国产精品影院久久| 亚洲一卡2卡3卡4卡5卡精品中文| 激情视频va一区二区三区| 日韩有码中文字幕| 午夜视频精品福利| 给我免费播放毛片高清在线观看| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 大型黄色视频在线免费观看| 性欧美人与动物交配| 国产亚洲精品第一综合不卡| 非洲黑人性xxxx精品又粗又长| 村上凉子中文字幕在线| www.熟女人妻精品国产| 亚洲精品粉嫩美女一区| 一本综合久久免费| 中国美女看黄片| 亚洲成人久久性| 久久性视频一级片| 午夜激情av网站| 一区福利在线观看| 满18在线观看网站| 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 久久人人爽av亚洲精品天堂| 最好的美女福利视频网| 日韩大码丰满熟妇| 欧美不卡视频在线免费观看 | 欧美丝袜亚洲另类 | 真人做人爱边吃奶动态| 日韩欧美一区视频在线观看| 国产精品久久视频播放| 黄色丝袜av网址大全| 国产成人欧美| 日韩三级视频一区二区三区| bbb黄色大片| 中文字幕精品免费在线观看视频| 国产av在哪里看| a级毛片在线看网站| 国产片内射在线| 男人舔女人的私密视频| 搡老妇女老女人老熟妇| 日本在线视频免费播放| 大型黄色视频在线免费观看| av视频在线观看入口| 免费观看精品视频网站| 午夜a级毛片| 99久久国产精品久久久| 麻豆一二三区av精品| 日韩欧美一区二区三区在线观看| 成年人黄色毛片网站| 最近最新中文字幕大全电影3 | АⅤ资源中文在线天堂| 美女扒开内裤让男人捅视频| 国产亚洲精品久久久久久毛片| 亚洲精品美女久久久久99蜜臀| 首页视频小说图片口味搜索| 欧美不卡视频在线免费观看 | 国产亚洲精品一区二区www| 亚洲五月色婷婷综合| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区91| 精品久久久久久久久久免费视频| 老司机靠b影院| 亚洲av日韩精品久久久久久密| 操美女的视频在线观看| 国产精品国产高清国产av| 日韩欧美三级三区| 女人被狂操c到高潮| 国产午夜福利久久久久久| 久久人妻福利社区极品人妻图片| 日韩欧美在线二视频| 12—13女人毛片做爰片一| av网站免费在线观看视频| 成人欧美大片| 欧美黑人精品巨大| 美女 人体艺术 gogo| 国产视频一区二区在线看| АⅤ资源中文在线天堂| 午夜成年电影在线免费观看| av天堂在线播放| 国产亚洲av嫩草精品影院| 在线十欧美十亚洲十日本专区| 一区二区日韩欧美中文字幕| 亚洲人成电影免费在线| 9热在线视频观看99| 夜夜爽天天搞| 侵犯人妻中文字幕一二三四区| www.www免费av| 国产1区2区3区精品| av欧美777| 正在播放国产对白刺激| 亚洲成av片中文字幕在线观看| 人人澡人人妻人| 久久久水蜜桃国产精品网| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 脱女人内裤的视频| 女性生殖器流出的白浆| 成人永久免费在线观看视频| 国产成人精品无人区| 久久国产精品影院| 国产色视频综合| 精品电影一区二区在线| 亚洲人成伊人成综合网2020| 无遮挡黄片免费观看| 亚洲精品国产一区二区精华液| 欧美日本视频| 亚洲av第一区精品v没综合| 变态另类成人亚洲欧美熟女 | 成人欧美大片| 极品教师在线免费播放| 色老头精品视频在线观看| 一边摸一边抽搐一进一小说| 老汉色∧v一级毛片| 久久久精品国产亚洲av高清涩受| 久久国产乱子伦精品免费另类| 国产成人av激情在线播放| 狠狠狠狠99中文字幕| 午夜精品国产一区二区电影| 色尼玛亚洲综合影院| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品合色在线| 男人的好看免费观看在线视频 | 久久久国产成人免费| 中文字幕人成人乱码亚洲影| 国产成人啪精品午夜网站| 一个人免费在线观看的高清视频| 一本大道久久a久久精品| 老鸭窝网址在线观看| 亚洲精品国产区一区二| 精品一区二区三区四区五区乱码| 亚洲第一av免费看| 亚洲第一电影网av| 天堂√8在线中文| 麻豆一二三区av精品| 91av网站免费观看| 亚洲精品一卡2卡三卡4卡5卡| 十八禁人妻一区二区| 一区二区三区激情视频| 久久久国产成人免费| 最好的美女福利视频网| 熟女少妇亚洲综合色aaa.| 久久天堂一区二区三区四区| 黄色毛片三级朝国网站| 欧美激情高清一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲人成电影观看| 久久欧美精品欧美久久欧美| 精品午夜福利视频在线观看一区| 亚洲成人国产一区在线观看| 欧美性长视频在线观看| 人人妻人人澡人人看| 国产私拍福利视频在线观看| 免费在线观看视频国产中文字幕亚洲| 18禁裸乳无遮挡免费网站照片 | 色综合婷婷激情| 亚洲一码二码三码区别大吗| 精品国产超薄肉色丝袜足j| 国产精品秋霞免费鲁丝片| 久久狼人影院| 男男h啪啪无遮挡| 亚洲七黄色美女视频| 动漫黄色视频在线观看| 91国产中文字幕| 国产又色又爽无遮挡免费看| 国产成人精品久久二区二区免费| 高清黄色对白视频在线免费看| 日韩欧美国产一区二区入口| www.精华液| 香蕉丝袜av| 亚洲中文字幕日韩| 亚洲av电影不卡..在线观看| 变态另类丝袜制服|