• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions *

    2018-04-13 12:23:55TingChen陳婷XianghaoZheng鄭祥豪YuningZhang張宇寧ShengcaiLi
    關(guān)鍵詞:陳婷

    Ting Chen(陳婷), Xianghao Zheng(鄭祥豪),Yu-ning Zhang, 4, 5(張宇寧) ,Shengcai Li

    ?

    Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions*

    Ting Chen1, 2, 3(陳婷), Xianghao Zheng1(鄭祥豪),Yu-ning Zhang1, 4, 5(張宇寧) ,Shengcai Li3

    1.2.3.4.5.

    Owing to the part-load operations for the enhancement of grid flexibility, the Francis turbine often suffers from severe low-frequency and large-amplitude hydraulic instability, which is mostly pertinent to the highly unsteady swirling vortex rope in the draft tube. The influence of disturbances in the upstream (e.g., large-scale vortex structures in the spiral casing) on the draft-tube vortex flow is not well understood yet. In the present paper, the influence of the upstream disturbances on the vortical flow in the draft tube is studied based on the vortex identification method and the analysis of several important parameters (e.g., the swirl number and the velocity profile). For a small guide vane opening (representing the part-load condition), the vortices triggered in the spiral casing propagate downstream and significantly affect the swirling vortex-rope precession in the draft tube, leading to the changes of the intensity and the processional frequency of the swirling vortex rope. When the guide vane opening approaches the optimum one (representing the full-load condition), the upstream disturbance becomes weaker and thus its influences on the downstream flow are very limited.

    Francis turbine, vortex identification method, instability, vortex rope, part-load condition, swirl number

    Introduction

    The Francis turbines are widely applied for im- proving the stability and the flexibility of the power system due to its rapid load adjustment ability to fit the grid load variations (e.g., those induced by the massive entrance of the wind energy[1]). Although the pumped hydro energy storage power plants (PHESPPs) are also widely used in China, their utilization hours are quite limited due the high economic costs and the severe flow-induced unstable phenomenon (e.g., the rotating stall[2]and the significant part-load pressure fluctuation[3]). However, for the load adjustment, the Francis turbine is still quite attractive in terms of its capacities (e.g. over 1 000 MW under the full-load condition) and the low price.

    When the Francis turbine is operated at a part load, an extremely complicated flow environment will be generated, leading to various kinds of vortical flows[4, 5](e.g., the complex vortex rope and the inter- blade vortices). It is well known that under certain part-load conditions, a highly unstable vortex-rope precession occurs in the draft tube, leading to severe hydrodynamic instabilities (usually in the low-fre- quency range of the frequency spectrum) in the Francis turbine[6-8]. As commonly recognized, the runner blades are designed according to the optimal operational condition to rectify the rotating fluid (i.e., in ideally swirl-free state at the outlet of runner) toward the axial direction. Under part-load conditions, a swirl flow exists in the cone section of the draft tube, and is manifested in the whole draft tube through the vortex breakdown and the interactions with the sepa- rated elbow flow. It could become further signifi- cantly complicated by the presence of the cavita- tion[9-11]. The consequent pressure fluctuations with large amplitudes (mostly in the low-frequency range) occur throughout the entire turbine system, causing resonances at some eigenfrequencies of the flow system. Therefore, this complex swirling flow in the draft tube often poses a great threat to the safety of the whole system[12].

    The underlying mechanism of the draft-tube ins- tabilities is closely related to the vortex breakdown[13]. Although the vortex breakdown in the swirling flow is extensively studied for decades[14-16], it is still not fully understood because this problem is very complicated owing to many interferential factors. For example, the flow entering the draft tube is far from steady and symmetric due to the rotor-stator interactions. Speci- fically, for certain types of Francis turbines, the entering flow in the draft tube is further complicated by the equipped guide plate in the spiral casing[17-19]. The draft-tube flow was intensively investigated[20, 21], while the upstream disturbances were generally ignored because they are usually of much smaller scales (compared with those of the draft-tube vortical flow). Thus they do not resonate with the low-fre- quency modes of the vortex ropes. However, as shown in the present paper, the instabilities caused by the guide plate might serve as a simulative resource in the upstream and their resonance effects with the vortical flow in the draft tube under the part-load conditions are investigated. In our previous work[19], the basic features of the swirling flow inside the turbine (e.g., the spiral casing and the draft tube) were identified based on the analysis of the streamlines and the time- dependent contours of the vortex rope. In the present paper, a more quantitative discussions will be given with the aid of the vortex identification methods and the swirl number.

    1. Research methods

    1.1 Geometrical model and numerical method

    Fig.1 (Color online) A schematic view of the present prototype Francis turbine model. (a) the whole model with the guide plate marked by red color, (b) illustration of size reduction by the guide plate. In the figure, de- notes the original diameter of the spiral casing and denotes the reduced diameter by moving the spiral casing inwards while leaving the butterfly edge of the stay ring as it used to be

    Table1Parameters for the simulated models

    1.2 Vortex identification method

    2. Results and discussions

    2.1 Vortex patterns in the draft tube for guide vane opening of

    Fig.3 (Color online) Vortex patterns visualized by iso-surfaces of in the whole turbine flow. The guide vane opening is

    Fig.4 (Color online) Comparison of vortex structures in the draft tube visualized by different values of iso- surfaces. The guide vane opening is

    2.2 Vortices triggered by the guide plate

    Fig.5 (Color online) Indication of disturbances caused by the guide plate. (a) shows the definitions of seven slices of spiral casing in the circumferential direction, (b)-(h) show contours of these seven slices. Blue and red colors correspond to the minimum and maximum values, respectively. The guide vane opening is

    Fig. 6 (Color online) Indication of disturbances caused by the guide plate. (a)-(d) show the contours of four slices of spiral casing as defined in Fig. 5(a). Blue and red colors correspond to the minimum and maximum values, respectively. The guide vane opening is

    2.3 Vortex structures for guide vane openings of and

    Under the part-load conditions, the swirl flow in the cone section of the draft tube raises the rotational momentum in the flow when it leaves the runner. The onset of the vortex breakdown in the draft tube is correlated with a dimensionless parameter (the swirl number, represented by) such as[11]

    3. Limitations

    The results obtained in the present paper explain the physics of the phenomena reasonably well. How- ever, the methods adopted for the analysis have some inherent limitations, which will be briefly discussed as follows:

    (1)The vortex-core extraction technique is based on the algorithm that automatically locates the center of swirling flow in the vector fields. With this method, satisfactory results can be obtained under most circu- mstances, particularly, for strong swirl flows with large swirl velocity. However, to some extent, the accuracy of this method depends on the intensity of the vortices and the grid size. For example, the vortex core may not be predicted well in very weak swirl flows. Moreover, in some cases, the generated vortex core is not continuous owing to the non-uniform mesh distributions.

    (3) One of the negative effects of the addition of the guide plate is the triggered cavitation damage on the guide vanes as spotted in our previous studies. Due to the limited spaces, the present model does not involve the cavitation simulation. The cavitation phenomenon is quite complex in the hydroturbines because many highly complex effects (e.g., the cavi- tation resonance, the bubble-bubble interactions[24], the chaos[25]and the combination resonances[26]) could be involved together with a prominent mass transfer[27]and the surface instability[28]. Specifically, the pres- sure fluctuation could be significantly altered by the presence of cavitation bubbles[29](e.g., in terms of attenuation). For some Francis turbines in China (e.g., in Yellow river), the silt (e.g., particles) is of high concentration in the water and the cavitation-particle interaction will further deteriorate the flow conditions inside the turbine[30](e.g., generations of more vortices).

    4. Conclusions

    This paper investigates the influences of the ups- tream disturbances on the instabilities of the draft tube in the prototype Francis turbine. Under part-load con- ditions, it is found that the guide-plate induced vortex structure could significantly affect the unstable flow inside the turbine by resonating with the vortex struc- tures in the draft tube. The draft tube surge and the vortex rope are extensively discussed with an emp- hasis on the modification of the velocity profiles, the increase of the swirling number, and the generation of a strong vortex. Under full-load conditions, the above interactions between the upstream and the down- stream are limited. Usually, the influences of the upstream disturbance on the downstream instabilities are neglected during the design stage. However, the interactions between the upstream and the down- stream could be very strong and the involved mecha- nism is very complicated, highly depending on the operational conditions. The present findings highlight this issue from the technical point of view and suggest to pay serious attention on the potential newly-intro- duced unstable fluid flow especially under the part- load conditions. The present methodology and an- alysis are not only applicable to the Francis turbines here but also could be extended to the other kinds of fluid machinery (e.g., pumps[31, 32]and pump tur- bines[33-35]).

    Due to the rapid increase of the equipped capa- city of the power stations in China, there are many serious hydro energy rejection problems. As a result, many hydro turbines are forced to be operated under (very low) part-load conditions. This problem is quite serious in Sichuan and Yunnan provinces in China. Currently, many industries with a high-level electric energy consumption (e.g., the coal chemical enginee- ring[36, 37]and the electric vehicles) are developed to solve the dilemma. This trend further strengths the importance of the research of the part-load condition investigated here.

    Acknowledgements

    This work was suppored by the Fundamental Research Funds for the Central Universities (Grant No. JB2015RCY04), the Open Research Fund Program of Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University (Grant No. szjj-2017-100-1-003), the Open Foundation of Na- tional Research Center of Pumps, Jiangsu University (Grant No. NRCP201601) and the Open Research Fund Program of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University (Grant No. LAPS16014).

    [1] Zhang Y., Tang N., Niu Y. et al. Wind energy rejection in China: Current status, reasons and perspectives [J]., 2016, 66(12): 322-344.

    [2] Zhang Y., Zhang Y., Wu Y. A review of rotating stall in reversible pump turbine [J]., 2017, 231(7): 1181-1204.

    [3] Zhang Y., Chen T., Li J. et al. Experimental study of load variations on pressure fluctuations in a prototype rever- sible pump turbine in generating mode [J]., 2017, 139(7): 074501.

    [4] Escudier M. Confined vortices in flow machinery [J]., 1987, 19(1): 27-52.

    [5] D?rfler P., Sick M., Coutu A. Flow-induced pulsation and vibration in hydroelectric machinery: Engineer’s guide- book for planning, design and troubleshooting [M]. London, UK: Springer-Verlag, 2013.

    [6] Wu Y., Li S., Liu S. et al. Vibration of hydraulic ma- chinery [M]. Dordrecht, The Netherlands: Springer Science+Business Media, 2013.

    [7] Foroutan H., Yavuzkurt S. An axisymmetric model for draft tube flow at partial load [J]., 2016, 28(2): 195-205.

    [8] Susan-Resiga R., Muntean S., Hasmatuchi V. et al. Analy- sis and prevention of vortex breakdown in the simplified discharge cone of a Francis turbine [J]., 2010, 132(5): 051102.

    [9] Li S. Cavitation of hydraulic machinery [M]. London, UK: Imperial College Press, 2000.

    [10]Escaler X., Egusquiza E., Farhat M. et al. Detection of cavitation in hydraulic turbines [J]., 2006, 20(4): 983-1007.

    [11] Li S. Tiny bubbles challenge giant turbines: Three Gorges puzzle [J]., 2015, 5(5): 20150020.

    [12]Cassidy J., Falvey H. Observations of unsteady flow arising after vortex breakdown [J]., 1970, 41: 727-736.

    [13] Nishi M. Surging characteristics of conical and elbow type draft tubes [C]., Stirling, UK, 1984, 272-283.

    [14] Alekseenko S., Kuibin P., Okulov V. et al. Helical vortices in swirl flow [J]., 1999, 382: 195-243.

    [15] Benjamin T. Theory of the vortex breakdown phenomenon [J]., 1962, 14: 593-629.

    [16] Anup K., Lee Y., Thapa B. CFD study on prediction of vortex shedding in draft tube of Francis turbine and vortex control techniques [J]., 2016, 86(2): 1406-1421.

    [17] Chen T., Li S. Numerical investigation of guide-plate in- duced pressure fluctuations on guide vanes of three gorges turbines [J]., 2011, 133(6): 061101.

    [18] Chen T. First step of verification of Li?s hypothesis: iden- tification of a new vortex structure induced by guide-plate in three gorges turbines [D]. Doctoral Thesis, Coventry, UK: University of Warwick, 2014.

    [19] Chen T., Zhang Y.,Li S. Instability of large-scale proto- type Francis turbines of Three Gorges power station at part load [J]., 2016, 230(7): 619-632.

    [20] Zhang R., Mao F., Wu J. et al. Characteristics and control of the draft-tube flow in part-load Francis turbine [J]., 2009, 131(2): 021101.

    [21] Galván S., Reggio M., Guibault F. Numerical optimization of the inlet velocity profile ingested by the conical draft tube of a hydraulic turbine [J]., 2015, 137(7): 071102.

    [22] Zhang Y., Liu K., Xian H. et al. A review of methods for vortex identification in hydroturbines [J]., 2018, 81(1): 1269-1285.

    [23] Jeong J., Hussain F. On the identification of a vortex [J].,1995, 285: 69-94.

    [24] Zhang Y., Zhang Y., Li S. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation [J]., 2016, 29: 129-145.

    [25] Zhang Y., Zhang Y. Chaotic oscillations of gas bubbles under dual-frequency acoustic excitation [J]., 2018, 40 (Part B): 151-157.

    [26] Zhang Y., Zhang Y., Li S. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation [J]., 2017, 35 (Part A): 431-439.

    [27] Zhang Y., Gao Y., Guo Z. et al. Effects of mass transfer on damping mechanisms of vapor bubbles oscillating in liquids [J]., 2018, 40 (Part A): 120-127.

    [28] Zhang Y., Gao Y., Du X. Stability mechanisms of oscilla- ting vapor bubbles in acoustic fields [J]., 2018, 40 (Part A): 808-814.

    [29] Zhang Y., Guo Z., Gao Y. et al. Acoustic wave propa- gation in bubbly flow with gas, vapor or their mixtures [J].. 2017, 40 (Part B): 40-45.

    [30] Zhang Y., Zhang Y., Qian Z. et al. A review of micros- copic interactions between cavitation bubbles and particles in silt-laden flow [J]., 2016, 56: 303-318.

    [31]Tan L., Yu Z., Xu Y. et al. Role of blade rotational angle on energy performance and pressure fluctuation of a mixed-flow pump [J]., 2017, 231(3): 227-238.

    [32] Tan L., Zhu B., Cao S. et al. Numerical simulation of un- steady cavitation flow in a centrifugal pump at off-design conditions [J]., 2014, 228(11): 1994-2006.

    [33] Li J. W., Zhang Y. N., Liu K. H. et al. Numerical simu- lation of hydraulic force on the impeller of reversible pump turbines in generating mode [J]., 2017, 29(4): 603-609.

    [34] Li D., Wang H., Qin Y. et al. Numerical simulation of hysteresis characteristic in the hump region of a pump- turbine model [J]., 2018, 115: 433-447.

    [35] Li D., Wang H., Qin Y. et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model [J]., 2017, 149: 175-191.

    [36] Gao D., Qiu X., Zhang Y. et al. Life cycle analysis of coal based methanol-to-olefins processes in China [J]., 2018, 109: 112-118.

    [37] Gao D., Ye C., Ren X. et al. Life cycle analysis of direct and indirect coal liquefaction for vehicle power in China [J]., 2018, 169: 42-49.

    (July 18, 2016,Accepted October 8, 2016)

    ?China Ship Scientific Research Center 2018

    * Project supported by the National Natural Science Foun- dation of China (Grant No. 51506051).

    Ting Chen (1984-), Female, Ph. D.,

    Associate Professor, E-mail: chentingemail@163.com

    Yu-ning Zhang,

    E-mail:y.zhang@ncepu.edu.cn

    猜你喜歡
    陳婷
    繪畫作品鑒賞
    Germs May Make Us Ill
    丈夫盜用妻子信息詐騙,愛(ài)情中需懂得及時(shí)止步
    伴侶(2021年4期)2021-05-11 17:03:31
    索要離婚損害賠償,她能否得到法院支持?
    婦女生活(2021年4期)2021-05-06 08:00:42
    一個(gè)非終止7F6-級(jí)數(shù)求和公式的q-模擬
    駐村隊(duì)里的手搟面
    黃河之聲(2019年1期)2019-03-30 03:36:16
    Unsteady flow structures in centrifugal pump under two types of stall conditions *
    雨滴
    延河(2018年6期)2018-06-11 07:34:16
    全國(guó)首對(duì)肺移植戀人:以愛(ài)的刺青銘記你
    城鎮(zhèn)化背景下小產(chǎn)權(quán)房問(wèn)題探析
    久久久精品免费免费高清| 午夜福利影视在线免费观看| 成人黄色视频免费在线看| 日本-黄色视频高清免费观看| h视频一区二区三区| 亚洲精品乱码久久久v下载方式| 国产日韩欧美视频二区| 成人二区视频| 久久久久久久久久成人| 国产极品天堂在线| 又大又黄又爽视频免费| 少妇丰满av| 制服丝袜香蕉在线| 国产在线视频一区二区| 午夜免费观看性视频| 最近2019中文字幕mv第一页| 国产精品熟女久久久久浪| 丝瓜视频免费看黄片| 成年人免费黄色播放视频| 男女免费视频国产| 成年美女黄网站色视频大全免费 | 成人二区视频| 久久99热这里只频精品6学生| 亚洲一区二区三区欧美精品| 天天躁夜夜躁狠狠久久av| 国产黄频视频在线观看| 人人妻人人添人人爽欧美一区卜| 欧美 日韩 精品 国产| 少妇精品久久久久久久| 国产一区有黄有色的免费视频| 在线观看人妻少妇| 亚洲国产精品国产精品| 18禁动态无遮挡网站| 最后的刺客免费高清国语| 亚洲欧洲日产国产| 五月伊人婷婷丁香| 亚洲伊人久久精品综合| 一本色道久久久久久精品综合| 51国产日韩欧美| 各种免费的搞黄视频| 一级毛片电影观看| 一级毛片我不卡| 蜜桃久久精品国产亚洲av| 91精品三级在线观看| av在线观看视频网站免费| 多毛熟女@视频| 黄色视频在线播放观看不卡| 97超碰精品成人国产| 高清午夜精品一区二区三区| 亚洲av日韩在线播放| av国产久精品久网站免费入址| 国产伦精品一区二区三区视频9| 日本-黄色视频高清免费观看| 十八禁网站网址无遮挡| 久久久久国产网址| 人体艺术视频欧美日本| 边亲边吃奶的免费视频| 九色成人免费人妻av| 简卡轻食公司| 亚洲性久久影院| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 亚洲少妇的诱惑av| av有码第一页| 中文欧美无线码| av又黄又爽大尺度在线免费看| 91久久精品国产一区二区三区| 国产精品免费大片| 高清黄色对白视频在线免费看| 波野结衣二区三区在线| 黄色配什么色好看| 欧美成人午夜免费资源| 久久久久久久大尺度免费视频| 国产精品久久久久久精品古装| 久久久久久久久久成人| 免费播放大片免费观看视频在线观看| 99久国产av精品国产电影| 日本91视频免费播放| 国产有黄有色有爽视频| 欧美bdsm另类| 国产精品人妻久久久影院| 搡老乐熟女国产| 青春草亚洲视频在线观看| 一本色道久久久久久精品综合| 精品久久蜜臀av无| 亚洲精品一区蜜桃| 青春草视频在线免费观看| a级片在线免费高清观看视频| 视频在线观看一区二区三区| 精品少妇久久久久久888优播| 飞空精品影院首页| 插逼视频在线观看| 在线观看三级黄色| 少妇熟女欧美另类| 午夜影院在线不卡| 日韩电影二区| 亚洲在久久综合| 成人午夜精彩视频在线观看| 亚洲精品久久成人aⅴ小说 | 黑人巨大精品欧美一区二区蜜桃 | 韩国高清视频一区二区三区| 80岁老熟妇乱子伦牲交| 中文欧美无线码| 日日爽夜夜爽网站| 夜夜爽夜夜爽视频| 国产午夜精品久久久久久一区二区三区| 各种免费的搞黄视频| 欧美日韩视频高清一区二区三区二| av国产精品久久久久影院| 自拍欧美九色日韩亚洲蝌蚪91| 免费av中文字幕在线| 亚洲一级一片aⅴ在线观看| 99热网站在线观看| 一级毛片 在线播放| 99九九线精品视频在线观看视频| 精品99又大又爽又粗少妇毛片| 亚洲成人av在线免费| 18禁裸乳无遮挡动漫免费视频| 曰老女人黄片| 国产精品人妻久久久久久| .国产精品久久| 亚洲经典国产精华液单| 久久久久久人妻| 免费日韩欧美在线观看| 国产免费视频播放在线视频| 国产在视频线精品| 午夜激情av网站| 国产在线一区二区三区精| 国产av精品麻豆| 国产一区亚洲一区在线观看| 国产乱来视频区| 精品少妇黑人巨大在线播放| 制服诱惑二区| 亚洲精品色激情综合| 91在线精品国自产拍蜜月| 国产精品久久久久久av不卡| 能在线免费看毛片的网站| 99久久精品国产国产毛片| 亚洲欧美一区二区三区国产| 999精品在线视频| 国产一区有黄有色的免费视频| 精品国产露脸久久av麻豆| 成人国产av品久久久| 欧美精品亚洲一区二区| 免费观看无遮挡的男女| 婷婷色综合大香蕉| 色吧在线观看| 观看美女的网站| 国产乱来视频区| 国产精品一二三区在线看| 人妻系列 视频| 一区在线观看完整版| av播播在线观看一区| 视频区图区小说| 国产视频首页在线观看| 热re99久久国产66热| av国产久精品久网站免费入址| 精品久久久精品久久久| 五月天丁香电影| 成年av动漫网址| a级片在线免费高清观看视频| 蜜臀久久99精品久久宅男| 国精品久久久久久国模美| 久久精品国产鲁丝片午夜精品| 在线看a的网站| 欧美性感艳星| 一个人免费看片子| 91久久精品电影网| 色吧在线观看| 国产av国产精品国产| 国精品久久久久久国模美| 老司机影院成人| 少妇熟女欧美另类| 久久久久久人妻| 亚洲精品一区蜜桃| 少妇高潮的动态图| 成人黄色视频免费在线看| 性色avwww在线观看| h视频一区二区三区| 亚洲精品自拍成人| 国产亚洲欧美精品永久| 亚洲欧洲精品一区二区精品久久久 | av又黄又爽大尺度在线免费看| 天堂8中文在线网| 少妇人妻精品综合一区二区| 在线播放无遮挡| 日韩人妻高清精品专区| 久久久午夜欧美精品| 看免费成人av毛片| 国产免费现黄频在线看| 人体艺术视频欧美日本| 国产免费视频播放在线视频| 五月天丁香电影| 涩涩av久久男人的天堂| 街头女战士在线观看网站| 国产综合精华液| 国产黄色视频一区二区在线观看| 国产成人aa在线观看| 亚洲美女搞黄在线观看| 午夜视频国产福利| 午夜福利,免费看| a级毛片在线看网站| 黑人高潮一二区| 好男人视频免费观看在线| 久久精品国产a三级三级三级| 三级国产精品欧美在线观看| 18禁在线无遮挡免费观看视频| av视频免费观看在线观看| 成人国产麻豆网| 国产成人aa在线观看| 国产白丝娇喘喷水9色精品| 少妇的逼好多水| 成年人午夜在线观看视频| 久久精品国产a三级三级三级| 免费看光身美女| 美女脱内裤让男人舔精品视频| 亚洲精品视频女| 有码 亚洲区| 亚洲色图综合在线观看| 老司机亚洲免费影院| 超碰97精品在线观看| 秋霞伦理黄片| 菩萨蛮人人尽说江南好唐韦庄| 久久午夜福利片| 亚洲美女搞黄在线观看| 亚洲精品乱码久久久久久按摩| 久久人人爽av亚洲精品天堂| 国产亚洲一区二区精品| 精品视频人人做人人爽| 十八禁网站网址无遮挡| 国产女主播在线喷水免费视频网站| 在线观看免费日韩欧美大片 | 国内精品宾馆在线| 熟妇人妻不卡中文字幕| 插逼视频在线观看| 国产免费视频播放在线视频| 久久久久久久久久成人| 国产亚洲最大av| 中文字幕人妻熟人妻熟丝袜美| 免费高清在线观看视频在线观看| 男男h啪啪无遮挡| 内地一区二区视频在线| 麻豆成人av视频| 美女脱内裤让男人舔精品视频| 成人黄色视频免费在线看| a级毛片免费高清观看在线播放| 欧美日韩国产mv在线观看视频| 国产一级毛片在线| 狠狠婷婷综合久久久久久88av| 男女高潮啪啪啪动态图| 亚洲不卡免费看| 日韩人妻高清精品专区| 黄色毛片三级朝国网站| 日韩视频在线欧美| 欧美精品一区二区大全| 亚州av有码| 国产成人av激情在线播放 | 亚洲欧美日韩另类电影网站| 精品视频人人做人人爽| 久久99一区二区三区| 欧美另类一区| 亚洲国产色片| 考比视频在线观看| 天天操日日干夜夜撸| 制服诱惑二区| 久久久精品94久久精品| 国产精品久久久久久精品电影小说| 国产亚洲av片在线观看秒播厂| 在线天堂最新版资源| 亚洲欧洲精品一区二区精品久久久 | 街头女战士在线观看网站| 国产视频首页在线观看| 一本大道久久a久久精品| 18禁观看日本| 日韩,欧美,国产一区二区三区| 亚洲国产精品专区欧美| 亚洲精品中文字幕在线视频| 免费人妻精品一区二区三区视频| 国产 精品1| 高清午夜精品一区二区三区| 日本爱情动作片www.在线观看| 精品人妻在线不人妻| 看非洲黑人一级黄片| 成人无遮挡网站| 亚洲少妇的诱惑av| 十八禁网站网址无遮挡| 天天躁夜夜躁狠狠久久av| 最近最新中文字幕免费大全7| 日本av手机在线免费观看| 久热久热在线精品观看| 十八禁网站网址无遮挡| 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院 | 精品久久蜜臀av无| 少妇精品久久久久久久| 搡女人真爽免费视频火全软件| 麻豆精品久久久久久蜜桃| 狠狠婷婷综合久久久久久88av| 久久韩国三级中文字幕| 插阴视频在线观看视频| 中文字幕av电影在线播放| 国产精品一区二区在线不卡| 妹子高潮喷水视频| 80岁老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 国产欧美另类精品又又久久亚洲欧美| 国产精品嫩草影院av在线观看| 一级毛片aaaaaa免费看小| 国产精品久久久久久久电影| 欧美xxⅹ黑人| 搡老乐熟女国产| 国产爽快片一区二区三区| 三级国产精品欧美在线观看| 国产综合精华液| 久久99热这里只频精品6学生| 精品人妻一区二区三区麻豆| 欧美日韩综合久久久久久| 亚洲欧洲日产国产| 亚洲国产成人一精品久久久| 熟女电影av网| 免费大片18禁| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 免费久久久久久久精品成人欧美视频 | 欧美97在线视频| 最新的欧美精品一区二区| 一区二区三区四区激情视频| 亚洲成人一二三区av| 九色亚洲精品在线播放| 少妇被粗大的猛进出69影院 | 新久久久久国产一级毛片| 久久人妻熟女aⅴ| 色哟哟·www| 国产精品一二三区在线看| 人人妻人人澡人人爽人人夜夜| 亚洲国产欧美在线一区| 免费黄色在线免费观看| 久久久久久久久久成人| 少妇人妻 视频| 黄片播放在线免费| 中文字幕制服av| 免费av不卡在线播放| 国产亚洲午夜精品一区二区久久| 啦啦啦啦在线视频资源| 久久女婷五月综合色啪小说| 亚洲欧美成人综合另类久久久| 看非洲黑人一级黄片| videossex国产| 成年女人在线观看亚洲视频| 91aial.com中文字幕在线观看| 夜夜骑夜夜射夜夜干| 免费看光身美女| 国产成人精品婷婷| 国内精品宾馆在线| 欧美xxxx性猛交bbbb| 成年人免费黄色播放视频| 在线观看三级黄色| 丝袜在线中文字幕| 成人免费观看视频高清| kizo精华| 男女啪啪激烈高潮av片| av一本久久久久| 国产亚洲一区二区精品| 精品一品国产午夜福利视频| 男女啪啪激烈高潮av片| 久久综合国产亚洲精品| av在线app专区| 国产有黄有色有爽视频| 九色成人免费人妻av| 99热这里只有是精品在线观看| 国产成人精品在线电影| 黑人高潮一二区| 美女视频免费永久观看网站| 少妇被粗大猛烈的视频| 亚洲不卡免费看| 亚洲国产av影院在线观看| 乱人伦中国视频| 国产一区二区在线观看av| av线在线观看网站| 十分钟在线观看高清视频www| 亚洲av在线观看美女高潮| av播播在线观看一区| 久久国内精品自在自线图片| 欧美老熟妇乱子伦牲交| 高清黄色对白视频在线免费看| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| 男女免费视频国产| 黄色怎么调成土黄色| 久久久久久久国产电影| 国产精品一区二区在线观看99| av又黄又爽大尺度在线免费看| 亚洲国产欧美日韩在线播放| 成人国产麻豆网| 久久精品国产a三级三级三级| 亚洲伊人久久精品综合| 精品久久久噜噜| 久久久国产一区二区| 大又大粗又爽又黄少妇毛片口| 久久精品国产自在天天线| 一本大道久久a久久精品| 伊人久久精品亚洲午夜| 七月丁香在线播放| 能在线免费看毛片的网站| 久久国内精品自在自线图片| 性色av一级| 少妇高潮的动态图| 黄色毛片三级朝国网站| 亚洲成色77777| 一区二区三区乱码不卡18| 老司机影院毛片| 午夜老司机福利剧场| 亚洲av二区三区四区| 国产精品女同一区二区软件| 在线观看人妻少妇| 母亲3免费完整高清在线观看 | 国模一区二区三区四区视频| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 亚洲精品第二区| 91aial.com中文字幕在线观看| 特大巨黑吊av在线直播| 女人精品久久久久毛片| 午夜免费观看性视频| 激情五月婷婷亚洲| 国产一区二区三区综合在线观看 | 内地一区二区视频在线| 亚州av有码| 99久久精品一区二区三区| 中国国产av一级| 欧美日本中文国产一区发布| 亚洲高清免费不卡视频| 黑丝袜美女国产一区| 色婷婷久久久亚洲欧美| av在线观看视频网站免费| 欧美日韩亚洲高清精品| 一本—道久久a久久精品蜜桃钙片| 国产成人精品一,二区| 国产国拍精品亚洲av在线观看| 国产精品国产av在线观看| 男女高潮啪啪啪动态图| 亚洲久久久国产精品| 中文字幕av电影在线播放| 99国产综合亚洲精品| 美女内射精品一级片tv| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 亚洲成人手机| 亚洲av在线观看美女高潮| 亚州av有码| 两个人免费观看高清视频| 青春草亚洲视频在线观看| 欧美激情极品国产一区二区三区 | 妹子高潮喷水视频| 少妇人妻久久综合中文| 久久这里有精品视频免费| 青青草视频在线视频观看| 国产精品.久久久| 春色校园在线视频观看| 国产黄色免费在线视频| 亚洲人成网站在线播| 亚洲国产精品专区欧美| 久热这里只有精品99| 天美传媒精品一区二区| 欧美日韩综合久久久久久| 久久久久精品性色| 如日韩欧美国产精品一区二区三区 | 久久久国产欧美日韩av| 国产片内射在线| 看免费成人av毛片| 日本欧美国产在线视频| 国产黄频视频在线观看| 超碰97精品在线观看| 色婷婷av一区二区三区视频| 成年女人在线观看亚洲视频| 亚洲精品久久午夜乱码| 免费观看在线日韩| 青春草国产在线视频| 欧美日韩精品成人综合77777| 国产亚洲av片在线观看秒播厂| 国产精品欧美亚洲77777| 久久久久久久久久成人| 人妻人人澡人人爽人人| 18在线观看网站| 欧美日韩亚洲高清精品| 精品午夜福利在线看| 尾随美女入室| 欧美日韩视频高清一区二区三区二| 国产伦理片在线播放av一区| 国产亚洲最大av| 考比视频在线观看| 有码 亚洲区| 亚洲第一av免费看| 亚洲国产av新网站| 晚上一个人看的免费电影| 中文天堂在线官网| 一本久久精品| 欧美日韩综合久久久久久| 校园人妻丝袜中文字幕| 中国美白少妇内射xxxbb| 男女边吃奶边做爰视频| 丝袜喷水一区| 亚州av有码| 久久久国产欧美日韩av| 久久久久久伊人网av| 一个人免费看片子| 亚洲国产精品专区欧美| 国产在线一区二区三区精| 日韩精品有码人妻一区| 美女视频免费永久观看网站| 母亲3免费完整高清在线观看 | 18禁观看日本| 看非洲黑人一级黄片| 国产无遮挡羞羞视频在线观看| 国产午夜精品久久久久久一区二区三区| 久久精品夜色国产| 成人国产麻豆网| 在线观看免费视频网站a站| 18禁在线播放成人免费| 高清午夜精品一区二区三区| 久久久精品区二区三区| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 人妻系列 视频| 男人操女人黄网站| 18禁动态无遮挡网站| 观看av在线不卡| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 麻豆精品久久久久久蜜桃| 成人黄色视频免费在线看| 国产精品蜜桃在线观看| 草草在线视频免费看| 欧美精品高潮呻吟av久久| 一区二区av电影网| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 亚洲av中文av极速乱| 热re99久久精品国产66热6| 久久久午夜欧美精品| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇av免费看| 久久青草综合色| 一个人看视频在线观看www免费| 亚洲av电影在线观看一区二区三区| 两个人免费观看高清视频| 国产日韩一区二区三区精品不卡 | 免费av不卡在线播放| 丰满少妇做爰视频| 久久久国产精品麻豆| 久久精品久久精品一区二区三区| 秋霞伦理黄片| 精品久久国产蜜桃| av黄色大香蕉| 亚洲综合色网址| 日本91视频免费播放| 国产伦精品一区二区三区视频9| 久久久a久久爽久久v久久| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| 亚洲av.av天堂| 久久久国产欧美日韩av| 亚洲国产精品专区欧美| 国产高清三级在线| 亚洲欧美成人综合另类久久久| 999精品在线视频| 国产精品秋霞免费鲁丝片| 亚洲av不卡在线观看| av免费观看日本| 内地一区二区视频在线| 日韩大片免费观看网站| 中文字幕久久专区| 国产亚洲最大av| 亚洲国产日韩一区二区| 日韩 亚洲 欧美在线| 日日撸夜夜添| 精品人妻熟女毛片av久久网站| 老司机亚洲免费影院| 又大又黄又爽视频免费| 亚洲欧美成人精品一区二区| 免费观看的影片在线观看| 成人黄色视频免费在线看| 99久久人妻综合| 免费久久久久久久精品成人欧美视频 | 最黄视频免费看| 国产爽快片一区二区三区| www.色视频.com| 老女人水多毛片| 国产精品三级大全| 成人午夜精彩视频在线观看| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看| 天堂8中文在线网| 国产白丝娇喘喷水9色精品| 最近手机中文字幕大全| 男女啪啪激烈高潮av片| 美女视频免费永久观看网站| 亚洲av成人精品一二三区| 欧美97在线视频| 视频中文字幕在线观看| 久久精品人人爽人人爽视色| 国语对白做爰xxxⅹ性视频网站| 亚洲精品久久久久久婷婷小说| 欧美精品高潮呻吟av久久| 国产成人免费无遮挡视频| 欧美日韩成人在线一区二区| 老女人水多毛片| 久久影院123| 国产精品一区二区在线观看99| 国产精品嫩草影院av在线观看| 亚洲av国产av综合av卡| 91精品国产九色|