• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unsteady flow structures in centrifugal pump under two types of stall conditions *

    2019-01-05 08:08:38PeijianZhou周佩劍JiachengDai戴嘉鋮YafeiLi李亞飛TingChen陳婷JiegangMou牟介剛
    水動力學研究與進展 B輯 2018年6期
    關鍵詞:陳婷佩劍

    Pei-jian Zhou (周佩劍), Jia-cheng Dai(戴嘉鋮), Ya-fei Li(李亞飛), Ting Chen(陳婷),Jie-gang Mou (牟介剛)

    1. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310034, China

    2. Engineering Research Center of Process Equipment and Remanufacturing, Ministry of Education, Hangzhou 310034, China

    3. School of Science, Wuhan Institute of Technology, Wuhan 430205, China

    Abstract: The stall is an unsteady flow phenomenon that always causes instabilities and low efficiency for pumps. This paper focuses on the unsteady flow structures and evolutions under two types of stall conditions in centrifugal pump impellers. Two centrifugal pump impellers, one with 6 and another with 5 blades, are considered and a developed large-eddy simulation method is adopted. The results show that the alternative stall occurs in the impeller with 6 blades, while, the rotating stall is observed in that with 5 blades. The flow structure and the pressure fluctuation characteristics are further analyzed. For the alternative stall, the stall cells are fixed relative to the impeller, but a large vortex in the stalled passage is always swaying. The outlet vortex is generated from it, and then develops and sheds periodically. For the rotating stall, the stall cells first occur in the suction side of the blade. With the growth of the stall cells, the block area gradually increases until the inlet region is almost blocked, then moves to the pressure side with a continuous decay. When the rotating stall occurs, the amplitude of the pressure fluctuation is much larger than that under the alternative stall condition. The propagation of the stall cells has a significant effect on the pressure fluctuations in the impeller.

    Key words: Centrifugal pump, flow structures, rotating stall, alternative stall, large-eddy simulation

    Introduction

    The stall is an unsteady flow phenomenon that always causes instabilities and low efficiency for pumps[1-4]. Under the stall condition, the periodic generation and shedding of the stall cells always induce significant low frequency pressure fluctuations and vibrations, with a severe influence on the safety and stability of pumps. It is necessary to study the stall phenomenon to improve the safety and the stability of the pump operation. This study focuses on the unsteady flow structures and evolutions under two types of stall conditions in the centrifugal pump impellers.

    The stall, as an unsteady flow phenomenon,occurs in pumps due to the flow separation along the flow-guiding parts[5]. The large region of the separated flow is considered as the stall cell, which plays an important role in pumps, and can induce vibrations,noises, and even severe damages to the machine[6-7].Therefore the characteristics of the stall cells are important factors in improving not only the efficiency but also the operating safety and stability of pumps.

    So far, only a few experimental studies are found in literature for the stall phenomenon in centrifugal pumps. Pedersen et al.[8]used the particle image velocimetry (PIV) to show the internal flow through a centrifugal pump impeller, and identified the alternative stall for the first time. Further investigations were followed, including the study performed by Johnson et al.[9], which showed that these stall patterns also existed in the volute pump. Feng et al.[10], Ullum et al.[11]found similar stall cells in the vaned centrifugal pumps. Krause et al.[12]adopted the time-resolved PIV to find another type of stall called the rotating stall, where the instabilities occurred at a low flow rate. However, the PIV has some limitations,such as in the time resolution and the measurement area. Thanks to the development of the computational fluid dynamics (CFD), the stalled flows in the centrifugal pumps were numerically studied. Feng et al.[13]applied different turbulence models for unsteady flow simulations of a radial diffuser pump, and the results showed that the RANS models often failed to predict the stall phenomenon. The SST -kω model could capture the stall cells, but with a large deviation when the stall occurred[14]. The large-eddy simulation(LES) shows a promising advance for complex turbulent flows. A series of validation simulations are performed for the stall phenomenon, and the results are in an excellent agreement with the available experimental data[5,15].

    In the above studies, the stall phenomena were identified in centrifugal pumps. However, the structures and the motion of the stall cells are not yet fully understood. This study focuses on the stall cell characteristics in a centrifugal pump impeller by analyzing two types of stall phenomenon. The flow field and the stall cell structures are represented based on a developed large-eddy simulation with the dynamic mixed nonlinear model (DMNM).

    1. The investigated pump and simulation details

    The investigated pump impeller is a shrouded,low specific-speed centrifugal impeller with 6 blades,as shown in Fig. 1. Under the design condition, the pump flow rate is=3. 0 6 L/ s and the head is=1.75 m. More detailed geometric and experimental data can be found in Ref. [8]. In order to study two types of stall phenomenon, another one with 5 blades is considered in the study, with the otherwise same geometry. The large-eddy simulation is performed under the initial stall condition, the developed stall conditionand the deep stall condition

    Fig. 1 Geometry of the impeller with 6 blades

    The entire flow passages of the impeller is modelled and simulated. In order to reduce the boundary influence, extensions are made at the outlet and the inlet of the flow passage, respectively. Owing to the complexity of the computational domain, the unstructured hexahedron mesh is employed because of its fine adaptability. In the near-wall region the mesh is refined according to the requirement of the LES. In view of the Ref. [16] the grid stretching factor is chosen to allow the wall-adjacent cells to be located 0.02 mm off the wall, whilst also refining the grids in the streamwise and spanwise directions. A mesh of a total 3.2×106cells is utilized as the best compromise between the solution accuracy requirements and the available computer resources. Increasing the number of grids does not make a significant difference during the grid independent process. Figure 2 represents the mesh construction of the full passages.

    Fig. 2 Computational domain and mesh

    Fig. 3 The locations of monitor points

    A rotational reference frame is set for the flow passage, with the rotating speed of the reference frame equal to the rotating speed of the impeller. The velocity inlet boundary condition is chosen in the simulation. The inlet velocity is determined by the flow rate, including some fluctuation components,with the velocity normal to the inlet boundary. The Neumann condition, ?φ/?n=0, is considered for the pressure. At the outlet of the passage the pressure is given. The no-slip wall condition is considered, as u =0, v = 0, w = 0.

    The time step is set as 0.00023 s corresponding to a Courant number estimation smaller than 10, with a total 360 time steps per impeller revolution. The residual convergence criterion for each time step is reduced to 10-5, while the maximum number of iterations allowed per time step is limited to 15.

    The arrangement of the recording points is shown in Fig. 3. In view of the prediction for the number and the speed of the stall cells, the monitor points (P1-P6)are uniformly distributed on the shroud of the impeller for recording the pressure fluctuations.

    A developed large-eddy simulation with the dynamic mixed nonlinear model (DMNM) is performed on a full annulus of the impeller. The key to the success of the LES is to accurately represent the subgrid-scale (SGS) stress. The SGS stress can be written as follows[17]

    Fig. 4 (Color online) Evolution of outlet vortices

    In the DMNM, the resolved modified Leonard term and the modelled modified cross term are retained, with the modified Reynolds stress. This model combines the advantages of the dynamic mixed model (DMM) and the dynamic nonlinear model(DNM). The previous work shows that the DMNM,with its inclusion of the turbulent anisotropic properties, is more suitable for high curvature, strong rotational turbulence calculations[18]. The derivation details of this model can be found in the Ref. [19].

    Fig. 5 (Color online) Evolution of main vortices

    2. Alternative stall

    2.1 Flow structures analysis

    The alternative stall occurs in the impeller with 6 blades. As shown in Fig. 4, the stalled and unstalled passages can be observed, as reported by Pedersen et al.[8]. Three stall cells block the entrance of the passage, which does not rotate with respect to the impeller. Besides, one observes another two types of vortex motion in the stalled passage. The passage A is taken as an example to analyze the flow structures. A larger vortex appears downstream, which is more unsteady with characteristics of the wake flow due to the adverse pressure gradient and the centrifugal force.As the flow develops, the large vortex shakes and splits into small vortexes at the passage outlet. Then,the main vortex core gradually moves downstream,induces the shedding of the outlet vortex and disappears.

    Fig. 6 Frequency spectrum analysis

    Figure 5 shows the instantaneous streamline distributions at six equally spaced time steps during one cycle of the main vortex motion obtained by the simulation. The main vortex core starts to move downstream and another small vortex simultaneously appears upstream, to form two counter-rotating vortex pairs with the main vortex. As the small vortex grows larger, the main vortex core is forced to keep moving downstream. Then the main vortex changes dramatically, to be squashed with an increased length. The small vortex is surrounded by exterior streamlines of the main vortex. The two vortexes are emerged together, and a new main vortex is generated. In summary,the main vortex shows its obvious life cycle including decay, split, mergence and growth.

    2.2 Stall characteristics

    A frequency spectrum analysis is carried out for the series of pressure fluctuations to reveal the stall characteristics. Figure 6 shows the frequency domain of the vibration signals obtained at the location P1 at three different flow rates. It can be seen that the lower frequency is obviously the dominant frequency, which is contributed by the main vortex motion. Further, the“broadband” with a high frequency can also be seen,which is caused by the outlet vortex., the low frequency is 2.6 Hz, only 26.5% of the rotational frequency. While atshown in Figs.6(b), 6(c), the low frequencies are 3.13 Hz, 3.6 Hz,respectively. However, as the flow rate increases, the“broadband” with a high frequency keeps almost the same.

    3. Rotating stall

    3.1 Flow structures

    The rotating stall occurs in the impeller with 5 blades. Figure 7 shows instantaneous streamline distributions at six equally spaced time steps during one cycle of the rotating stall obtained by the simulation.The passage A is taken as an example to analyze the rotating stall. At =0t , we can see the stall cell almost blocks the whole entrance. At 1 6/T, the stall cell becomes larger, and no fluid can flow into the passage A. The fluid is forced to flow into the adjacent passages. In the passage E, the inlet attack angle decreases, and the flow becomes smooth.However, in the passage B, the inlet attack angle increases, then the blade suction surface produces a separation vortex, gradually developing into another stall cell, which eases the block in the passage A.Therefore, the stall cell in the passage A becomes smaller gradually. At 5 6/T, the streamline in the passage A is smooth, but the flow field in the passage B is completely blocked. This mechanism of the rotating stall is consistent with what described in Emmons et al.[20].

    3.2 Stall characteristics

    In order to determine the propagation speed and direction of the stall cells, the recorded pressure fluctuations on the monitor points P1-P5 are put in the same coordinate frame by transforming the coordinate system, as shown in Fig. 8, where n represents rotor period. At 0. 25Qd, the pressure signals at the points P1-P5 are seen to be fully periodic. The pressure fluctuations on all points have similar periods and amplitudes. But, they have a phase difference, because the stall cells propagate in a circular direction in the impeller. The numbers of stall cells can be calculated as follow

    From Fig. 8(a), TCR=3TOSC. Consequently, the number of the stall cells is 3. They propagate from P1-P5 through P2, P3 and P4. In the relative coordinate system, the stall cells rotate in the opposite direction of the impeller rotation. When the flow rate is increased to 0. 5 0 Qd, 0. 60Qd, Figs. 8(b), 8(c) show similar pressure fluctuations observed in Fig. 8(a).According to Eq. (2), the number of stall cells is also 3 at 0. 5 0 Qd, 0. 60Qd. The amplitude of the pressure fluctuations at stall point changes little from 0. 25Qd-0. 60Qd, while the periods during the same time are increased.

    A frequency spectrum analysis is carried out for the series of pressure fluctuations to reveal the rotating stall characteristics. Figure 9 shows the frequency domain of the vibration signals obtained at the location P1 at 3 different flow rates. It can be seen that the rotating stall frequency ( fstall) is obviously the dominant frequency, much lower than the rotational frequency. At 0. 2 5 Qd, fstallis 2.4 Hz. While at 0. 5 0 Qd, 0. 6 0Qdshown in Figs. 8(b), 8(c), fstallis 1.73 Hz, 1.4 Hz, respectively.

    The propagation speed of the stall cells (ωS) is determined by the angle of the pressure field rotation(Δθ) and the duration of this angle of the pressure field rotation (Δt). Consequently

    According to Eq. (3), at 0. 25Qd, the propagation speed of the stall cells is 5.03 rad/s, which is 8% of the rotor speed. While at 0. 5 0 Qd, 0. 60Qdshown in Figs. 9(a), 9(c), it is 3.8% (3.62 rad/s), 1.68% (3.11 rad/s),respectively. Therefore, it can be concluded that the rotating stall frequency is different at different flow rates. With the decrease of the flow rate, the amplitude of the pressure fluctuations tends to be larger, the propagation speed and the rotating stall frequency are lower, but the number remains the same.

    Fig. 9 Pressure fluctuation frequencies

    4. Conclusions

    The results show that the alternative stall occurs in the impeller with 6 blades, while the rotating stall is observed in that with 5 blades. The conclusions can be obtained as follows:

    (1) For the alternative stall, the stall cells are fixed relative to the impeller, but a large vortex in the stalled passage is always swaying. The outlet vortex is generated from it, and then develops and sheds periodically. The pressure fluctuation caused by the outlet vortex motion, acting on the blades, appears as a “broadband” with a high frequency. Further, the large vortex shows an obvious life cycle including decay, split, mergence and growth, which results in a low frequency compared with the impeller passing frequency. With the decrease of the flow rate, the amplitude of the low frequency fluctuation tends to be larger, but the “broadband” with a high frequency keeps almost the same.

    (2) For the rotating stall, the stall cells first occur in the suction side of the blade. With the growth of the stall cells, the block area gradually increases until the inlet region is almost blocked, then moves to the pressure side with a continuous decay. When the rotating stall occurs, the amplitude of the pressure fluctuation is much larger than that under the alternative stall condition. The propagation of the stall cells has a significant effect on the pressure fluctuations in the impeller. The dominant frequency of the pressure fluctuation on the blade is the rotating stall frequency. With the decrease of the flow rate, the amplitude of the pressure fluctuations changes little,while the rotating stall frequency decreases.

    猜你喜歡
    陳婷佩劍
    我國女子佩劍技戰(zhàn)術打法特征及發(fā)展趨勢探究
    當代體育(2021年37期)2021-11-27 13:19:42
    Germs May Make Us Ill
    一個非終止7F6-級數(shù)求和公式的q-模擬
    駐村隊里的手搟面
    黃河之聲(2019年1期)2019-03-30 03:36:16
    Influence of upstream disturbance on the draft-tube flow of Francis turbine under part-load conditions *
    Investigation of rotating stall for a centrifugal pump impeller using various SGS models*
    全國首對肺移植戀人:以愛的刺青銘記你
    How to improve the oral English communication level of rural students
    我國男子佩劍運動員比賽中進攻技術統(tǒng)計分析
    擊劍體驗課
    青春草亚洲视频在线观看| 欧美日韩视频精品一区| 日本vs欧美在线观看视频 | 成年av动漫网址| a级一级毛片免费在线观看| 国产精品久久久久久久电影| 亚洲美女视频黄频| 日日摸夜夜添夜夜爱| 色视频www国产| 成人综合一区亚洲| 精品国产一区二区三区久久久樱花| 中文欧美无线码| 97在线视频观看| 热99国产精品久久久久久7| 国产乱人偷精品视频| 99国产精品免费福利视频| 日韩av不卡免费在线播放| 99热网站在线观看| 国产欧美另类精品又又久久亚洲欧美| 夫妻午夜视频| 97精品久久久久久久久久精品| 十八禁高潮呻吟视频 | 五月伊人婷婷丁香| 欧美+日韩+精品| 亚洲欧美日韩东京热| 久久女婷五月综合色啪小说| av在线观看视频网站免费| 又粗又硬又长又爽又黄的视频| 毛片一级片免费看久久久久| a 毛片基地| 三上悠亚av全集在线观看 | 少妇丰满av| 一边亲一边摸免费视频| 毛片一级片免费看久久久久| 妹子高潮喷水视频| 久热这里只有精品99| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| av免费观看日本| 自拍欧美九色日韩亚洲蝌蚪91 | 极品少妇高潮喷水抽搐| 欧美精品高潮呻吟av久久| 97超碰精品成人国产| 国产精品国产av在线观看| 亚洲欧美日韩东京热| a级毛片在线看网站| 一区二区av电影网| 国产视频首页在线观看| 我要看黄色一级片免费的| 丝袜脚勾引网站| 国产精品久久久久久精品古装| 亚洲精品国产av蜜桃| 欧美成人午夜免费资源| 亚洲伊人久久精品综合| 久久久国产一区二区| 日本猛色少妇xxxxx猛交久久| 成人特级av手机在线观看| 成人漫画全彩无遮挡| 18禁在线无遮挡免费观看视频| 中文字幕制服av| 欧美激情极品国产一区二区三区 | 欧美xxⅹ黑人| 一边亲一边摸免费视频| 日本黄色片子视频| 在线精品无人区一区二区三| 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 男人狂女人下面高潮的视频| 性高湖久久久久久久久免费观看| 最新的欧美精品一区二区| 伦理电影免费视频| 亚洲精品中文字幕在线视频 | 久久久国产一区二区| 曰老女人黄片| 午夜福利,免费看| 国产黄频视频在线观看| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 边亲边吃奶的免费视频| 精品久久国产蜜桃| 久久精品久久久久久久性| 色5月婷婷丁香| 国产一区二区三区av在线| 午夜免费鲁丝| 丁香六月天网| 久久久久久久久久久久大奶| 丰满迷人的少妇在线观看| 日本黄色片子视频| 夫妻性生交免费视频一级片| 久久久久久久久大av| 精品久久久精品久久久| 国产成人精品一,二区| 永久免费av网站大全| 国产国拍精品亚洲av在线观看| 麻豆成人午夜福利视频| 精品人妻一区二区三区麻豆| 在线精品无人区一区二区三| 国产黄片美女视频| 91成人精品电影| 黄色欧美视频在线观看| 另类亚洲欧美激情| 久久久国产精品麻豆| av在线观看视频网站免费| 日韩中文字幕视频在线看片| 日本爱情动作片www.在线观看| 麻豆成人午夜福利视频| 日日啪夜夜爽| 99re6热这里在线精品视频| 边亲边吃奶的免费视频| 亚洲国产精品专区欧美| 成人影院久久| 日本欧美国产在线视频| 成年av动漫网址| 国产伦在线观看视频一区| 国产免费福利视频在线观看| 又大又黄又爽视频免费| 久久午夜综合久久蜜桃| 中文乱码字字幕精品一区二区三区| 国产深夜福利视频在线观看| 熟女av电影| 亚洲精品aⅴ在线观看| 精品一区二区免费观看| 天堂8中文在线网| 中文乱码字字幕精品一区二区三区| 国产深夜福利视频在线观看| 亚洲在久久综合| a级毛片在线看网站| 免费不卡的大黄色大毛片视频在线观看| 久久青草综合色| 99热全是精品| 亚洲三级黄色毛片| 免费av不卡在线播放| 久久国产乱子免费精品| 成人影院久久| 简卡轻食公司| 丁香六月天网| 国产黄片美女视频| 亚洲精品日韩在线中文字幕| xxx大片免费视频| 国产免费一区二区三区四区乱码| 国产精品久久久久久久久免| 亚洲人成网站在线观看播放| 在线看a的网站| 日本vs欧美在线观看视频 | 久久精品熟女亚洲av麻豆精品| 成人亚洲欧美一区二区av| 亚洲熟女精品中文字幕| 亚洲国产精品一区三区| 老司机亚洲免费影院| 亚洲精品乱码久久久v下载方式| 亚洲国产精品999| 日韩人妻高清精品专区| 黑人高潮一二区| 18禁在线无遮挡免费观看视频| 欧美 日韩 精品 国产| 日日摸夜夜添夜夜添av毛片| 美女大奶头黄色视频| 久久久久视频综合| 久久 成人 亚洲| 国产精品久久久久久久久免| 日韩成人伦理影院| 一级,二级,三级黄色视频| 国产男人的电影天堂91| 日韩免费高清中文字幕av| 高清毛片免费看| 伊人久久精品亚洲午夜| 国产精品福利在线免费观看| 亚洲精品国产成人久久av| 人妻少妇偷人精品九色| 国产高清三级在线| 老司机影院毛片| 久久久久精品久久久久真实原创| 欧美日韩视频高清一区二区三区二| 国产黄色视频一区二区在线观看| 夜夜爽夜夜爽视频| 你懂的网址亚洲精品在线观看| 少妇人妻久久综合中文| 天美传媒精品一区二区| 三级国产精品片| 午夜视频国产福利| 久久久久久久久久久久大奶| 日韩av免费高清视频| 大香蕉97超碰在线| 精品亚洲成国产av| 久久国产精品大桥未久av | 欧美成人午夜免费资源| 五月开心婷婷网| 欧美日韩精品成人综合77777| 黄色怎么调成土黄色| 国产乱来视频区| 免费看不卡的av| 久久免费观看电影| 少妇的逼好多水| 简卡轻食公司| 精品人妻熟女毛片av久久网站| 天天躁夜夜躁狠狠久久av| 大码成人一级视频| 2021少妇久久久久久久久久久| 成年av动漫网址| 大香蕉久久网| av福利片在线| 黄色毛片三级朝国网站 | 久久精品久久久久久噜噜老黄| 亚洲色图综合在线观看| 纯流量卡能插随身wifi吗| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 51国产日韩欧美| 午夜福利影视在线免费观看| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| av天堂久久9| 国产中年淑女户外野战色| 99国产精品免费福利视频| 观看av在线不卡| 青青草视频在线视频观看| 99热这里只有是精品在线观看| 99久久精品一区二区三区| 永久免费av网站大全| 一级片'在线观看视频| 春色校园在线视频观看| 精品亚洲成国产av| 国产av码专区亚洲av| 各种免费的搞黄视频| 中文乱码字字幕精品一区二区三区| a级片在线免费高清观看视频| 国产精品成人在线| 久久 成人 亚洲| av在线老鸭窝| 久久女婷五月综合色啪小说| 草草在线视频免费看| 五月天丁香电影| 亚洲欧美成人精品一区二区| 免费高清在线观看视频在线观看| 久久青草综合色| 国产深夜福利视频在线观看| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久| 在线观看www视频免费| 一个人看视频在线观看www免费| 日日啪夜夜撸| 少妇猛男粗大的猛烈进出视频| 少妇精品久久久久久久| 国产成人精品久久久久久| 大片电影免费在线观看免费| 男人和女人高潮做爰伦理| 国产色婷婷99| 男女免费视频国产| 男女边吃奶边做爰视频| 性色av一级| 亚洲经典国产精华液单| 国产精品人妻久久久影院| 精品人妻熟女av久视频| 亚洲精华国产精华液的使用体验| 成人黄色视频免费在线看| 91在线精品国自产拍蜜月| 九九爱精品视频在线观看| 99精国产麻豆久久婷婷| 精品久久国产蜜桃| 熟女人妻精品中文字幕| 国产在线视频一区二区| 亚洲一级一片aⅴ在线观看| 色婷婷久久久亚洲欧美| 国产欧美日韩精品一区二区| 午夜福利在线观看免费完整高清在| 成人国产麻豆网| 99九九在线精品视频 | 女人久久www免费人成看片| 观看av在线不卡| 免费观看无遮挡的男女| 中文字幕制服av| 久久免费观看电影| 国产精品久久久久久精品电影小说| 久久女婷五月综合色啪小说| 国产成人免费无遮挡视频| 人人妻人人看人人澡| 大码成人一级视频| av在线老鸭窝| 国产精品无大码| 18禁在线无遮挡免费观看视频| 十八禁高潮呻吟视频 | av在线播放精品| 久久精品国产亚洲av天美| 99视频精品全部免费 在线| 99久久精品热视频| 日韩成人av中文字幕在线观看| 久久精品夜色国产| 欧美97在线视频| 精品人妻偷拍中文字幕| 亚洲国产最新在线播放| 亚洲经典国产精华液单| 国产av国产精品国产| 国产成人午夜福利电影在线观看| √禁漫天堂资源中文www| 一个人免费看片子| 女人精品久久久久毛片| 丝瓜视频免费看黄片| 国产真实伦视频高清在线观看| 水蜜桃什么品种好| 亚洲精品aⅴ在线观看| 亚洲va在线va天堂va国产| 日韩,欧美,国产一区二区三区| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 看非洲黑人一级黄片| 三级国产精品片| 久久久久久久久久久久大奶| a 毛片基地| 久久人妻熟女aⅴ| 亚洲成人手机| 伦理电影大哥的女人| 一级二级三级毛片免费看| av专区在线播放| xxx大片免费视频| av在线app专区| 最新中文字幕久久久久| 国产爽快片一区二区三区| 欧美日韩在线观看h| 午夜激情福利司机影院| 亚洲av国产av综合av卡| 人妻系列 视频| 寂寞人妻少妇视频99o| 国产日韩一区二区三区精品不卡 | 成年人免费黄色播放视频 | 少妇裸体淫交视频免费看高清| 九九爱精品视频在线观看| 高清黄色对白视频在线免费看 | 99国产精品免费福利视频| 国产精品人妻久久久影院| 国产69精品久久久久777片| 免费大片黄手机在线观看| 免费久久久久久久精品成人欧美视频 | 亚洲成人av在线免费| 国产欧美日韩综合在线一区二区 | 丝袜喷水一区| 男女免费视频国产| 精品久久国产蜜桃| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 一本色道久久久久久精品综合| 久久久久国产精品人妻一区二区| 三级经典国产精品| 欧美少妇被猛烈插入视频| 免费黄网站久久成人精品| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 男人添女人高潮全过程视频| 亚洲精品,欧美精品| 精品久久久精品久久久| 久久亚洲国产成人精品v| 97超视频在线观看视频| 青春草国产在线视频| 久久女婷五月综合色啪小说| 精品午夜福利在线看| 乱系列少妇在线播放| 久久鲁丝午夜福利片| 99久久中文字幕三级久久日本| 下体分泌物呈黄色| 成年人免费黄色播放视频 | 亚洲精品中文字幕在线视频 | 精品人妻熟女av久视频| 午夜日本视频在线| 国产黄色视频一区二区在线观看| 日日啪夜夜撸| 亚洲精品中文字幕在线视频 | 狂野欧美激情性bbbbbb| 日产精品乱码卡一卡2卡三| 国产中年淑女户外野战色| 男人舔奶头视频| 亚洲人与动物交配视频| 国产亚洲5aaaaa淫片| 国产中年淑女户外野战色| 亚洲av国产av综合av卡| 秋霞在线观看毛片| 深夜a级毛片| 国产精品伦人一区二区| 免费播放大片免费观看视频在线观看| 99久久人妻综合| 国产一区二区在线观看av| 黑人巨大精品欧美一区二区蜜桃 | 国产精品无大码| 国产精品久久久久久精品古装| 国产 一区精品| 亚洲av综合色区一区| 亚洲熟女精品中文字幕| 久久久久久久大尺度免费视频| 久久精品国产自在天天线| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 欧美成人午夜免费资源| 色吧在线观看| 久久婷婷青草| 欧美性感艳星| 伦理电影大哥的女人| 18禁在线无遮挡免费观看视频| 99精国产麻豆久久婷婷| 久久久久网色| 男人舔奶头视频| 99热这里只有是精品在线观看| 黄片无遮挡物在线观看| 熟妇人妻不卡中文字幕| 一本色道久久久久久精品综合| 成人美女网站在线观看视频| 夫妻午夜视频| 国产精品99久久久久久久久| 男男h啪啪无遮挡| .国产精品久久| 最近手机中文字幕大全| 中文天堂在线官网| 久久精品久久久久久久性| 日本午夜av视频| 国产91av在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 亚洲第一av免费看| 欧美国产精品一级二级三级 | 亚洲高清免费不卡视频| 亚洲欧美一区二区三区黑人 | 国产 一区精品| 国产91av在线免费观看| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 国产视频首页在线观看| 人妻制服诱惑在线中文字幕| 久久午夜福利片| 日本-黄色视频高清免费观看| av女优亚洲男人天堂| 亚洲精品视频女| 韩国高清视频一区二区三区| 看非洲黑人一级黄片| 日日啪夜夜爽| 日本猛色少妇xxxxx猛交久久| kizo精华| 国产高清有码在线观看视频| 久久久久久久久久人人人人人人| 一区二区三区乱码不卡18| 亚洲av二区三区四区| 亚洲av电影在线观看一区二区三区| 中文字幕久久专区| 日日撸夜夜添| 国产乱人偷精品视频| www.色视频.com| 欧美成人精品欧美一级黄| 一区二区三区精品91| 最后的刺客免费高清国语| 97超碰精品成人国产| a 毛片基地| 欧美激情国产日韩精品一区| 少妇猛男粗大的猛烈进出视频| 熟女电影av网| 狂野欧美激情性bbbbbb| 观看av在线不卡| 国产乱人偷精品视频| 中文精品一卡2卡3卡4更新| 秋霞伦理黄片| 国产黄片视频在线免费观看| 国产av码专区亚洲av| 丝袜脚勾引网站| 日本与韩国留学比较| 亚洲人成网站在线播| 一级毛片 在线播放| 在线观看免费视频网站a站| 18禁在线播放成人免费| 欧美最新免费一区二区三区| 亚洲欧美中文字幕日韩二区| 少妇人妻一区二区三区视频| 新久久久久国产一级毛片| 久久久国产一区二区| 日韩成人伦理影院| 亚洲婷婷狠狠爱综合网| 亚洲av欧美aⅴ国产| 丰满饥渴人妻一区二区三| 国产一区二区在线观看日韩| 亚洲国产毛片av蜜桃av| 国产日韩一区二区三区精品不卡 | 欧美区成人在线视频| 国产 精品1| 成人黄色视频免费在线看| 亚洲精品亚洲一区二区| 在线亚洲精品国产二区图片欧美 | av不卡在线播放| 婷婷色麻豆天堂久久| 午夜精品国产一区二区电影| 自拍欧美九色日韩亚洲蝌蚪91 | 18禁在线无遮挡免费观看视频| 国产免费一级a男人的天堂| 色视频www国产| 菩萨蛮人人尽说江南好唐韦庄| 成人综合一区亚洲| 天美传媒精品一区二区| 中文字幕人妻丝袜制服| 亚洲欧美日韩另类电影网站| 少妇被粗大猛烈的视频| 精品一区二区三卡| 日本av手机在线免费观看| 熟女电影av网| 日韩一区二区三区影片| www.色视频.com| 99久久精品一区二区三区| 最近中文字幕高清免费大全6| 全区人妻精品视频| 午夜激情福利司机影院| 一区二区av电影网| 80岁老熟妇乱子伦牲交| 国产免费视频播放在线视频| 中文天堂在线官网| 在线亚洲精品国产二区图片欧美 | 国产老妇伦熟女老妇高清| 91aial.com中文字幕在线观看| 日日啪夜夜爽| 国产国拍精品亚洲av在线观看| 国产在线男女| 精品少妇内射三级| 一级,二级,三级黄色视频| 久久久久久久大尺度免费视频| 五月玫瑰六月丁香| 在线精品无人区一区二区三| 大香蕉97超碰在线| 午夜av观看不卡| 少妇精品久久久久久久| 欧美日韩视频高清一区二区三区二| 免费av不卡在线播放| 51国产日韩欧美| 免费播放大片免费观看视频在线观看| 亚洲丝袜综合中文字幕| 日日摸夜夜添夜夜爱| 纵有疾风起免费观看全集完整版| 久久久久久久大尺度免费视频| 女人精品久久久久毛片| 成年av动漫网址| 99久久精品热视频| 乱码一卡2卡4卡精品| 亚洲av福利一区| 日韩电影二区| freevideosex欧美| 免费大片18禁| 日日摸夜夜添夜夜添av毛片| 亚洲情色 制服丝袜| 亚洲国产精品999| 免费观看性生交大片5| 成人亚洲精品一区在线观看| 精品久久久精品久久久| 国产成人精品久久久久久| 曰老女人黄片| 日韩一本色道免费dvd| 亚洲欧美一区二区三区国产| 自拍偷自拍亚洲精品老妇| 狠狠精品人妻久久久久久综合| 国产精品秋霞免费鲁丝片| 国产日韩欧美在线精品| 国产亚洲最大av| 日韩成人伦理影院| 搡老乐熟女国产| 亚洲国产精品999| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 国产精品免费大片| 男女无遮挡免费网站观看| 亚洲天堂av无毛| 久热久热在线精品观看| 一区在线观看完整版| 亚洲av综合色区一区| 免费播放大片免费观看视频在线观看| 新久久久久国产一级毛片| 国产男女内射视频| 久久狼人影院| 99九九线精品视频在线观看视频| 欧美日本中文国产一区发布| 99九九在线精品视频 | 午夜激情久久久久久久| 蜜桃在线观看..| 日韩成人av中文字幕在线观看| 看十八女毛片水多多多| 一本大道久久a久久精品| 日韩人妻高清精品专区| 国产69精品久久久久777片| 最黄视频免费看| 精品久久久噜噜| 国产精品一区二区在线不卡| 黄色配什么色好看| 丰满少妇做爰视频| 91久久精品电影网| 久久精品久久久久久久性| 草草在线视频免费看| 欧美97在线视频| 亚洲情色 制服丝袜| .国产精品久久| 丝袜脚勾引网站| 亚洲熟女精品中文字幕| 丝袜在线中文字幕| 一区二区av电影网| 国产成人精品一,二区| 国产精品欧美亚洲77777| 日韩一区二区视频免费看| 久久久久久久精品精品| .国产精品久久| 国产淫片久久久久久久久| 国产精品福利在线免费观看| 高清毛片免费看| 国产亚洲欧美精品永久| a级片在线免费高清观看视频| 卡戴珊不雅视频在线播放| 亚洲国产精品一区二区三区在线| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| av线在线观看网站| 精品久久久久久久久av| kizo精华| 在线观看免费高清a一片| 日本黄大片高清| 亚洲精品成人av观看孕妇| 五月伊人婷婷丁香| 国产亚洲av片在线观看秒播厂| 少妇的逼好多水| 成人午夜精彩视频在线观看|