• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull *

    2019-01-05 08:09:08ChengzaoHan韓承灶YunLong龍?jiān)?/span>BinJi季斌XinpingLong龍新平ZhirongZhang張志榮
    關(guān)鍵詞:龍?jiān)?/a>新平

    Cheng-zao Han (韓承灶), Yun Long (龍?jiān)疲? Bin Ji (季斌), Xin-ping Long (龍新平),Zhi-rong Zhang (張志榮)

    1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

    3. National Key Laboratory on Ship Vibration and Noise, China Ship Scientif i c Research Center, Wuxi 214082,China

    Abstract: In this paper, the unsteady cavitating turbulent flow around a marine propeller is simulated based on the unsteady Reynolds averaged Navier-Stokes (URANS) with emphasis on the hull-propeller interaction by an integral calculation approach, which means the propeller and hull are treated as a whole when the cavitating flow is calculated. The whole calculational domain is split to an inner rotating domain containing a propeller and an outer domain containing a hull. And the two split sections are connected together in ANSYS CFX by using the GGI interfaces and the transient rotor stator frame change/mixing model. The alternate rotation model is employed for the advection term in the momentum equations in order to reduce the numerical error. Comparison of predictions with measurements shows that the propeller thrust coefficient can be predicted satisfactorily. The unsteady cavitating flow around the propeller behind the ship hull wake shows quasi-periodic features including cavity inception, growth and shrinking. These features are effectively reproduced in the simulations which compare well to available experimental data. In addition, significant pressure fluctuations on the ship hull surface induced by the unsteady propeller cavitation are compared with experimental data at monitoring points on the hull surface. The predicted amplitudes of the first components corresponding to the first blade passing frequencies match well with the experimental data. The maximum error between the predictions and the experimental data for the pressure pulsations is around 8%, which is acceptable in most engineering applications.

    Key words: Integral calculation approach, cavitating flow, hull-propeller interactions, pressure fluctuations

    Cavitation is a major concern that influences propeller performance due to abrasion, vibrations, and noise as a complex unsteady phenomenon. The increasing requirement to improve ship propulsion efficiency and safety is limited by the cavitation effects. The cavitation around the propeller is mainly characterized by sheet cavitation at the leading edge of the blade and by intense tip vortex cavitation. There is, thus, a need both for better cavitation prediction and for improved analytical tools.

    Experimental observations can show numerous visual phenomena but suffer from restrictions on measurement flexibility. Thus, the whole flow field CFD models can be a useful supplement to experimental data. There have been numerous numerical simulations of cavitation to obtain deeper understandings of transient cavitating turbulent flow effects.Cheng et al.[1]used a filter-based density correction turbulence model to reveal the interaction between cavitation and vortices. Wu et al.[2]used the -kω SST turbulence model and the Zwart cavitation model to simulate unsteady cavitating flows around a single marine propeller. The periodic cavitation development was well captured and the periodic pressure fluctuations were analyzed. They pointed out that the high sound pressures were focused on the lower-order blade passing frequencies for the non-cavitating case,but in cavitating flows, the sound pressures induced by cavitation was higher in the high frequency stage.The Roe scheme was split into five parts by Li and Li[3]and they investigated the role of these parts in the turbulence at a low Mach number. They then presented a modified all-speed Roe scheme for the LES method that calculated well even with a coarse grid.Long et al.[4]used the LES method to model an unsteady cavitating flow with the Euler–Lagrangian coupling investigation to analyze the relationship between the cavitation and the vortices. Their results indicated that cavitation promoted the vortex generation and flow instabilities. Lu et al.[5]simulated cavitating flow around two propellers mounted on the end of a tilted shaft in open water. Their simulated results, supported by experiments, showed that LES was able to correctly capture the cavitation development with very good wall resolution needed to correctly capture the cavitation details on the blade.Rhee[6]used a cavitation model coupled with a single-fluid multi-phase flow method to predict cavitating flow around a single propeller in open water. They accurately predicted the hydrodynamic performance of the marine propeller for the noncavitating case. For the cavitating case, comparisons with measured data showed that the method captured many details of the cavitating flows such as the cavitation inception and the cavity shape over the blade. Ji et al.[7]used the partially-averaged Navier-Stokes (PANS) computational model to predict the cavitating flow around a propeller without a hull in a non-uniform wake. The PANS method predicted the fluctuations of the large cavity volume as the blade moved through the wake field better than RANS models using the -kε and -kω SST turbulence models. They confirmed that the whole cavitating flow development process around the propeller could be well reproduced by the PANS method. Di Mascio et al.[8]used detached eddy simulations (DES) to study the wake instabilities around a marine propeller in an oblique flow and purely axisymmetric flow for different loading conditions. They pointed out that the roles of the secondary vorticity which was along the streamwise direction and the hub vortex were crucial in oblique flow. However, they neglected the interaction between the ship and the propeller. Ji et al.[9]simulated the open water characteristics of a marine propeller without considering the hullpropeller interactions. They used a mass transfer cavitation model and the -kω SST turbulence model to predict the thrust and torque coefficients as well as the pressure fluctuations for a highly skewed marine propeller. The predicted hydrodynamic performance agreed well with experimental results and the dominant components of the pressure fluctuation amplitudes were satisfactorily predicted.However, all these studies treated an isolated propeller without the effect of the hull with the complex hull-propeller interactions simplified to a propeller operating with a non-uniform inlet velocity.

    This study used an integral calculation approach to calculate the propeller and hull together. URANS is employed to model the cavitating flow field around a model propeller with emphasis on the hull-propeller interactions. For both the steady non-cavitating and unsteady cavitating calculations, the turbulent flows were calculated by using the -kω SST turbulence model and the Zwart cavitation model with the whole grid containing a propeller and a hull. This letter compares the predictions with experimental data with a detailed analysis of the variations ofTK , the pressure fluctuations and the cavity evolution around the propeller behind the hull.

    The marine propeller was based on experiments at the China Ship Scientific Research Center (CSSRC)with the propeller mounted on the stern of a ship located in a large cavitation channel. The propeller diameter at the blade tip,mD, was 252.63 mm, the design waterline length,WLL , was 9 m, and the width B was about 1.35 m.

    The unsteady turbulent flow simulations around the marine propeller behind a hull used a computational domain including the full flow passage with a propeller and a hull as shown in Fig. 1. The domain inlet was locatedWL1L upstream of the bow with the outlet locatedWL2L downstream of the stern. Along the -Z axis direction, the distance between the ship surface and the computational domain side surface wasWL1L . The whole calculation domain was divided into two parts to simplify the mesh generation.

    Fig. 1 Boundary conditions and computational domain

    The calculational grid was composed of all hexahedra as shown in Fig. 2. The inner field 1in diameter was a rotating field containing the7propeller.The computational grid with about 1.33×10 cells was well refined in the inner domain which would include the unsteady flow and the cavitation. The outer domain was a rectangular static domain including the hull whose grid had about 1.52×107cells. The two split sections of the computational domain were connected together in ANSYS CFX by using the GGI interfaces and the transient rotor stator frame change/mixing model. The mesh around propeller was quite dense while the mesh further away was sparser to improve the prediction accuracy while reducing the computational resources. The mesh transition from the dense zone to the sparse is fairly soothing. The final grid had about 2.85×107cells. The interactions between the propeller and the hull were well predicted by the high-quality hexahedral grid containing the whole propeller and hull. Besides, it should be noted that the alternate rotation model was employed for the advection term in the momentum equations in order to reduce the numerical error.

    The boundary conditions for the cavitating flow simulation has a uniform inlet velocity of =U 6.5 m/s at the domain inlet with the pressure at the domain outlet defined to coincide with the experimental conditions of a cavitation number0.3397. The Reynolds number based on velocity at inlet and chord at 70% span was held at 1.39×106. The propeller rotational speed n is 28 resolutions per second. The no slip wall conditions were applied on the blade surface, the hub and the hull surface. The bottom surface and the side surfaces of the computational domain were all regarded as free slip walls with the free liquid surface set as a symmetry plane.

    In the case of unsteady simulation, 5° per timestep was selected for the first ten revolutions, and then 1° per time-step was set for the next ten revolutions.The residual convergence criterion for the calculation was set as 10-3with the maximal 40 inner iterations.

    Fig. 2 Outline of the mesh for the hull surface and a partial view of the mesh around the stern and the bow

    The accuracy of the unsteady simulation and the hull-propeller interaction were validated based on the cavitation patterns predicted using the whole grid containing the propeller and the hull. The predicted time-dependent cavitation patterns as the propeller rotates are compared with the experimental observations in Fig. 3, where the top row shows the experimental results and the bottom row shows the predictions. The cavitation patterns are visualized by an iso-surface of=1. The figure displays five snapshots for blade position angles from -10°-50° from vertical. As the propeller approaches the hull wake region, the cavity begins to grow from the blade leading edge. Then, a sheet cavity grows across a large span and develops downstream as the propeller rotates into the wake region. Then, the cavity begins to shrink towards the blade tip as the blade leaves the wake and the tip vortex cavity grows downstream.Thus, the simulation can accurately capture the unsteady cavitation patterns and their development around the propeller is well reproduced. The results show how the cavitation evolution on the propeller is affected by the ship hull wake. Thus, the whole region containing the propeller and the hull has to be modeled to reasonably show the interactions between the hull and the propeller.

    Fig. 3 (Color online) Comparison of the experimental and calculated cavitation patterns during propeller rotation with the angle measured from vertical

    The predicted and measured thrust coefficients,, and the error listed in Table 1 agree quite well.

    Table 1 Predicted and measured thrust coefficients

    Fig. 4 Pressure monitoring points on the hull

    The distribution of the monitoring points on the hull surface is shown in Fig. 4. The predicted and measured first blade passing frequencies of the pressure pulsations at these monitoring points are then shown in Fig. 5. Since the monitoring points are at the cavitation locations, the pressure fluctuations on the hull are due to the propeller cavitation. The predicted and measured pressure fluctuations agree well which validates the simulation accuracy. The maximum difference in the first blade passing frequency between the predictions and the measurements is 8%, which is acceptable in most engineering applications. Thus, the results validate the reliability of the simulations and illustrate how the hull-propeller interactions affect the cavitation and the pressure fluctuation.

    Fig. 5 Calculated and experimental first blade frequency components of the pressure fluctuations at monitoring points P1-P3

    This analysis used the -kω SST turbulence model with the Zwart cavitation model to predict the unsteady turbulent cavitating flow around a marine propeller behind a hull. The model included the hull-propeller interactions with the propeller and the hull modeled together to predict the cavitating flow.The experi- mentally observed cavitation patterns, the thrust coefficient as well as the pressure fluctuations are well predicted by integral calculation approach.The main conclusions are:

    (1) The transient cavitating turbulent flow and the cavity patterns on the marine propeller affected by the ship hull wake are satisfactorily predicted, including cavity inception, growth and shrinking induced by the non-uniform hull wake. The predicted cavitation patterns and evolution agree well with the experiments.

    (2) The prediction accuracy was evaluated based on comparisons of the predicted thrust coefficients and pressure fluctuations with available experimental results. The results show that the pressure fluctuations at various monitoring points impacted by the cavitating flow agree fairly well with the experimental data.Thus, the present method that models the propeller and the hull together can be used to reliably predict the pressure fluctuations.

    More work is needed to reliably simulate the cavitating flow around a marine propeller behind a hull due to the very complex flow structure when treating the propeller and the hull as one system.Verification and validation (V&V)[10]is a systematic methodology used to assess the accuracy of numerical simulations. Thus, V&V will be used to estimate the reliability of numerical results when simulating complex flows. The grid independence of the results must also be included with V&V. Our future work will include a V&V study of the complex cavitating flow around a propeller and hull system. In addition, more analysis methods are needed to further understand the complex cavitating flow around a propeller behind the hull, such as the cavitation-vortex interactions[11-12].Our future work will also focus on studying the cavitating flow around a marine propeller behind the hull with the free surface of ship.

    猜你喜歡
    龍?jiān)?/a>新平
    幼兒園里歡樂(lè)多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    出滇抗戰(zhàn)時(shí)期龍?jiān)茖?duì)滇軍的治理研究
    創(chuàng)造(2020年6期)2020-11-20 05:58:42
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *
    你總是給我力量
    Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES *
    Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil*
    亚洲av.av天堂| 国产乱人偷精品视频| 日韩成人伦理影院| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 国产高清有码在线观看视频| 51国产日韩欧美| 亚洲图色成人| 精品不卡国产一区二区三区| avwww免费| 最近中文字幕高清免费大全6| 亚洲人与动物交配视频| 国产 一区 欧美 日韩| 免费av观看视频| 国产精品综合久久久久久久免费| 国产亚洲91精品色在线| 在线免费十八禁| 亚洲av成人精品一区久久| 黄色配什么色好看| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 国产av一区在线观看免费| 伊人久久精品亚洲午夜| 看非洲黑人一级黄片| 免费看美女性在线毛片视频| 久久99热6这里只有精品| 看黄色毛片网站| 国产一级毛片七仙女欲春2| 在线观看一区二区三区| 亚洲婷婷狠狠爱综合网| 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 男女啪啪激烈高潮av片| 国产精品精品国产色婷婷| 国产片特级美女逼逼视频| 国产aⅴ精品一区二区三区波| 人人妻人人澡人人爽人人夜夜 | 最近在线观看免费完整版| 久久久久久久久久久丰满| 亚洲国产精品合色在线| 婷婷六月久久综合丁香| 午夜免费激情av| 99久久成人亚洲精品观看| 天天一区二区日本电影三级| 搡老岳熟女国产| 在线观看美女被高潮喷水网站| aaaaa片日本免费| 亚洲丝袜综合中文字幕| 97碰自拍视频| 午夜亚洲福利在线播放| 亚洲美女搞黄在线观看 | 美女cb高潮喷水在线观看| 日本三级黄在线观看| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 嫩草影院新地址| 男人狂女人下面高潮的视频| 亚洲,欧美,日韩| av在线观看视频网站免费| 综合色av麻豆| 国产精品久久久久久久久免| 网址你懂的国产日韩在线| 成人三级黄色视频| 夜夜爽天天搞| 久久久久精品国产欧美久久久| 欧美最新免费一区二区三区| 日韩三级伦理在线观看| 非洲黑人性xxxx精品又粗又长| 日韩大尺度精品在线看网址| 天天躁夜夜躁狠狠久久av| 有码 亚洲区| 精品人妻熟女av久视频| 国产精品亚洲美女久久久| 日韩精品青青久久久久久| 九九热线精品视视频播放| 乱系列少妇在线播放| av专区在线播放| 欧美一区二区精品小视频在线| АⅤ资源中文在线天堂| 国产麻豆成人av免费视频| 99热精品在线国产| 国内精品美女久久久久久| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 久久精品国产亚洲网站| 色5月婷婷丁香| 深夜a级毛片| 精品免费久久久久久久清纯| 久久久久精品国产欧美久久久| 插逼视频在线观看| 国产一区二区亚洲精品在线观看| 蜜桃亚洲精品一区二区三区| 在线天堂最新版资源| 丰满人妻一区二区三区视频av| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 三级国产精品欧美在线观看| 国产精品女同一区二区软件| 色尼玛亚洲综合影院| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 国产三级在线视频| 日本a在线网址| 人妻久久中文字幕网| 免费av不卡在线播放| 亚洲美女视频黄频| 给我免费播放毛片高清在线观看| 麻豆一二三区av精品| 久久久午夜欧美精品| 一级毛片久久久久久久久女| 欧美3d第一页| 亚洲成人av在线免费| 97超视频在线观看视频| 国产人妻一区二区三区在| 日韩欧美在线乱码| 97人妻精品一区二区三区麻豆| 天美传媒精品一区二区| 亚洲av不卡在线观看| 免费av不卡在线播放| 国产精品久久久久久精品电影| 国产精品久久视频播放| 黄色欧美视频在线观看| 亚洲国产精品sss在线观看| 综合色丁香网| 欧美高清性xxxxhd video| 中文亚洲av片在线观看爽| 十八禁网站免费在线| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 精品一区二区免费观看| 国产中年淑女户外野战色| 欧美人与善性xxx| 一a级毛片在线观看| 性色avwww在线观看| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 两个人视频免费观看高清| 欧洲精品卡2卡3卡4卡5卡区| 国产乱人视频| 日本a在线网址| 午夜久久久久精精品| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 精品无人区乱码1区二区| 日本熟妇午夜| 久久99热这里只有精品18| 午夜老司机福利剧场| 青春草视频在线免费观看| 波多野结衣高清无吗| 69人妻影院| 久久久久久久久久久丰满| 国产精品一区二区性色av| 久久久精品欧美日韩精品| 成熟少妇高潮喷水视频| 悠悠久久av| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 99视频精品全部免费 在线| 久久久久久国产a免费观看| 国产69精品久久久久777片| 国产精品国产高清国产av| 国产精品免费一区二区三区在线| 国产亚洲欧美98| 人人妻人人澡人人爽人人夜夜 | 精品人妻一区二区三区麻豆 | 日韩欧美精品免费久久| 国产欧美日韩精品一区二区| 搡老岳熟女国产| 春色校园在线视频观看| 国产成人一区二区在线| 久久中文看片网| 午夜激情福利司机影院| 黄色一级大片看看| 久久久久久大精品| 国产大屁股一区二区在线视频| 国内少妇人妻偷人精品xxx网站| 综合色丁香网| 丝袜喷水一区| 国产精品久久久久久亚洲av鲁大| 六月丁香七月| 日韩一区二区视频免费看| 国产 一区精品| 久久天躁狠狠躁夜夜2o2o| 欧美最黄视频在线播放免费| av中文乱码字幕在线| av卡一久久| 啦啦啦韩国在线观看视频| 免费看a级黄色片| 性插视频无遮挡在线免费观看| 午夜精品一区二区三区免费看| 嫩草影视91久久| 一个人观看的视频www高清免费观看| 淫妇啪啪啪对白视频| 自拍偷自拍亚洲精品老妇| 在线观看午夜福利视频| 日韩国内少妇激情av| 国产精品,欧美在线| 能在线免费观看的黄片| 三级男女做爰猛烈吃奶摸视频| 最近中文字幕高清免费大全6| 日本一本二区三区精品| av天堂在线播放| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 日韩中字成人| 简卡轻食公司| 欧美日韩一区二区视频在线观看视频在线 | 男女做爰动态图高潮gif福利片| 精品欧美国产一区二区三| 中文资源天堂在线| 男女做爰动态图高潮gif福利片| 1024手机看黄色片| 国产精品一区二区三区四区免费观看 | 精品日产1卡2卡| 国产高潮美女av| 日韩成人av中文字幕在线观看 | 国产一区二区三区在线臀色熟女| 久久久a久久爽久久v久久| av天堂在线播放| 一本久久中文字幕| 伊人久久精品亚洲午夜| 狂野欧美激情性xxxx在线观看| 精品久久久久久久久久久久久| 12—13女人毛片做爰片一| 一区二区三区四区激情视频 | 欧美+亚洲+日韩+国产| 亚洲高清免费不卡视频| 特级一级黄色大片| 亚洲熟妇熟女久久| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 99久久精品国产国产毛片| 内射极品少妇av片p| 亚洲熟妇中文字幕五十中出| 亚洲av电影不卡..在线观看| ponron亚洲| 卡戴珊不雅视频在线播放| 免费一级毛片在线播放高清视频| avwww免费| 午夜激情福利司机影院| 国产午夜福利久久久久久| 欧美性感艳星| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月| 午夜激情福利司机影院| 国产极品精品免费视频能看的| 国产精品女同一区二区软件| 久久久久久久久中文| 精品乱码久久久久久99久播| 直男gayav资源| 日本免费一区二区三区高清不卡| 俺也久久电影网| 国产精品不卡视频一区二区| 麻豆国产97在线/欧美| 特大巨黑吊av在线直播| 又粗又爽又猛毛片免费看| 亚洲欧美精品自产自拍| 国产精品伦人一区二区| 91久久精品电影网| videossex国产| 精品少妇黑人巨大在线播放 | 久久久成人免费电影| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 午夜亚洲福利在线播放| 波多野结衣巨乳人妻| 国产伦精品一区二区三区视频9| 一级黄片播放器| 亚洲电影在线观看av| 超碰av人人做人人爽久久| 免费人成在线观看视频色| 丰满的人妻完整版| 亚洲人成网站在线播| 亚洲精品在线观看二区| 1024手机看黄色片| 国产视频一区二区在线看| av在线播放精品| 赤兔流量卡办理| 免费电影在线观看免费观看| 国产精品久久电影中文字幕| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| av在线蜜桃| 岛国在线免费视频观看| 亚洲欧美成人精品一区二区| 波多野结衣高清作品| 免费看日本二区| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| 在线观看66精品国产| 狠狠狠狠99中文字幕| 91在线观看av| 亚洲最大成人av| 99精品在免费线老司机午夜| 国产欧美日韩精品亚洲av| av黄色大香蕉| 色噜噜av男人的天堂激情| 午夜激情福利司机影院| 一区二区三区高清视频在线| 日韩欧美精品免费久久| 小说图片视频综合网站| 毛片一级片免费看久久久久| 成年版毛片免费区| 亚洲国产精品成人综合色| 亚洲成av人片在线播放无| 日韩三级伦理在线观看| 亚洲人成网站高清观看| 菩萨蛮人人尽说江南好唐韦庄 | 99久久无色码亚洲精品果冻| 国产成人freesex在线 | 亚洲人成网站在线播放欧美日韩| 嫩草影院入口| 亚洲欧美日韩东京热| 女生性感内裤真人,穿戴方法视频| 真实男女啪啪啪动态图| 男女做爰动态图高潮gif福利片| 成年免费大片在线观看| 国产三级中文精品| 日本一二三区视频观看| 欧美区成人在线视频| av卡一久久| 亚洲国产精品合色在线| 日韩av在线大香蕉| 网址你懂的国产日韩在线| 一级毛片久久久久久久久女| 特级一级黄色大片| 国产精品精品国产色婷婷| 成人综合一区亚洲| 欧美精品国产亚洲| 天堂网av新在线| 久久这里只有精品中国| 精品久久久久久成人av| 久久这里只有精品中国| 亚洲人成网站在线播| 搡老岳熟女国产| 又爽又黄无遮挡网站| 中文字幕av成人在线电影| 99久国产av精品国产电影| 一级黄色大片毛片| 亚洲精品久久国产高清桃花| 波野结衣二区三区在线| 18禁在线无遮挡免费观看视频 | 国产淫片久久久久久久久| 亚洲电影在线观看av| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 高清毛片免费观看视频网站| 在线a可以看的网站| 男女之事视频高清在线观看| 久久鲁丝午夜福利片| 在线观看美女被高潮喷水网站| 国产精品不卡视频一区二区| 在线观看美女被高潮喷水网站| 日韩成人伦理影院| 校园人妻丝袜中文字幕| 成人高潮视频无遮挡免费网站| 中国国产av一级| 精品久久久久久久人妻蜜臀av| 日韩制服骚丝袜av| 国产乱人偷精品视频| 丰满的人妻完整版| 国产精品一区二区免费欧美| АⅤ资源中文在线天堂| av在线天堂中文字幕| 一级毛片aaaaaa免费看小| 久久精品影院6| 国产探花在线观看一区二区| 国产国拍精品亚洲av在线观看| 啦啦啦观看免费观看视频高清| 美女黄网站色视频| 久久久a久久爽久久v久久| 国产精品免费一区二区三区在线| 国内精品久久久久精免费| 香蕉av资源在线| 高清毛片免费看| 久久精品国产亚洲av香蕉五月| 欧美国产日韩亚洲一区| 久久精品久久久久久噜噜老黄 | 最新在线观看一区二区三区| 久久国产乱子免费精品| 校园春色视频在线观看| 久久久久久久久大av| 国产aⅴ精品一区二区三区波| 97超视频在线观看视频| 精品久久久久久久久久免费视频| 亚洲av免费在线观看| 午夜精品国产一区二区电影 | 亚洲av成人av| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 99热精品在线国产| 国产一区二区在线av高清观看| 亚洲丝袜综合中文字幕| 我要看日韩黄色一级片| 伊人久久精品亚洲午夜| 精品久久久久久久末码| 亚洲成人av在线免费| 国产成人影院久久av| 亚洲国产高清在线一区二区三| 18禁裸乳无遮挡免费网站照片| 三级经典国产精品| 亚洲aⅴ乱码一区二区在线播放| 国产成人一区二区在线| 免费人成视频x8x8入口观看| 小说图片视频综合网站| 99久久精品国产国产毛片| 身体一侧抽搐| 免费在线观看成人毛片| 亚洲美女黄片视频| 老司机福利观看| 国产伦精品一区二区三区视频9| 乱码一卡2卡4卡精品| 国产一区亚洲一区在线观看| av专区在线播放| 激情 狠狠 欧美| 特级一级黄色大片| 99国产精品一区二区蜜桃av| 高清午夜精品一区二区三区 | 国产欧美日韩精品一区二区| 九九热线精品视视频播放| 日韩欧美在线乱码| 免费看美女性在线毛片视频| 成人高潮视频无遮挡免费网站| 国产高清有码在线观看视频| 亚洲经典国产精华液单| 一级黄片播放器| 国产精品综合久久久久久久免费| 国产黄色视频一区二区在线观看 | 寂寞人妻少妇视频99o| 最近在线观看免费完整版| 国产高潮美女av| 国产成人aa在线观看| 国产乱人视频| 一进一出抽搐gif免费好疼| 亚洲四区av| 中文字幕av成人在线电影| 色视频www国产| 色在线成人网| 欧美高清性xxxxhd video| 免费电影在线观看免费观看| 国产色婷婷99| 中国国产av一级| 国内精品一区二区在线观看| 午夜福利在线观看吧| 国产一级毛片七仙女欲春2| 麻豆国产av国片精品| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚洲综合色惰| 看片在线看免费视频| 在线观看美女被高潮喷水网站| 亚洲av五月六月丁香网| 亚洲四区av| 欧美+亚洲+日韩+国产| 一级av片app| 菩萨蛮人人尽说江南好唐韦庄 | 成人av在线播放网站| 男女啪啪激烈高潮av片| 极品教师在线视频| 在线免费观看的www视频| 成人一区二区视频在线观看| 国产一区二区三区在线臀色熟女| 国产成人freesex在线 | 国产男靠女视频免费网站| 精品午夜福利视频在线观看一区| 日韩欧美三级三区| 赤兔流量卡办理| 91在线精品国自产拍蜜月| 变态另类成人亚洲欧美熟女| 精品欧美国产一区二区三| 22中文网久久字幕| 老司机午夜福利在线观看视频| 婷婷六月久久综合丁香| 国产欧美日韩精品一区二区| 免费大片18禁| 婷婷精品国产亚洲av| 高清毛片免费观看视频网站| 午夜福利高清视频| 久久99热6这里只有精品| 久久亚洲精品不卡| 99精品在免费线老司机午夜| 日本a在线网址| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| 深夜a级毛片| 午夜久久久久精精品| 久久精品影院6| 欧美+日韩+精品| 亚洲五月天丁香| 国产精品一区二区性色av| 麻豆av噜噜一区二区三区| 久久久成人免费电影| 成人美女网站在线观看视频| 美女xxoo啪啪120秒动态图| 国产白丝娇喘喷水9色精品| 久久九九热精品免费| 2021天堂中文幕一二区在线观| 中文字幕免费在线视频6| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 综合色丁香网| 欧美三级亚洲精品| 三级毛片av免费| 少妇丰满av| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 伦精品一区二区三区| 亚洲va在线va天堂va国产| 久久欧美精品欧美久久欧美| 亚洲国产精品国产精品| 淫秽高清视频在线观看| av天堂中文字幕网| 成人av在线播放网站| 亚洲成人精品中文字幕电影| av黄色大香蕉| 成年女人永久免费观看视频| 伊人久久精品亚洲午夜| 精品欧美国产一区二区三| 蜜臀久久99精品久久宅男| 国产av一区在线观看免费| 欧美一区二区国产精品久久精品| 久久久久国产网址| 国产淫片久久久久久久久| av国产免费在线观看| 国产综合懂色| 丰满乱子伦码专区| 亚洲av五月六月丁香网| 一进一出抽搐动态| 婷婷六月久久综合丁香| 午夜日韩欧美国产| 日日摸夜夜添夜夜爱| 老熟妇仑乱视频hdxx| 欧美极品一区二区三区四区| 99热只有精品国产| 国产午夜精品论理片| 美女内射精品一级片tv| 日本免费一区二区三区高清不卡| 特大巨黑吊av在线直播| 国产高清视频在线观看网站| 伦精品一区二区三区| 毛片女人毛片| av中文乱码字幕在线| 国产又黄又爽又无遮挡在线| 久久久精品欧美日韩精品| 欧美区成人在线视频| 夜夜夜夜夜久久久久| 亚洲一级一片aⅴ在线观看| 色5月婷婷丁香| 国产亚洲精品久久久com| 亚洲真实伦在线观看| 99热这里只有精品一区| 亚洲无线在线观看| 婷婷亚洲欧美| 99在线视频只有这里精品首页| 精华霜和精华液先用哪个| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 亚洲欧美精品自产自拍| 人妻久久中文字幕网| 国产一区二区激情短视频| 亚洲av二区三区四区| 久久精品国产亚洲网站| 日韩欧美三级三区| 色哟哟哟哟哟哟| 男人狂女人下面高潮的视频| 国产国拍精品亚洲av在线观看| 老熟妇乱子伦视频在线观看| 精品无人区乱码1区二区| 久久中文看片网| 不卡视频在线观看欧美| 久99久视频精品免费| 日本 av在线| 97超碰精品成人国产| 禁无遮挡网站| 精品人妻视频免费看| 国产色婷婷99| 国产精品久久久久久av不卡| av在线观看视频网站免费| 精品一区二区三区av网在线观看| 欧美激情在线99| ponron亚洲| 国产乱人偷精品视频| 亚洲av一区综合| 国产高清视频在线播放一区| 日本在线视频免费播放| 狂野欧美激情性xxxx在线观看| av.在线天堂| 午夜福利成人在线免费观看| 精品久久久久久久久av| 婷婷精品国产亚洲av| 99热6这里只有精品| 久久婷婷人人爽人人干人人爱| 小蜜桃在线观看免费完整版高清| 亚洲高清免费不卡视频| 午夜影院日韩av| 国产精品电影一区二区三区| 欧美xxxx黑人xx丫x性爽| av中文乱码字幕在线| 国产色婷婷99| 18禁在线无遮挡免费观看视频 | 国产av一区在线观看免费| 少妇裸体淫交视频免费看高清| 精品一区二区三区视频在线观看免费| 久久草成人影院| 女生性感内裤真人,穿戴方法视频| 国产精品亚洲一级av第二区| 免费看av在线观看网站| 变态另类丝袜制服| 大香蕉久久网| 国产精品一二三区在线看|