• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *

    2018-07-06 10:02:00HuaiyuCheng程懷玉XinpingLong龍新平YunzhiLiang梁蘊致YunLong龍云BinJi季斌
    關(guān)鍵詞:龍云新平

    Huai-yu Cheng (程懷玉), Xin-ping Long (龍新平), Yun-zhi Liang (梁蘊致), Yun Long (龍云),Bin Ji (季斌)

    1. State Key LaboratoryofWaterResourcesandHydropowerEngineeringScience,SchoolofPowerand Mechanical Engineering, Wuhan University, Wuhan 430072, China

    2. Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China

    3. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China

    The cavitation induced by the low pressure in the core of the tip-leakage vortex (TLV) is prevalent in axial hydraulic machines[1], which is often accompanied with vibration, instability and performance loss[2-6]. Therefore, a better understanding of this unsteady multiphase flow phenomenon is urgently needed.

    In the past decades, many experimental investigations were conducted to obtain an insight on the behaviors of the TLV[7-9]. Lakshminarayana et al.[10]measured the components of the relative velocity in the tip region of an axial flow compressor. Recently, a series of PIV measurements and flow visualizations for the tip-leakage cavitating flow were conducted by Dreyer et al.[11]The structure and the trajectory of a TLV induced by a NACA0009 hydrofoil of different confinements and flow parameters were measured and investigated in detail. The experimental data indicated that the trajectory and the intensity of the TLV were significantly influenced by the wall proximity. At the same time, quite a number of numerical simulations were also conducted. You et al.[12]numerically studied the incompressible flow in a rotor-tip clearance and pointed out that the velocity gradients in the vicinity of the gap were responsible for the viscous losses in the gap. Based on the numerical results, Guo et al.[13]analyzed the influence of various gap widths on the evolution of the TLV and suggested that the tipseparation vortex (TSV) induced by the flow separation might affect both TLV’s shape and intensity.Wang et al.[14]reviewed the numerical models of various cavitating flows around hydrofoils and discussed the TLV cavitation in detail. With a non-linear turbulence model, the tip-leakage flow around a NACA0009 foil with various gap sizes was simulated.They suggested that it was an important but challenging task to predict the TLV cavitation with a high accuracy. The remarkable progress of the TLV cavitation suggests that the numerical simulation is a promising method in studying the TLV cavitation.However, little attention was paid on the verification and validation (V&V) of the numerical results[15,16],especially for the cavitation simulations. Long et al.[17]studied the feasibility of seven uncertainty estimators in the simulations of the cavitating flow around a Clark-Y hydrofoil and suggested that the factor of safety (FS) and its modified version (FS1) and grid convergence index (GCI) showed a better feasibility and applicability to be used for the cavitating flow around a hydrofoil. Their work also indicated the importance of the V&V in a numerical investigation of cavitation. However, due to the special flow characteristics of the TLV cavitation, the V&V investigations of the tip-leakage cavitating flow were few.

    Inspired by the previous studies, the present paper investigates the TLV cavitation numerically with the SST-CC turbulence model and the VIZGB cavitation model[18].The numerical results are compared with the available experimental data[11]and checked carefully using the V&V procedures. The feasibility and the applicability of seven uncertainty estimators, including the correction factor (CF)method, the FS and the FS1, the GCI and its modified versions (the GCI-OR, the GCI-LN, and the GCI-R)in the simulation of the TLV cavitation are studied in the quantitative evaluations of the numerical errors.Finally, with the numerical results, the influence of the cavitation on the behaviors of the TLV is discussed.

    Fig. 1 Computational domain and boundary conditions

    Figure 1 shows the computational domain and the boundary conditions.C= 0.1m is the chord of the hydrofoil. The gap size is set as 0.1Cand the attack angle α is 10°. The inlet static pressure is 105Pa and the outlet velocity is set to 10 m/s. Three sets of systematically refined meshes are generated with the same topology and the constant refinement ratio of. Detailed parameters of these meshes are listed in Table 1. Figure 2 shows a typical configuration of the computational mesh around the hydrofoil. For these meshes, the first layer thickness around the foil is set as a constant. The cavitation simulations are initialized from the steady state results using fully wetted models with the SST-CC turbulence model. The VIZGB model combined with the unsteady solver is then switched on for the unsteady cavitation flow simulations.

    Fig. 2 Typical configuration of the computational mesh around hydrofoil

    Fig. 3 (Color online) Time-averaged predicted TLV cavitations with M1-M3

    Table 1 Mesh parameters

    In the present paper, qualitative comparisons between the numerical results and the experimental data are made. Figure 3 shows the time-averaged TLV cavitation (iso-surface ofvα with the value of 0.1)predicted with M1-M3, in which the influence of the mesh resolution on the numerical results can be observed clearly. For M1, M2, with a quite fine resolution in the vicinity of the gap, the development of the TLV cavitation is well predicted. The length of the predicted TLV cavitation is much shorter with M3. The reasonable agreement between the predicted TLV cavitation with M1, M2 suggests that M2 is sufficient to capture the characteristics of the tipleakage cavitating flow and a further refinement is not necessary. Figure 4 shows the distributions of the time-averaged streamwise velocity on the measured plane, / =1x C, in which the numerical results are obtained with M2. Moreover, the numerical result of Guo et al.[18]is also shown. Although the streamwise velocity in the core of the TLV obtained with M2 is underestimated slightly, mainly due to the lack of the SST-CC model, the location of the TLV core is predicted better than the result of Guo et al.[18]. The TLV cavitation predicted with M2 (displayed by the iso-surface ofvα with the value of 0.1) is compared with the experimental picture[11]in Fig. 5. A quite good agreement between the numerical and experimental results is obtained. The satisfactory agreement between the numerical and experimental results suggests that the numerical data obtained with M2 enjoy a reasonable accuracy.

    Fig. 4 (Color online) Comparison of distributions of timeaveraged streamwise velocity

    Fig. 5 (Color online) Comparison of the time-averaged numerical and experimental TLV cavitations

    Fig. 6 (Color online) Locations of monitoring points

    It should be noted that the comparisons between numerical and experimental results conducted above are just qualitative. Therefore, the V&V procedures are utilized to provide a quantitative error estimation of the numerical results obtained with M2. In the following discussion, the time-averaged dimensionless velocityVand pressurePat three monitoring points(see Fig. 6) obtained with M1-M3 are used for the V&V procedures. All time-averaged data are obtained after at least 10 000 time steps, which is sufficient for a statistical analysis in the current case. As mentioned above, the feasibility and the applicability of uncertainty estimators are still an open question for the TLV cavitation simulation. Therefore, in the present paper,all seven uncertainty estimators are used to estimate the numerical errors comprehensively. A detailed introduction of these uncertainty estimators can be found in the publication by Long et al.[17], Xing and Stern[15]. Table 2 shows the uncertainty of the time-averaged velocity and pressure at three monitoring points, in which13-VVand13-PPrepresent the uncertainty of the time-averaged velocity and pressure at Point 1-Point 3, respectively. It can be found that the uncertainty estimated by most of these methods is quite low, except FS1, one of the modified version of FS. It suggests that the influence of the mesh resolution on the numerical results is not so apparent and a further refinement for M2 is not necessary. Table 3 shows the numerical errors and the total uncertainty of the velocity at the monitoring points, in which13-EErepresent the difference between the numerical and experimental results.Uv1-Uv3represent the total uncertainty, which consists of two parts of uncertainty, the numerical uncertainty listed in Table 2 and the experimental uncertainty. In the current paper, the experimental uncertainty of the time-averaged velocity is estimated as 2.5% of the inlet velocity[11]. It should be noted that because the measured pressure data are not available,only the numerical errors and the total uncertainty of the time-averaged velocity at the monitoring points are listed in Table 3. According to Long et al.[17]and Xing and Stern[15], the validation is achieved at theTable 3 shows that the validation can be achieved only at Point 2 and Point 3 with FS1,at the level of 0.3206 and 0.5913, respectively. The lack of the SST-CC model, which is a kind of RANS model essentially, should be responsible for that problem. Although the location of the vortex core is well predicted by the SST-CC model, the velocity in the vortex core is underestimated, which induces great numerical errors and further prevents the validation.

    Table 2 Uncertainty of time-averaged velocity and pressure

    Overall, the numerical results obtained with M2 provide a satisfactory prediction of the gross characteristics of the TLV cavitation with a reasonable accuracy and a further mesh refinement cannot reduce the numerical errors significantly due to the lack of the RANS model, but might induce a huge increase of the cost of the computational resources. Therefore,M2 is a good choice for a RANS simulation with a balance between accuracy and computational cost,especially for the investigation of the TLV trajectory.

    Table 3 Numerical errors and total uncertainty of velocity

    Fig. 7 (Color online) Influence of cavitation on the fusion of TLV and TSV

    Fig. 8 (Color online) Influence of cavitation on TLV trajectory

    Cavitation will influence the behavior of TLV. In Fig. 7, the fusion locations of the TLV and the TSV in both cases are marked, which indicates that cavitation tends to accelerate the fusion of the TLV and the TSV slightly. It can be attributed to the narrower passageway in the case with cavitation, leading to a higher velocity component from the pressure side to the suction side, as is favorable to the fusion of the TLV and the TSV. Figure 8 further reveals the influence of the cavitation on the TLV trajectory. Compared with the case of the non-cavitating flow, the TLV trajectory in the case with cavitation sees a lower pitchwise location and is closer to the gap wall, which may induce a more serious cavitation erosion.

    [1] You D., Wang M., Mittal R. A methodology for high performance computation of fully inhomogeneous turbulent flows [J].International Journal for Numerical Methods in Fluids, 2007, 53(6): 947-968.

    [2] Wang Y., Xu C., Wu X. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface [J].Physical Review Fluids, 2017, 2(8): 084303.

    [3] Wu Q., Huang B., Wang G. et al. The transient characteristics of cloud cavitating flow over a flexible hydrofoil [J].International Journal of Multiphase Flow, 2018, 99:162-173.

    [4] Long X., Cheng H., Ji B. et al. Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil [J].International Journal of Multiphase Flow, 2018, 100:41-56.

    [5] Cui P., Zhang A. M., Wang S. P. et al. Ice breaking by a collapsing bubble [J].Journal of Fluid Mechanics, 2018,841: 287-309.

    [6] Roussopoulos K., Monkewitz P. A. Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model Kaplan turbine blade [J].Flow Turbulence and Combustion, 2000, 64(2): 119-144.

    [7] Goto A. Three-dimensional flow and mixing in an axialflow compressor with different rotor tip clearances [J].Journal of Turbomachinery, 1992, 114(3): 675-685.

    [8] Farrell K. J., Billet M. L. A correlation of leakage vortex cavitation in axial-flow pumps [J].Journal of Fluids Engineering, 1994, 116(3): 551-557.

    [9] Miorini R. L., Wu H., Katz J. The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump [J].Journal of Turbomachinery, 2012, 134(3):031018.

    [10] Lakshminarayana B., Zaccaria M., Marathe B. The structure of tip clearance flow in axial-flow compressors [J].Journal of Turbomachinery, 1995, 117(3): 336-347.

    [11] Dreyer M., Decaix J., Munch-Alligne C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J].Experiments in Fluids, 2014, 55(11): 1849.[12] You D., Wang M., Moin P. et al. Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade [J].Physics of Fluids, 2006, 18(10): 105102.

    [13] Guo Q., Zhou L., Wang Z. Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil [J].Renewable Energy, 2016, 99:390-397.

    [14] Wang B. L., Liu Z. H., Li H. Y. et al. On the numerical simulations of vortical cavitating flows around various hydrofoils [J].Journal of Hydrodynamics, 2017, 29(6):926-938.

    [15] Xing T., Stern F. Factors of safety for Richardson extrapolation [J].Journal of Fluids Engineering, 2010, 132(6):061403.

    [16] Roache P. J. Discussion: “Factors of safety for Richardson extrapolation” (Xing, T., and Stern, F., 2010, ASME J.Fluids Eng., 132, p. 061403) [J].Journal of Fluids Engineering, 2011, 133(11): 115501.

    [17] Long Y., Long X. P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J].Journal of Hydrodynamics,2017, 29(4): 610-620.

    [18] Guo Q., Zhou L., Wang Z. et al. Numerical simulation for the tip leakage vortex cavitation [J].Ocean Engineering,2018, 151: 71-81.

    猜你喜歡
    龍云新平
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    出滇抗戰(zhàn)時期龍云對滇軍的治理研究
    創(chuàng)造(2020年6期)2020-11-20 05:58:42
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull *
    你總是給我力量
    Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES *
    Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil*
    国产精品一区二区三区四区久久| 亚洲精品乱码久久久v下载方式 | 国产精品乱码一区二三区的特点| 2021天堂中文幕一二区在线观| 国产黄a三级三级三级人| 中亚洲国语对白在线视频| 成人鲁丝片一二三区免费| 可以在线观看毛片的网站| 白带黄色成豆腐渣| 久久这里只有精品中国| cao死你这个sao货| 欧美另类亚洲清纯唯美| 757午夜福利合集在线观看| 国产av在哪里看| 亚洲国产欧洲综合997久久,| 好男人在线观看高清免费视频| 亚洲第一电影网av| av福利片在线观看| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 国产亚洲欧美98| 亚洲av中文字字幕乱码综合| 97碰自拍视频| 欧美性猛交╳xxx乱大交人| 在线免费观看不下载黄p国产 | 精品国产乱码久久久久久男人| 女警被强在线播放| 国产亚洲精品av在线| 亚洲 国产 在线| 国产一区二区在线av高清观看| 欧美乱妇无乱码| 国产综合懂色| 国内精品美女久久久久久| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 亚洲在线观看片| 精品国产亚洲在线| 免费电影在线观看免费观看| 国模一区二区三区四区视频 | 亚洲精品美女久久av网站| 午夜福利视频1000在线观看| 中文字幕久久专区| 好男人电影高清在线观看| 国产午夜精品久久久久久| 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 午夜福利在线观看免费完整高清在 | 91九色精品人成在线观看| 亚洲电影在线观看av| 国产精品,欧美在线| 又大又爽又粗| 国产探花在线观看一区二区| 此物有八面人人有两片| 观看美女的网站| 美女高潮的动态| 好看av亚洲va欧美ⅴa在| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 观看美女的网站| 久久草成人影院| 亚洲专区字幕在线| 热99在线观看视频| 亚洲五月婷婷丁香| 波多野结衣巨乳人妻| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美日韩东京热| 精品久久久久久,| 黄频高清免费视频| 狂野欧美激情性xxxx| 日韩国内少妇激情av| 在线视频色国产色| 国产精品女同一区二区软件 | 香蕉av资源在线| 这个男人来自地球电影免费观看| 成人一区二区视频在线观看| 日本与韩国留学比较| 午夜亚洲福利在线播放| 日本在线视频免费播放| 欧美一区二区精品小视频在线| 国产一区二区在线av高清观看| 可以在线观看的亚洲视频| 天堂av国产一区二区熟女人妻| 日本免费一区二区三区高清不卡| 偷拍熟女少妇极品色| 久久久久国内视频| 久久伊人香网站| 亚洲自偷自拍图片 自拍| 三级男女做爰猛烈吃奶摸视频| 久久久成人免费电影| 免费看十八禁软件| 国产1区2区3区精品| 嫩草影视91久久| 最近视频中文字幕2019在线8| 国内精品久久久久久久电影| 国产免费男女视频| 国产私拍福利视频在线观看| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 久久亚洲精品不卡| 精品欧美国产一区二区三| 99热精品在线国产| 在线视频色国产色| 免费观看的影片在线观看| 脱女人内裤的视频| 午夜福利18| 亚洲精品中文字幕一二三四区| 国产精品久久电影中文字幕| 亚洲一区二区三区色噜噜| 亚洲精品粉嫩美女一区| 婷婷丁香在线五月| 在线观看66精品国产| 国产成年人精品一区二区| 久99久视频精品免费| 人人妻人人看人人澡| 最好的美女福利视频网| 日本 欧美在线| 日本一本二区三区精品| 人人妻,人人澡人人爽秒播| 在线观看美女被高潮喷水网站 | 亚洲精华国产精华精| 国产人伦9x9x在线观看| 国内揄拍国产精品人妻在线| 亚洲国产欧美一区二区综合| 夜夜躁狠狠躁天天躁| 精品电影一区二区在线| 偷拍熟女少妇极品色| 校园春色视频在线观看| 久久香蕉精品热| 床上黄色一级片| 精品无人区乱码1区二区| 日韩国内少妇激情av| 婷婷六月久久综合丁香| 欧美日韩福利视频一区二区| 成人国产综合亚洲| 99在线人妻在线中文字幕| aaaaa片日本免费| 99国产精品一区二区三区| 国产高清激情床上av| 又大又爽又粗| 国产av麻豆久久久久久久| 亚洲自拍偷在线| 夜夜爽天天搞| 99国产精品99久久久久| 亚洲美女视频黄频| 女警被强在线播放| 婷婷精品国产亚洲av| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 精品一区二区三区视频在线观看免费| 我要搜黄色片| 国内精品久久久久精免费| 男人舔奶头视频| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 人人妻,人人澡人人爽秒播| 欧美在线一区亚洲| 中文字幕高清在线视频| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 亚洲国产日韩欧美精品在线观看 | 最近最新免费中文字幕在线| 国产精品野战在线观看| 国产不卡一卡二| 亚洲成av人片免费观看| 久久久久国产精品人妻aⅴ院| 精品乱码久久久久久99久播| www国产在线视频色| 国产精品98久久久久久宅男小说| 久久久精品欧美日韩精品| 亚洲男人的天堂狠狠| 动漫黄色视频在线观看| 舔av片在线| 美女扒开内裤让男人捅视频| 好男人电影高清在线观看| 国产成人精品久久二区二区91| 亚洲天堂国产精品一区在线| 国产乱人视频| 精品久久久久久久毛片微露脸| 老司机午夜十八禁免费视频| 亚洲人成网站在线播放欧美日韩| 我要搜黄色片| 丁香六月欧美| 久久久成人免费电影| 操出白浆在线播放| 日本成人三级电影网站| 在线免费观看的www视频| 99精品久久久久人妻精品| 亚洲欧美日韩东京热| 美女高潮喷水抽搐中文字幕| 午夜福利成人在线免费观看| 18禁观看日本| av视频在线观看入口| 亚洲av成人精品一区久久| 国产野战对白在线观看| 性色avwww在线观看| 9191精品国产免费久久| 99久久精品热视频| 免费看日本二区| 成人特级黄色片久久久久久久| 久久久精品欧美日韩精品| 国内久久婷婷六月综合欲色啪| 久久久久久九九精品二区国产| 亚洲七黄色美女视频| 两个人看的免费小视频| 亚洲片人在线观看| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合一区二区三区| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 91字幕亚洲| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| www日本黄色视频网| tocl精华| 黑人巨大精品欧美一区二区mp4| 最近视频中文字幕2019在线8| 国产人伦9x9x在线观看| 美女午夜性视频免费| 国产欧美日韩一区二区精品| 精品不卡国产一区二区三区| а√天堂www在线а√下载| 看免费av毛片| 国产精品一及| 亚洲男人的天堂狠狠| 国产乱人视频| 真人一进一出gif抽搐免费| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久久久99蜜臀| 欧美成人免费av一区二区三区| 国内精品美女久久久久久| 国产成人精品久久二区二区91| 可以在线观看毛片的网站| 最新中文字幕久久久久 | 久久精品91蜜桃| 午夜亚洲福利在线播放| 在线国产一区二区在线| 十八禁网站免费在线| 久久草成人影院| 午夜视频精品福利| 国产亚洲精品久久久com| 久久精品亚洲精品国产色婷小说| 国产一区二区激情短视频| 成人18禁在线播放| 五月伊人婷婷丁香| 97超级碰碰碰精品色视频在线观看| av天堂中文字幕网| 日韩欧美免费精品| 麻豆一二三区av精品| 国产精品久久久久久精品电影| 精品一区二区三区四区五区乱码| 一区二区三区高清视频在线| a在线观看视频网站| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 天堂网av新在线| 在线观看一区二区三区| 亚洲一区高清亚洲精品| 日韩欧美国产一区二区入口| 在线观看日韩欧美| 国产一区二区三区视频了| 色播亚洲综合网| 国产亚洲精品av在线| 波多野结衣高清作品| 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 熟女人妻精品中文字幕| 日本黄大片高清| 99久久无色码亚洲精品果冻| 高潮久久久久久久久久久不卡| 神马国产精品三级电影在线观看| 久久久久久久午夜电影| 国产精品久久久久久精品电影| 又大又爽又粗| 窝窝影院91人妻| 婷婷精品国产亚洲av在线| 偷拍熟女少妇极品色| 亚洲人成伊人成综合网2020| 成人18禁在线播放| 在线a可以看的网站| 国产精品久久久久久精品电影| 久久九九热精品免费| 欧美一级a爱片免费观看看| 悠悠久久av| 国产高清视频在线观看网站| 别揉我奶头~嗯~啊~动态视频| 国产伦精品一区二区三区四那| 国产爱豆传媒在线观看| 91av网站免费观看| 欧美日韩亚洲国产一区二区在线观看| 免费看美女性在线毛片视频| 免费在线观看成人毛片| 成人国产综合亚洲| 亚洲精品中文字幕一二三四区| 一级毛片精品| 亚洲精品国产精品久久久不卡| 久久午夜综合久久蜜桃| 男女做爰动态图高潮gif福利片| 夜夜夜夜夜久久久久| 成人av一区二区三区在线看| 久9热在线精品视频| 久久香蕉精品热| 亚洲七黄色美女视频| 91在线观看av| 老汉色av国产亚洲站长工具| 精品久久蜜臀av无| 国产精品综合久久久久久久免费| 香蕉国产在线看| 人人妻人人看人人澡| av欧美777| 欧美丝袜亚洲另类 | 久久中文看片网| 国产成人啪精品午夜网站| 精品人妻1区二区| 一级作爱视频免费观看| 日韩欧美 国产精品| 久久久久国内视频| 国产亚洲精品久久久久久毛片| 啪啪无遮挡十八禁网站| 老司机在亚洲福利影院| 色播亚洲综合网| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美免费精品| 国产精品99久久久久久久久| 免费看美女性在线毛片视频| 欧美乱色亚洲激情| 国内毛片毛片毛片毛片毛片| 香蕉久久夜色| 在线观看美女被高潮喷水网站 | 欧美黄色淫秽网站| 亚洲美女黄片视频| 免费看日本二区| 国产美女午夜福利| 男人舔女人的私密视频| 日韩有码中文字幕| 伊人久久大香线蕉亚洲五| 欧美色视频一区免费| 亚洲人成网站在线播放欧美日韩| 嫁个100分男人电影在线观看| 成年版毛片免费区| 国产精品久久视频播放| 成年版毛片免费区| 午夜福利在线观看吧| 国语自产精品视频在线第100页| 亚洲欧美日韩卡通动漫| 欧美日韩精品网址| 18美女黄网站色大片免费观看| 国产黄片美女视频| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 黄频高清免费视频| 色老头精品视频在线观看| 18禁美女被吸乳视频| 欧美乱色亚洲激情| 两个人视频免费观看高清| 超碰成人久久| 日日干狠狠操夜夜爽| 不卡av一区二区三区| 日韩欧美免费精品| 岛国在线观看网站| 国产精品久久久久久人妻精品电影| 国产亚洲精品一区二区www| 国产精品爽爽va在线观看网站| 美女被艹到高潮喷水动态| 天堂√8在线中文| 欧美一级a爱片免费观看看| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线| 久久国产精品人妻蜜桃| 国产高清视频在线观看网站| 国产欧美日韩精品一区二区| 麻豆国产97在线/欧美| 窝窝影院91人妻| 国产一区二区激情短视频| 国产精品野战在线观看| 成在线人永久免费视频| 91在线观看av| 亚洲七黄色美女视频| 国内精品一区二区在线观看| 久久天躁狠狠躁夜夜2o2o| 在线观看66精品国产| 亚洲精品久久国产高清桃花| 国产99白浆流出| 男人和女人高潮做爰伦理| 国产99白浆流出| 久9热在线精品视频| 国产高潮美女av| 国产淫片久久久久久久久 | 亚洲av中文字字幕乱码综合| 天天添夜夜摸| 搞女人的毛片| 亚洲五月天丁香| 黑人巨大精品欧美一区二区mp4| 性色avwww在线观看| 成人特级黄色片久久久久久久| 国产亚洲精品久久久com| 亚洲一区二区三区色噜噜| 久9热在线精品视频| 久久久久久九九精品二区国产| 一进一出抽搐动态| 国产三级中文精品| 首页视频小说图片口味搜索| 在线观看一区二区三区| 最近最新中文字幕大全电影3| 男女床上黄色一级片免费看| 亚洲av中文字字幕乱码综合| 免费看美女性在线毛片视频| 亚洲av五月六月丁香网| www.www免费av| 亚洲国产高清在线一区二区三| 亚洲成av人片免费观看| 好男人电影高清在线观看| 亚洲欧美激情综合另类| 国产一区二区在线观看日韩 | 国产1区2区3区精品| 嫩草影院精品99| 熟妇人妻久久中文字幕3abv| 欧美在线一区亚洲| 夜夜看夜夜爽夜夜摸| 99在线视频只有这里精品首页| 日本免费一区二区三区高清不卡| 美女高潮的动态| 国产一区在线观看成人免费| 亚洲欧洲精品一区二区精品久久久| 国产精品一及| 国产激情偷乱视频一区二区| 亚洲九九香蕉| 老司机在亚洲福利影院| 亚洲成av人片免费观看| 国产精品影院久久| 欧美成人免费av一区二区三区| 国产精品av视频在线免费观看| 真实男女啪啪啪动态图| 国产精品日韩av在线免费观看| 亚洲国产日韩欧美精品在线观看 | 色综合欧美亚洲国产小说| 九九久久精品国产亚洲av麻豆 | 亚洲第一电影网av| 岛国视频午夜一区免费看| 免费观看精品视频网站| 舔av片在线| 757午夜福利合集在线观看| 精品久久久久久久末码| av在线蜜桃| bbb黄色大片| 男女午夜视频在线观看| 亚洲avbb在线观看| 亚洲,欧美精品.| 国产精品野战在线观看| 亚洲欧美一区二区三区黑人| 精品不卡国产一区二区三区| 在线观看日韩欧美| 少妇人妻一区二区三区视频| 色尼玛亚洲综合影院| www.999成人在线观看| 欧美高清成人免费视频www| 亚洲av第一区精品v没综合| 在线观看66精品国产| 1024手机看黄色片| 国产野战对白在线观看| 亚洲第一电影网av| 国产午夜精品久久久久久| 国产精品亚洲美女久久久| 69av精品久久久久久| 亚洲电影在线观看av| 可以在线观看的亚洲视频| 亚洲自拍偷在线| 国产精品永久免费网站| 国产精品九九99| 又黄又粗又硬又大视频| 麻豆av在线久日| 日韩欧美 国产精品| 色视频www国产| 久久婷婷人人爽人人干人人爱| 精品国产乱子伦一区二区三区| 亚洲av电影在线进入| 日韩精品中文字幕看吧| 后天国语完整版免费观看| 久久欧美精品欧美久久欧美| 午夜成年电影在线免费观看| 亚洲精品美女久久av网站| 一本综合久久免费| 这个男人来自地球电影免费观看| 嫩草影视91久久| 亚洲av电影不卡..在线观看| 亚洲18禁久久av| 色综合婷婷激情| 亚洲七黄色美女视频| 日韩中文字幕欧美一区二区| 热99re8久久精品国产| 一a级毛片在线观看| 久久久久久久久免费视频了| 亚洲狠狠婷婷综合久久图片| 老熟妇乱子伦视频在线观看| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久,| 亚洲天堂国产精品一区在线| 国产一区二区三区在线臀色熟女| 欧美日韩精品网址| 熟女人妻精品中文字幕| 最新中文字幕久久久久 | 色综合亚洲欧美另类图片| 国产av麻豆久久久久久久| а√天堂www在线а√下载| 亚洲国产高清在线一区二区三| 老司机午夜十八禁免费视频| 国产精品久久久久久精品电影| 麻豆一二三区av精品| 欧美zozozo另类| 国产精品久久久久久久电影 | 91九色精品人成在线观看| 午夜福利在线观看吧| 日韩人妻高清精品专区| 亚洲国产中文字幕在线视频| 国产三级黄色录像| 欧美日韩精品网址| 女警被强在线播放| 国产高清激情床上av| 免费一级毛片在线播放高清视频| 69av精品久久久久久| 成人av一区二区三区在线看| 亚洲av电影不卡..在线观看| 麻豆国产97在线/欧美| 国产精品国产高清国产av| 午夜精品在线福利| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区av网在线观看| 香蕉丝袜av| 精品不卡国产一区二区三区| 99久久精品国产亚洲精品| 男女做爰动态图高潮gif福利片| 国产伦精品一区二区三区四那| 91久久精品国产一区二区成人 | 国产一区二区在线观看日韩 | 香蕉久久夜色| 黄片大片在线免费观看| 午夜免费成人在线视频| 天堂影院成人在线观看| or卡值多少钱| 在线a可以看的网站| 亚洲人成伊人成综合网2020| 香蕉av资源在线| 亚洲国产日韩欧美精品在线观看 | 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 亚洲国产高清在线一区二区三| 国产69精品久久久久777片 | 好看av亚洲va欧美ⅴa在| 久久久久九九精品影院| 精品久久久久久,| 国产成人av激情在线播放| 日本a在线网址| 我的老师免费观看完整版| 色av中文字幕| 久久久久久久午夜电影| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 亚洲,欧美精品.| 亚洲自偷自拍图片 自拍| 欧美色视频一区免费| 色噜噜av男人的天堂激情| 国产1区2区3区精品| 最近最新免费中文字幕在线| 精品人妻1区二区| 国产精品永久免费网站| 极品教师在线免费播放| 不卡一级毛片| 校园春色视频在线观看| 欧美性猛交黑人性爽| 三级男女做爰猛烈吃奶摸视频| av片东京热男人的天堂| 精品乱码久久久久久99久播| 国产精品乱码一区二三区的特点| 亚洲人成电影免费在线| 久久婷婷人人爽人人干人人爱| 国产亚洲精品av在线| 国产亚洲精品久久久com| www日本黄色视频网| 看片在线看免费视频| 这个男人来自地球电影免费观看| 久久国产乱子伦精品免费另类| 天堂网av新在线| 一个人免费在线观看电影 | 国产精品 国内视频| 成人国产一区最新在线观看| 日韩欧美国产在线观看| 亚洲av日韩精品久久久久久密| 99国产精品一区二区三区| 这个男人来自地球电影免费观看| 亚洲自拍偷在线| 国产激情欧美一区二区| 18美女黄网站色大片免费观看| 村上凉子中文字幕在线| 高潮久久久久久久久久久不卡| 啪啪无遮挡十八禁网站| 国产男靠女视频免费网站| 日本一本二区三区精品| 久久久久久久精品吃奶| 成人国产一区最新在线观看| 最近最新中文字幕大全电影3| а√天堂www在线а√下载| 好男人电影高清在线观看| 观看免费一级毛片| 亚洲欧美日韩卡通动漫| 亚洲精品在线观看二区| 天堂网av新在线| 日本 欧美在线| 久久久国产欧美日韩av| 日日摸夜夜添夜夜添小说| 性色avwww在线观看| 欧美在线黄色| 欧美高清成人免费视频www| 午夜精品在线福利| 久久这里只有精品中国| 无限看片的www在线观看| 国产精品美女特级片免费视频播放器 |