• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *

    2018-07-06 10:02:00HuaiyuCheng程懷玉XinpingLong龍新平YunzhiLiang梁蘊致YunLong龍云BinJi季斌
    關(guān)鍵詞:龍云新平

    Huai-yu Cheng (程懷玉), Xin-ping Long (龍新平), Yun-zhi Liang (梁蘊致), Yun Long (龍云),Bin Ji (季斌)

    1. State Key LaboratoryofWaterResourcesandHydropowerEngineeringScience,SchoolofPowerand Mechanical Engineering, Wuhan University, Wuhan 430072, China

    2. Hubei Key Laboratory of Waterjet Theory and New Technology, Wuhan University, Wuhan 430072, China

    3. Science and Technology on Water Jet Propulsion Laboratory, Shanghai 200011, China

    The cavitation induced by the low pressure in the core of the tip-leakage vortex (TLV) is prevalent in axial hydraulic machines[1], which is often accompanied with vibration, instability and performance loss[2-6]. Therefore, a better understanding of this unsteady multiphase flow phenomenon is urgently needed.

    In the past decades, many experimental investigations were conducted to obtain an insight on the behaviors of the TLV[7-9]. Lakshminarayana et al.[10]measured the components of the relative velocity in the tip region of an axial flow compressor. Recently, a series of PIV measurements and flow visualizations for the tip-leakage cavitating flow were conducted by Dreyer et al.[11]The structure and the trajectory of a TLV induced by a NACA0009 hydrofoil of different confinements and flow parameters were measured and investigated in detail. The experimental data indicated that the trajectory and the intensity of the TLV were significantly influenced by the wall proximity. At the same time, quite a number of numerical simulations were also conducted. You et al.[12]numerically studied the incompressible flow in a rotor-tip clearance and pointed out that the velocity gradients in the vicinity of the gap were responsible for the viscous losses in the gap. Based on the numerical results, Guo et al.[13]analyzed the influence of various gap widths on the evolution of the TLV and suggested that the tipseparation vortex (TSV) induced by the flow separation might affect both TLV’s shape and intensity.Wang et al.[14]reviewed the numerical models of various cavitating flows around hydrofoils and discussed the TLV cavitation in detail. With a non-linear turbulence model, the tip-leakage flow around a NACA0009 foil with various gap sizes was simulated.They suggested that it was an important but challenging task to predict the TLV cavitation with a high accuracy. The remarkable progress of the TLV cavitation suggests that the numerical simulation is a promising method in studying the TLV cavitation.However, little attention was paid on the verification and validation (V&V) of the numerical results[15,16],especially for the cavitation simulations. Long et al.[17]studied the feasibility of seven uncertainty estimators in the simulations of the cavitating flow around a Clark-Y hydrofoil and suggested that the factor of safety (FS) and its modified version (FS1) and grid convergence index (GCI) showed a better feasibility and applicability to be used for the cavitating flow around a hydrofoil. Their work also indicated the importance of the V&V in a numerical investigation of cavitation. However, due to the special flow characteristics of the TLV cavitation, the V&V investigations of the tip-leakage cavitating flow were few.

    Inspired by the previous studies, the present paper investigates the TLV cavitation numerically with the SST-CC turbulence model and the VIZGB cavitation model[18].The numerical results are compared with the available experimental data[11]and checked carefully using the V&V procedures. The feasibility and the applicability of seven uncertainty estimators, including the correction factor (CF)method, the FS and the FS1, the GCI and its modified versions (the GCI-OR, the GCI-LN, and the GCI-R)in the simulation of the TLV cavitation are studied in the quantitative evaluations of the numerical errors.Finally, with the numerical results, the influence of the cavitation on the behaviors of the TLV is discussed.

    Fig. 1 Computational domain and boundary conditions

    Figure 1 shows the computational domain and the boundary conditions.C= 0.1m is the chord of the hydrofoil. The gap size is set as 0.1Cand the attack angle α is 10°. The inlet static pressure is 105Pa and the outlet velocity is set to 10 m/s. Three sets of systematically refined meshes are generated with the same topology and the constant refinement ratio of. Detailed parameters of these meshes are listed in Table 1. Figure 2 shows a typical configuration of the computational mesh around the hydrofoil. For these meshes, the first layer thickness around the foil is set as a constant. The cavitation simulations are initialized from the steady state results using fully wetted models with the SST-CC turbulence model. The VIZGB model combined with the unsteady solver is then switched on for the unsteady cavitation flow simulations.

    Fig. 2 Typical configuration of the computational mesh around hydrofoil

    Fig. 3 (Color online) Time-averaged predicted TLV cavitations with M1-M3

    Table 1 Mesh parameters

    In the present paper, qualitative comparisons between the numerical results and the experimental data are made. Figure 3 shows the time-averaged TLV cavitation (iso-surface ofvα with the value of 0.1)predicted with M1-M3, in which the influence of the mesh resolution on the numerical results can be observed clearly. For M1, M2, with a quite fine resolution in the vicinity of the gap, the development of the TLV cavitation is well predicted. The length of the predicted TLV cavitation is much shorter with M3. The reasonable agreement between the predicted TLV cavitation with M1, M2 suggests that M2 is sufficient to capture the characteristics of the tipleakage cavitating flow and a further refinement is not necessary. Figure 4 shows the distributions of the time-averaged streamwise velocity on the measured plane, / =1x C, in which the numerical results are obtained with M2. Moreover, the numerical result of Guo et al.[18]is also shown. Although the streamwise velocity in the core of the TLV obtained with M2 is underestimated slightly, mainly due to the lack of the SST-CC model, the location of the TLV core is predicted better than the result of Guo et al.[18]. The TLV cavitation predicted with M2 (displayed by the iso-surface ofvα with the value of 0.1) is compared with the experimental picture[11]in Fig. 5. A quite good agreement between the numerical and experimental results is obtained. The satisfactory agreement between the numerical and experimental results suggests that the numerical data obtained with M2 enjoy a reasonable accuracy.

    Fig. 4 (Color online) Comparison of distributions of timeaveraged streamwise velocity

    Fig. 5 (Color online) Comparison of the time-averaged numerical and experimental TLV cavitations

    Fig. 6 (Color online) Locations of monitoring points

    It should be noted that the comparisons between numerical and experimental results conducted above are just qualitative. Therefore, the V&V procedures are utilized to provide a quantitative error estimation of the numerical results obtained with M2. In the following discussion, the time-averaged dimensionless velocityVand pressurePat three monitoring points(see Fig. 6) obtained with M1-M3 are used for the V&V procedures. All time-averaged data are obtained after at least 10 000 time steps, which is sufficient for a statistical analysis in the current case. As mentioned above, the feasibility and the applicability of uncertainty estimators are still an open question for the TLV cavitation simulation. Therefore, in the present paper,all seven uncertainty estimators are used to estimate the numerical errors comprehensively. A detailed introduction of these uncertainty estimators can be found in the publication by Long et al.[17], Xing and Stern[15]. Table 2 shows the uncertainty of the time-averaged velocity and pressure at three monitoring points, in which13-VVand13-PPrepresent the uncertainty of the time-averaged velocity and pressure at Point 1-Point 3, respectively. It can be found that the uncertainty estimated by most of these methods is quite low, except FS1, one of the modified version of FS. It suggests that the influence of the mesh resolution on the numerical results is not so apparent and a further refinement for M2 is not necessary. Table 3 shows the numerical errors and the total uncertainty of the velocity at the monitoring points, in which13-EErepresent the difference between the numerical and experimental results.Uv1-Uv3represent the total uncertainty, which consists of two parts of uncertainty, the numerical uncertainty listed in Table 2 and the experimental uncertainty. In the current paper, the experimental uncertainty of the time-averaged velocity is estimated as 2.5% of the inlet velocity[11]. It should be noted that because the measured pressure data are not available,only the numerical errors and the total uncertainty of the time-averaged velocity at the monitoring points are listed in Table 3. According to Long et al.[17]and Xing and Stern[15], the validation is achieved at theTable 3 shows that the validation can be achieved only at Point 2 and Point 3 with FS1,at the level of 0.3206 and 0.5913, respectively. The lack of the SST-CC model, which is a kind of RANS model essentially, should be responsible for that problem. Although the location of the vortex core is well predicted by the SST-CC model, the velocity in the vortex core is underestimated, which induces great numerical errors and further prevents the validation.

    Table 2 Uncertainty of time-averaged velocity and pressure

    Overall, the numerical results obtained with M2 provide a satisfactory prediction of the gross characteristics of the TLV cavitation with a reasonable accuracy and a further mesh refinement cannot reduce the numerical errors significantly due to the lack of the RANS model, but might induce a huge increase of the cost of the computational resources. Therefore,M2 is a good choice for a RANS simulation with a balance between accuracy and computational cost,especially for the investigation of the TLV trajectory.

    Table 3 Numerical errors and total uncertainty of velocity

    Fig. 7 (Color online) Influence of cavitation on the fusion of TLV and TSV

    Fig. 8 (Color online) Influence of cavitation on TLV trajectory

    Cavitation will influence the behavior of TLV. In Fig. 7, the fusion locations of the TLV and the TSV in both cases are marked, which indicates that cavitation tends to accelerate the fusion of the TLV and the TSV slightly. It can be attributed to the narrower passageway in the case with cavitation, leading to a higher velocity component from the pressure side to the suction side, as is favorable to the fusion of the TLV and the TSV. Figure 8 further reveals the influence of the cavitation on the TLV trajectory. Compared with the case of the non-cavitating flow, the TLV trajectory in the case with cavitation sees a lower pitchwise location and is closer to the gap wall, which may induce a more serious cavitation erosion.

    [1] You D., Wang M., Mittal R. A methodology for high performance computation of fully inhomogeneous turbulent flows [J].International Journal for Numerical Methods in Fluids, 2007, 53(6): 947-968.

    [2] Wang Y., Xu C., Wu X. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface [J].Physical Review Fluids, 2017, 2(8): 084303.

    [3] Wu Q., Huang B., Wang G. et al. The transient characteristics of cloud cavitating flow over a flexible hydrofoil [J].International Journal of Multiphase Flow, 2018, 99:162-173.

    [4] Long X., Cheng H., Ji B. et al. Large eddy simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil [J].International Journal of Multiphase Flow, 2018, 100:41-56.

    [5] Cui P., Zhang A. M., Wang S. P. et al. Ice breaking by a collapsing bubble [J].Journal of Fluid Mechanics, 2018,841: 287-309.

    [6] Roussopoulos K., Monkewitz P. A. Measurements of tip vortex characteristics and the effect of an anti-cavitation lip on a model Kaplan turbine blade [J].Flow Turbulence and Combustion, 2000, 64(2): 119-144.

    [7] Goto A. Three-dimensional flow and mixing in an axialflow compressor with different rotor tip clearances [J].Journal of Turbomachinery, 1992, 114(3): 675-685.

    [8] Farrell K. J., Billet M. L. A correlation of leakage vortex cavitation in axial-flow pumps [J].Journal of Fluids Engineering, 1994, 116(3): 551-557.

    [9] Miorini R. L., Wu H., Katz J. The internal structure of the tip leakage vortex within the rotor of an axial waterjet pump [J].Journal of Turbomachinery, 2012, 134(3):031018.

    [10] Lakshminarayana B., Zaccaria M., Marathe B. The structure of tip clearance flow in axial-flow compressors [J].Journal of Turbomachinery, 1995, 117(3): 336-347.

    [11] Dreyer M., Decaix J., Munch-Alligne C. et al. Mind the gap: A new insight into the tip leakage vortex using stereo-PIV [J].Experiments in Fluids, 2014, 55(11): 1849.[12] You D., Wang M., Moin P. et al. Effects of tip-gap size on the tip-leakage flow in a turbomachinery cascade [J].Physics of Fluids, 2006, 18(10): 105102.

    [13] Guo Q., Zhou L., Wang Z. Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil [J].Renewable Energy, 2016, 99:390-397.

    [14] Wang B. L., Liu Z. H., Li H. Y. et al. On the numerical simulations of vortical cavitating flows around various hydrofoils [J].Journal of Hydrodynamics, 2017, 29(6):926-938.

    [15] Xing T., Stern F. Factors of safety for Richardson extrapolation [J].Journal of Fluids Engineering, 2010, 132(6):061403.

    [16] Roache P. J. Discussion: “Factors of safety for Richardson extrapolation” (Xing, T., and Stern, F., 2010, ASME J.Fluids Eng., 132, p. 061403) [J].Journal of Fluids Engineering, 2011, 133(11): 115501.

    [17] Long Y., Long X. P., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J].Journal of Hydrodynamics,2017, 29(4): 610-620.

    [18] Guo Q., Zhou L., Wang Z. et al. Numerical simulation for the tip leakage vortex cavitation [J].Ocean Engineering,2018, 151: 71-81.

    猜你喜歡
    龍云新平
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    出滇抗戰(zhàn)時期龍云對滇軍的治理研究
    創(chuàng)造(2020年6期)2020-11-20 05:58:42
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull *
    你總是給我力量
    Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES *
    Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil*
    午夜福利成人在线免费观看| a级毛片在线看网站| 两人在一起打扑克的视频| 午夜免费鲁丝| 国产精品亚洲一级av第二区| 久久精品国产亚洲av香蕉五月| 国产亚洲精品久久久久5区| 午夜老司机福利片| 久久精品国产综合久久久| 老汉色∧v一级毛片| 国产欧美日韩一区二区三| 日韩av在线大香蕉| 欧美国产日韩亚洲一区| 变态另类成人亚洲欧美熟女| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av高清一级| 两人在一起打扑克的视频| 亚洲国产中文字幕在线视频| 亚洲av五月六月丁香网| 久久99热这里只有精品18| 亚洲av熟女| 国产精品亚洲av一区麻豆| 国产亚洲精品综合一区在线观看 | 日韩成人在线观看一区二区三区| 国产精品av久久久久免费| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 久久香蕉精品热| 婷婷六月久久综合丁香| 制服丝袜大香蕉在线| 欧美色欧美亚洲另类二区| 一级毛片高清免费大全| 女人高潮潮喷娇喘18禁视频| 99国产综合亚洲精品| 午夜老司机福利片| av电影中文网址| 亚洲精品一区av在线观看| a级毛片a级免费在线| 国产麻豆成人av免费视频| 可以在线观看毛片的网站| 麻豆久久精品国产亚洲av| 欧美黄色片欧美黄色片| 禁无遮挡网站| 欧美大码av| 亚洲五月色婷婷综合| 男人舔女人下体高潮全视频| 老鸭窝网址在线观看| 成人三级做爰电影| 久热爱精品视频在线9| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 成年免费大片在线观看| 女性被躁到高潮视频| 巨乳人妻的诱惑在线观看| 搡老妇女老女人老熟妇| 成人18禁在线播放| 国产99白浆流出| 午夜免费观看网址| 欧美乱妇无乱码| 亚洲在线自拍视频| 嫩草影视91久久| 90打野战视频偷拍视频| 久久久国产成人精品二区| 香蕉久久夜色| 在线视频色国产色| 精品久久久久久久末码| 久久国产精品人妻蜜桃| 国内少妇人妻偷人精品xxx网站 | 宅男免费午夜| 久久久久九九精品影院| 国产99久久九九免费精品| 每晚都被弄得嗷嗷叫到高潮| 欧美性猛交黑人性爽| 99久久国产精品久久久| 天天一区二区日本电影三级| 久热这里只有精品99| 久久精品91无色码中文字幕| 国产精品一区二区免费欧美| 欧美一区二区精品小视频在线| 欧美激情极品国产一区二区三区| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 日韩精品免费视频一区二区三区| 老鸭窝网址在线观看| 亚洲第一电影网av| 悠悠久久av| 女生性感内裤真人,穿戴方法视频| 可以在线观看的亚洲视频| 久久精品91蜜桃| 午夜免费成人在线视频| 国产成人精品久久二区二区91| 国产激情久久老熟女| 色婷婷久久久亚洲欧美| 久久精品国产亚洲av香蕉五月| 1024视频免费在线观看| 成人欧美大片| 99国产极品粉嫩在线观看| 国产午夜精品久久久久久| 黄色片一级片一级黄色片| 亚洲av片天天在线观看| avwww免费| 最近最新中文字幕大全免费视频| 国产高清videossex| 久久香蕉精品热| 国产成年人精品一区二区| 青草久久国产| 成人欧美大片| 女人高潮潮喷娇喘18禁视频| 亚洲一码二码三码区别大吗| 亚洲第一电影网av| 999久久久国产精品视频| 国产一区二区三区在线臀色熟女| 精品欧美一区二区三区在线| 在线观看66精品国产| 国产精品,欧美在线| 精品欧美国产一区二区三| 久久青草综合色| 丰满的人妻完整版| 1024手机看黄色片| 老司机深夜福利视频在线观看| 午夜福利欧美成人| 国产成人影院久久av| 午夜免费鲁丝| 亚洲精品在线观看二区| a级毛片在线看网站| 国产在线精品亚洲第一网站| 人人妻,人人澡人人爽秒播| 国产黄色小视频在线观看| 熟女少妇亚洲综合色aaa.| 在线观看免费视频日本深夜| 久久久久久国产a免费观看| 97超级碰碰碰精品色视频在线观看| 色尼玛亚洲综合影院| av免费在线观看网站| www.熟女人妻精品国产| 少妇 在线观看| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影 | 人人妻,人人澡人人爽秒播| 亚洲av第一区精品v没综合| 成人18禁在线播放| 老司机靠b影院| 亚洲成av片中文字幕在线观看| 啪啪无遮挡十八禁网站| 俺也久久电影网| 在线免费观看的www视频| 美女高潮到喷水免费观看| 啪啪无遮挡十八禁网站| 亚洲一区高清亚洲精品| 亚洲专区字幕在线| 国产精品久久久av美女十八| 亚洲精品中文字幕一二三四区| 91麻豆av在线| 手机成人av网站| 午夜影院日韩av| 99国产综合亚洲精品| 日本撒尿小便嘘嘘汇集6| 中文资源天堂在线| 免费看a级黄色片| 亚洲av成人av| 国产精华一区二区三区| 91老司机精品| 国产精品99久久99久久久不卡| 亚洲成人精品中文字幕电影| 亚洲狠狠婷婷综合久久图片| x7x7x7水蜜桃| 午夜久久久久精精品| 欧美日本视频| 午夜视频精品福利| 婷婷六月久久综合丁香| 成人亚洲精品一区在线观看| 欧美成狂野欧美在线观看| 美女扒开内裤让男人捅视频| 美国免费a级毛片| av中文乱码字幕在线| videosex国产| 夜夜爽天天搞| 日本成人三级电影网站| 免费电影在线观看免费观看| 在线观看午夜福利视频| 人人澡人人妻人| 少妇粗大呻吟视频| 88av欧美| 一级片免费观看大全| 国产区一区二久久| 中文字幕久久专区| 岛国在线观看网站| 亚洲精品在线观看二区| 国产精品免费一区二区三区在线| 老鸭窝网址在线观看| 精品久久蜜臀av无| 一本综合久久免费| 日韩成人在线观看一区二区三区| 成人免费观看视频高清| 欧美日韩一级在线毛片| 高潮久久久久久久久久久不卡| 日本成人三级电影网站| 男女下面进入的视频免费午夜 | 日韩av在线大香蕉| 欧美黄色淫秽网站| 国产精品免费视频内射| 欧美激情高清一区二区三区| 怎么达到女性高潮| 在线永久观看黄色视频| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 性色av乱码一区二区三区2| 香蕉国产在线看| 国产人伦9x9x在线观看| 韩国精品一区二区三区| a在线观看视频网站| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区mp4| or卡值多少钱| 级片在线观看| 亚洲美女黄片视频| 精品熟女少妇八av免费久了| av免费在线观看网站| 90打野战视频偷拍视频| 啦啦啦观看免费观看视频高清| 色在线成人网| 麻豆成人午夜福利视频| 午夜两性在线视频| 男女视频在线观看网站免费 | 日韩中文字幕欧美一区二区| 国产成人精品无人区| 一级毛片精品| 精品人妻1区二区| 狠狠狠狠99中文字幕| 亚洲欧美激情综合另类| 欧美乱码精品一区二区三区| 亚洲自拍偷在线| 国产精品一区二区三区四区久久 | 色综合欧美亚洲国产小说| 成人精品一区二区免费| 国产精品1区2区在线观看.| ponron亚洲| www.999成人在线观看| 99国产综合亚洲精品| 欧美黄色淫秽网站| 又黄又粗又硬又大视频| 亚洲精品在线观看二区| 亚洲av成人av| 高清毛片免费观看视频网站| 特大巨黑吊av在线直播 | 中文字幕人妻丝袜一区二区| 青草久久国产| 看片在线看免费视频| 国产不卡一卡二| 国产熟女午夜一区二区三区| 老司机在亚洲福利影院| 黑丝袜美女国产一区| 正在播放国产对白刺激| 国产精品久久久av美女十八| 精品熟女少妇八av免费久了| 侵犯人妻中文字幕一二三四区| 露出奶头的视频| 日本三级黄在线观看| ponron亚洲| 免费人成视频x8x8入口观看| netflix在线观看网站| 久久中文看片网| 两人在一起打扑克的视频| 久久香蕉精品热| 国产一卡二卡三卡精品| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区免费欧美| 亚洲三区欧美一区| 亚洲国产精品sss在线观看| 天天添夜夜摸| 中文字幕精品亚洲无线码一区 | 色婷婷久久久亚洲欧美| 亚洲欧美日韩无卡精品| 亚洲性夜色夜夜综合| 亚洲欧美激情综合另类| 国产亚洲精品av在线| 亚洲美女黄片视频| 国产高清有码在线观看视频 | 真人一进一出gif抽搐免费| 国产99久久九九免费精品| 亚洲国产欧美日韩在线播放| 老汉色av国产亚洲站长工具| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 美女大奶头视频| a级毛片在线看网站| 最近最新中文字幕大全电影3 | 久久香蕉国产精品| 99久久国产精品久久久| 老司机深夜福利视频在线观看| 亚洲片人在线观看| 日韩大码丰满熟妇| 黄片播放在线免费| 人人妻,人人澡人人爽秒播| 久久精品91无色码中文字幕| 国产乱人伦免费视频| 91av网站免费观看| av电影中文网址| 女性生殖器流出的白浆| 脱女人内裤的视频| 波多野结衣高清作品| 亚洲第一电影网av| 国产免费av片在线观看野外av| 女人被狂操c到高潮| 97碰自拍视频| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 中文字幕人妻熟女乱码| 午夜视频精品福利| 欧美日韩福利视频一区二区| 免费在线观看视频国产中文字幕亚洲| 国产免费av片在线观看野外av| 1024视频免费在线观看| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 91成年电影在线观看| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 99精品欧美一区二区三区四区| 两性夫妻黄色片| 国产亚洲精品一区二区www| 日韩欧美一区二区三区在线观看| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 久久婷婷成人综合色麻豆| 女性生殖器流出的白浆| 一区二区三区精品91| 国产亚洲精品综合一区在线观看 | 亚洲国产看品久久| 久久性视频一级片| 亚洲国产日韩欧美精品在线观看 | 久久久久久久精品吃奶| 50天的宝宝边吃奶边哭怎么回事| 国产三级在线视频| 午夜免费激情av| 欧美乱码精品一区二区三区| 少妇被粗大的猛进出69影院| 热99re8久久精品国产| 黄网站色视频无遮挡免费观看| 亚洲专区字幕在线| 黄色视频不卡| 日韩大尺度精品在线看网址| 在线天堂中文资源库| 欧美一级a爱片免费观看看 | 欧美日韩一级在线毛片| 天天躁夜夜躁狠狠躁躁| 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产 | 免费在线观看日本一区| 88av欧美| 国产又黄又爽又无遮挡在线| 欧美激情 高清一区二区三区| 正在播放国产对白刺激| 日韩欧美三级三区| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 久久久久久久久免费视频了| 亚洲精品美女久久av网站| 夜夜躁狠狠躁天天躁| 美女高潮喷水抽搐中文字幕| 国内精品久久久久精免费| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 国产精品九九99| 丁香六月欧美| 女性生殖器流出的白浆| 男男h啪啪无遮挡| 亚洲无线在线观看| 最新美女视频免费是黄的| 丁香欧美五月| av电影中文网址| 日韩 欧美 亚洲 中文字幕| 欧美黑人巨大hd| 又黄又粗又硬又大视频| 欧美黄色淫秽网站| www日本在线高清视频| 国产午夜精品久久久久久| 亚洲第一电影网av| 成人国产一区最新在线观看| 人成视频在线观看免费观看| 男男h啪啪无遮挡| 变态另类丝袜制服| 两个人看的免费小视频| 他把我摸到了高潮在线观看| 特大巨黑吊av在线直播 | 听说在线观看完整版免费高清| 国内久久婷婷六月综合欲色啪| 看免费av毛片| 亚洲 欧美 日韩 在线 免费| 亚洲精品中文字幕一二三四区| 国产精品电影一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | av视频在线观看入口| 亚洲精品av麻豆狂野| 国产av一区二区精品久久| 日韩一卡2卡3卡4卡2021年| 成人特级黄色片久久久久久久| 国产精品av久久久久免费| 欧美一级a爱片免费观看看 | 极品教师在线免费播放| 国产精品乱码一区二三区的特点| 一级片免费观看大全| 黑人巨大精品欧美一区二区mp4| www.www免费av| 精品国产亚洲在线| 在线观看免费午夜福利视频| 男女午夜视频在线观看| 熟女少妇亚洲综合色aaa.| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久 | 午夜久久久在线观看| 丰满的人妻完整版| 一级毛片女人18水好多| 一个人免费在线观看的高清视频| 日韩国内少妇激情av| 免费人成视频x8x8入口观看| 黄网站色视频无遮挡免费观看| 亚洲色图 男人天堂 中文字幕| ponron亚洲| 中文字幕精品亚洲无线码一区 | 可以在线观看的亚洲视频| 日韩欧美国产一区二区入口| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三| 精品久久久久久久久久免费视频| 国产精品日韩av在线免费观看| 欧美日本视频| 亚洲国产精品成人综合色| 日本成人三级电影网站| 久久香蕉激情| 91成人精品电影| 欧美日韩亚洲国产一区二区在线观看| 国产91精品成人一区二区三区| 精品国产乱子伦一区二区三区| 国产午夜精品久久久久久| 国产亚洲精品av在线| 91在线观看av| 欧美日韩乱码在线| 黄色成人免费大全| 男人操女人黄网站| 99国产极品粉嫩在线观看| 国产成人欧美在线观看| 久久精品国产亚洲av香蕉五月| 欧美久久黑人一区二区| 国产一区二区激情短视频| 国产亚洲精品一区二区www| 亚洲av熟女| 黑人巨大精品欧美一区二区mp4| 亚洲色图 男人天堂 中文字幕| 嫩草影视91久久| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 亚洲欧美日韩高清在线视频| 亚洲成av片中文字幕在线观看| 精品第一国产精品| 宅男免费午夜| 好男人在线观看高清免费视频 | 成人精品一区二区免费| 国产av不卡久久| 黑人欧美特级aaaaaa片| 男女做爰动态图高潮gif福利片| 法律面前人人平等表现在哪些方面| 久久狼人影院| 久久草成人影院| 亚洲自拍偷在线| 免费在线观看亚洲国产| 999久久久国产精品视频| 大香蕉久久成人网| 婷婷精品国产亚洲av| 一夜夜www| 精品卡一卡二卡四卡免费| 性色av乱码一区二区三区2| 久久精品国产综合久久久| av有码第一页| 看免费av毛片| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 久久精品aⅴ一区二区三区四区| 色综合欧美亚洲国产小说| 国产精品久久久av美女十八| 在线av久久热| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 日韩精品青青久久久久久| 女警被强在线播放| 男人舔女人的私密视频| 在线观看免费午夜福利视频| 悠悠久久av| 亚洲一卡2卡3卡4卡5卡精品中文| 动漫黄色视频在线观看| 欧美成狂野欧美在线观看| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 少妇粗大呻吟视频| 别揉我奶头~嗯~啊~动态视频| 每晚都被弄得嗷嗷叫到高潮| 99精品久久久久人妻精品| 黄色成人免费大全| 亚洲国产精品成人综合色| 国产精品99久久99久久久不卡| 麻豆成人午夜福利视频| ponron亚洲| 非洲黑人性xxxx精品又粗又长| 最好的美女福利视频网| www国产在线视频色| 国产一区在线观看成人免费| 精品午夜福利视频在线观看一区| 丁香欧美五月| 可以免费在线观看a视频的电影网站| 波多野结衣av一区二区av| svipshipincom国产片| 国产精品九九99| 日韩精品中文字幕看吧| 久久香蕉激情| 亚洲国产看品久久| 国产激情欧美一区二区| 日韩av在线大香蕉| 日韩免费av在线播放| 欧美成人免费av一区二区三区| 中文字幕人妻丝袜一区二区| 日韩国内少妇激情av| 成年人黄色毛片网站| 久久国产乱子伦精品免费另类| 观看免费一级毛片| 欧美激情高清一区二区三区| 欧美三级亚洲精品| 久久草成人影院| 亚洲精品美女久久久久99蜜臀| 两性午夜刺激爽爽歪歪视频在线观看 | 听说在线观看完整版免费高清| 久久国产精品影院| 免费在线观看成人毛片| 香蕉av资源在线| 国产熟女xx| 午夜福利视频1000在线观看| 亚洲国产精品sss在线观看| 黄片播放在线免费| 日本a在线网址| 黄色 视频免费看| 欧美一级毛片孕妇| 欧美激情极品国产一区二区三区| 国产乱人伦免费视频| 黄色片一级片一级黄色片| 国产av一区二区精品久久| 人人妻人人看人人澡| 视频在线观看一区二区三区| 亚洲精品一区av在线观看| 最近最新中文字幕大全电影3 | 一级毛片精品| 日本 欧美在线| 国产精品影院久久| 九色国产91popny在线| 日本免费a在线| 色哟哟哟哟哟哟| 国产亚洲欧美精品永久| 久久久久久久午夜电影| 国产黄片美女视频| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 香蕉久久夜色| 两性夫妻黄色片| 国产真人三级小视频在线观看| 国产激情欧美一区二区| 色精品久久人妻99蜜桃| 人人妻人人澡欧美一区二区| 久久久久久久久免费视频了| 满18在线观看网站| 自线自在国产av| 中文字幕最新亚洲高清| 午夜亚洲福利在线播放| 精品少妇一区二区三区视频日本电影| 久9热在线精品视频| 欧美+亚洲+日韩+国产| 亚洲第一欧美日韩一区二区三区| 国产蜜桃级精品一区二区三区| 99精品在免费线老司机午夜| 午夜亚洲福利在线播放| 午夜两性在线视频| 免费在线观看亚洲国产| 亚洲精品久久成人aⅴ小说| 91老司机精品| 少妇裸体淫交视频免费看高清 | 一本综合久久免费| 麻豆av在线久日| 精品电影一区二区在线| 特大巨黑吊av在线直播 | 国产激情欧美一区二区| 午夜亚洲福利在线播放| 黄网站色视频无遮挡免费观看| 操出白浆在线播放| 亚洲国产看品久久| 免费观看精品视频网站| 欧美日韩乱码在线| 夜夜看夜夜爽夜夜摸| 国产日本99.免费观看| 午夜a级毛片| 看免费av毛片| 亚洲九九香蕉| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成电影免费在线| 人人妻人人澡欧美一区二区| 欧美国产日韩亚洲一区| 日韩三级视频一区二区三区| 天天一区二区日本电影三级| 99riav亚洲国产免费| 一区二区三区高清视频在线| 十分钟在线观看高清视频www| 欧美黑人精品巨大| 免费观看精品视频网站| 黑丝袜美女国产一区| 白带黄色成豆腐渣|