• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transport feasibility of proppant by supercritical carbon dioxide fracturing in reservoir fractures *

    2018-07-06 10:01:58XianzhiSong宋先知GenshengLi李根生BinGuo郭斌HaizhuWang王海柱XiaojiangLi李小江Zehao呂澤昊
    關(guān)鍵詞:先知

    Xian-zhi Song (宋先知), Gen-sheng Li (李根生), Bin Guo (郭斌), Hai-zhu Wang (王海柱),Xiao-jiang Li (李小江) , Ze-hao Lü (呂澤昊)

    1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, Beijing 102249, China

    2. PetroChina Tarim Oilfield Company, Korla 841000, China

    Introduction

    China is rich in shale gas and its exploration and development are in a very extensive scale. Stimulation of the reservoir volume fracturing is an important technique for the efficient development of shale gas reservoirs. Currently, the most common technique used in the shale gas reservoir is the slick-water fracturing[1-2]. Due to its low viscosity, the slick-water has good anti-drag effects that help to form complex fractures. But the slick-water for the unconventional reservoir fracturing has also some undesirable features,such as the unwieldiness of the flowback fluid disposal and the reservoir pollution[3-5].

    The SC-CO2is a clean and waterless fracturing fluid that can prevent both the clay swelling caused by the water-based fracturing fluid and reduce the reservoir pollution. Thus, it can be used for the unconventional reservoir fracturing[6-7]. Due to its low density and viscosity compared to the slick-water, the ability to carry sand directly affects the shale gas reservoir fracturing stimulation in fractures[8].

    Many theoretical and experimental studies focus on the proppant settlement and the migration laws in conventional hydraulic fracturing fractures[9-10]. Liu[11]developed new empirical and analytical models for proppant transport and settling in hydraulic fractures.In these models, the sensitivity analysis is applied and these models can be used in any hydraulic fracture simulator. The sand carrying ability of the SC-CO2within the wellbore in the drilling process was studied.Li et al.[12]showed that the variation trend of the carrying-cuttings ability is related with the deviation angle. Shen et al.[13]performed numerical simulations for the cutting-carrying ability of the SC-CO2drilling at horizontal sections. But the sand carrying ability of the SC-CO2in the fracturing process was not well studied in sand carrying environments in the wellbore.The two-phase flow of the SC-CO2and the proppants is very complicated because the proppant concentration is high during the fracturing process in narrow and complex fractures.

    Because of the high temperature and high pressure condition for the SC-CO2in fractures, the experiment of the proppant transport by the SC-CO2fracturing is very difficult. In this paper, the numerical simulation method is used to study this problem systematically. Therefore the feasibility of the proppant transport by the SC-CO2fracturing and the slick-water fracturing in reservoir fractures is studied here as well as the influence of various parameters on the SC-CO2sand carrying ability. This study verifies the feasibility of the proppant transport by the SC-CO2fracturing in fractures, which provides a basis for the SC-CO2fracturing design.

    1. Basic model

    There are three multi-phase models based on the Euler-Euler approach in the FLUENT software: the VOF model, the Eulerian model and the Mixture model. The VOF model is suitable for solving problems of stratified flow and free surface tracking.With the Eulerian model, the momentum and continuity equations of each phase are solved separately.The Mixture model as a simplified form of the Eulerian model, can be used to simulate the multiphase flow field with relative velocities and can be applied to problems of particle settling, as is relevant in the cases of this paper. Besides, the Mixture model enjoys almost the same accuracy but with less computational cost as compared to the Eulerian model[14].

    The Peng-Robinson equation[15]is generally superior in calculating the density of the liquid CO2.However, it performs poorly with respect to the supercritical phase of CO2. The Span-Wagner equation[16]was developed for CO2and is considered as the top choice of the equation of state for calculating the property of pure CO2[17-18]. Unfortunately, this equation is too complicated to be used in engineering calculations. The Aungier-Redlich-Kwong equation of state[19]was used for the state equation of the SC-CO2because of its high accuracy and efficiency, especially for the supercritical state of CO2[20]. A physical model of the fractures was established based on the correlation.

    1.1 Mathematical model

    1.1.1 Continuity equation

    wheremρ is the mixture density,mv is the massaveraged velocity.

    1.1.2 Momentum equation

    wherepρ is the density of the phasep,pis the pressure, g is the acceleration of gravity,pα is the volume fraction of the phasep,,dr pv is the drift velocity of the secondary phasepandmμ is the viscosity of the mixture.

    1.1.3 Energy equation

    wherepEis the energy of the phasep,pv is the velocity of the phasep,effkis the effective conductivity andTis the temperature.

    1.1.4 Volume fraction equation

    whereqpm˙ is the mass transfer from the phaseqto the phasep,pqm˙ is the mass transfer from the phasepto the phaseq.

    1.1.5 Aungier-Redlich-Kwong state equation

    whereRis the gas constant,rTis the reduced temperature,cTis the critical temperature,cpis the critical pressure,cVis the critical specific volume,Vis the specific volume and ω is the acentric factor.

    1.2 Physical model

    The SC-CO2fracturing is still in the theoretical research stage and the parameters of the fracture geometry are not yet clear. A similarity geometric model (as shown in Fig. 1) was established based on the size of the fracture model in the literature[21]. The simulated fracture is a cuboid of 2 070 mm in length,495 mm in height and 9 mm in width. A total of 430×100×4 computational cells are used to represent the simulation domain. The sand-carrying fluid enters the left side of the fracture and exits from the right side of the fracture.

    Fig. 1 (Color Online) Schematic diagram of physical model and mesh densification

    According to the fracture operation, the mass flow inlet is used and the mass inflow rates of sand-carrying fluid and the proppant are defined. The inlet pressure and temperature are determined. To improve the calculation precision and the convergence speed, the turbulence intensity and the hydraulic diameters at both inlets and outlets are set correspondingly. The pressure outlet is used (the formation pressure). The no slip wall and the stationary wall are used, with a constant temperature. The filtration loss of the SC-CO2is ignored.

    1.3 Model solution

    The model is solved using th?e state-of-the-art CFD software–ANSYS FLUENT. The standardk-ε model is adopted in this study for the turbulence calculation. In order to reduce errors due to the artificial viscosity item in the low-order discretization schemes, the second-order upwind scheme is adopted.Under certain conditions, with the second-order upwind scheme, the same level of calculation accuracy can be achieved as with the QUICK scheme and the MUSCL scheme, but with a shortened calculation time. The SIMPLE method is used to solve the coupled equations of velocity and pressure, as shown to be stable by numerical tests[22]. In all cases,at least 10 000 iterations are required to make, with the convergence criterion: (1) the residual of the iteration is less than 10-5, or (2) the difference of the mass flow between inlet and outlet is less than 0.5%of that of the inlet mass flow.

    1.4 Model verification

    To the best of our knowledge, there is no experiment of the proppant transport by the SC-CO2fluid carried out. Since the numerical model built in this paper is applicable for any kind of fluid, the slick water is used to verify the model against the experiment, In the process of the proppant transport by the slick water, Liu[11]suggests that the proppant bed buildup consists of three stages. In the first stage,the proppant bed builds up gradually as a function of time. In the next stage, the bed grows only in height.The third stage sees a gradual increase of the proppant bed with a reduced discharge section so that the flow rate increases. The increase of the flow rate finally suspends the injected proppant, and the maximum height of the sand bank is reached and then remains unchanged. This state is called the equilibrium-here,the flow rate is called the equilibrium flow rate, and the height of the sand bank is called the equilibrium height (he). The time is called the equilibrium time.The injected proppant only increases the length of the bank in the flow direction. Numerical simulation comparisons are made based on the conditions in the literature[11]. Figure 2(a) shows the case of the first phase as given in the literature[11], while Figs. 2(b),2(c) shows the cases of the second stage and third stage in the literature[11]. With the numerical model,the three stages of the formation process of the sand bank are reproduced, similar to the three stages proposed by Liu according to the experiment, which validates our model.

    Fig. 2 (Color Online) Three stages of sand bank formation in numerical simulations

    2. Distribution characteristics of proppant in SCCO2 in fractures

    Figure 3 shows the contour of the proppant volume fraction in the vertical profile of the fracture.Figure 4 shows the proppant volume fraction in the fracture height direction of line a in Fig. 3, Fig. 5 shows the proppant velocity ()vin the fracture height direction of line b in Fig. 3. From Figs. 4, 5, we can summarize the cases as in the following Table 1

    Fig. 3 (Color Online) The contour of proppant volume fraction in vertical profile of fracture. Boundary conditions: inlet mass flow rate: 2 kg/s, outlet pressure: 40 MPa, medium properties: proppant density: 2 540 kg/m3, proppant diameter: 40 mesh size, solid volume fraction: 30%, SCCO2 viscosity: 0.06 mPa·s

    Fig. 4 The proppant volume fraction in the fracture height direction

    From the vertical profile of the fracture as seen in Fig. 3, it is clear that we have four regions based on the concentration. The first region is the low sand area at the top of the fracture. In this region, the proppant volume fraction is less than 0.05, and the proppant velocity is over 0.15 m/s. The second region is a suspension area next to the low sand area. In this region, the proppant volume fraction ranges between 0.05 and 0.3. With the proppant concentration gradient, the proppant velocity is greater than 0.15 m/s.The third region is the tumble area below the suspension area with the proppant volume fraction between 0.3 and 0.6, and the proppant velocity is between 0.10 m/s and 0.65 m/s. The fourth and final region is the sand area at the bottom of the fracture with the proppant volume fraction more than 0.6, and its proppant velocity is less than 0.05 m/s.

    3. Sand bank distribution comparison between SCCO2 and slick-water

    Figure 6 shows the contours of the sand bank distribution, where the cases of the SC-CO2and theslick-water are compared. During the initial stage of proppant injecting (t= 5s), the forming speed of the sand bank in the SC-CO2is greater than that of the slick-water. Because the density of the SC-CO2is less than that of the slick-water under the condition of the same mass inflow rate and solid volume fraction, and the proppant volume injected in the SC-CO2is more than that in the slick-water per unit time. Meanwhile the fluidization ability of the slick-water is better than that of the SC-CO2. Thus, with lower sedimentation velocities of the proppant in the slick-water, we will have longer proppant transport-this means settling closer to the outlet. The proppant in the SC-CO2first reaches the largest filling state in the fracture (t=40s) while the proppant in the slick-water reaches the largest filling state later in the fracture (t= 100 s).

    Table 1 Proppant distribution characteristics

    Fig. 6 (Color Online) Comparisons of the contours of sand bank distribution between SC-CO2 and slick-water

    Fig. 7 The comparison of the maximum height of the sand bank between SC-CO2 and slick-water at different times

    Figure 7 compares the maximum heightmax( )hof the sand bank between the cases of the SC-CO2and the slick-water in different time intervals ()t. The maximum height of the sand bank in the SC-CO2is larger than that in the slick-water at all time points,and its height difference first increases and then is maintained unchanged. Before the time of 20 s, the height of the sand bank in the SC-CO2increases rapidly. From =20stto =35st, the height of the sand bank increases slowly and then after =35st,the height stabilizes to a constant value. For the slickwater, the height of the sand bank increases slowly until the time of 90 s. After that it keeps unchanged.The equilibrium time in the SC-CO2is shorter than that of the slick-water but the equilibrium height in the SC-CO2is greater than that in the slick-water. Therefore under the same condition, the slick-water has a stronger sand-carrying ability than the SC-CO2.Further study is needed to ensure that the proppant in the SC-CO2and in the slick-water has a similar filling effect.

    4. Sensitivity analysis

    4.1 Proppant density

    Figure 8 shows the dimensionless equilibrium heights and equilibrium time for different proppant densities. The velocity of the proppant sedimentation,and the dimensionless equilibrium height increase with the increase of the proppant density. The equilibrium time decreases with the increase of the proppant density. When the proppant density is small, such as 1 040 kg/m3, the proppant could not easily settle to form a sand bank because it has a strong proppant fluidization ability. Therefore, the height of the sand bank is less than 60% of the fracture height, and the equilibrium time is close to 60 s. Conversely, increasing the proppant density can help the proppant to settle and form a sand bank in a shorter time.Therefore reducing the proppant density can reduce the equilibrium height and thus the risk of sand plugging-this ensures a uniform proppant settlement in the fracture, as discussed before, with a similar filling effect as that of the slick water.

    Fig. 8 The dimensionless equilibrium heights and equilibrium time for different proppant densities

    4.2 Solid volume fraction

    Figure 9 shows the dimensionless equilibrium heights and equilibrium time for different solid volume fractions. As shown in Fig. 9, the dimensionless equilibrium height increases slightly with the increase of the solid volume fraction, while the equilibrium time decreases substantially. This is because the convective proppant transport effects increase with the increase of the solid volume fraction and the proppant sedimentation becomes faster. The sand-carrying fluids with a high solid volume fraction make it easy to form a sand plug in the fracture at early stages of the SC-CO2fracturing. Therefore, to achieve a longer fracture requires a lower solid volume fraction, on the other hand, to achieve a higher fracture requires a higher solid volume fraction. What is more, the solid volume fraction does not have much influence on the equilibrium height. That means that the solid volume fraction can not be used to control the height of the vertical fracture.

    Fig. 9 The dimensionless equilibrium heights and equilibrium time for different solid volume fractions

    Fig. 10 The dimensionless equilibrium heights and equilibriumtime for different proppant diameters

    4.3 Proppant diameter

    Figure 10 shows the dimensionless equilibrium heights and equilibrium time for different proppant diameters ()D. The dimensionless equilibrium height increases with the increase of the proppant diameter,while the equilibrium time decreases. With the diameter size of 10 mesh, the proppants show the strongest wall effect[17], the fastest sedimentation, the largest porosity of the sand bank, the largest dimensionless equilibrium height, and the shortest equilibrium time. Therefore, when the fracture length is long enough, a sand plug easily occurs because for the proppants with large diameters, we will have a large dimensionless height. The proppant cannot be transported to the remote section of the fracture. With a sand diameter as commonly adopted (20/40 mesh) in the slick water fracturing, long fractures could not be achieved in the SC-CO2fluid. Consequently, a small proppant diameter is an advisable choice to achieve a longer fracture, but with a lower height.

    4.4 Mass inflow rate

    Figure 11 shows the dimensionless equilibrium heights and equilibrium time for different mass inflow rates ()Q. As shown in Fig. 11, both the equilibrium height and the equilibrium time decrease with the increase of the mass flow rate. Considering the cases of the mass inflow rates of 1.0 kg/s and 1.5 kg/s, the equilibrium time at the mass inflow rate of 1.5 kg/s is less than that at the mass inflow rate of 1.0 kg/s because the higher the mass inflow rate, the higher the injected proppant volume per unit time-this decreases the time needed to form a sand bank. The dimensionless equilibrium height at the mass inflow rate of 1.5 kg/s is less than that at the mass inflow rate of 1.0 kg/s. A higher mass inflow rateleads to a larger injected proppant velocity. In turn, we will have a larger suspension area and a larger tumble area and a smaller sand bank area, which leads to a longer fracture at a shorter time.

    Fig. 11 The dimensionless equilibrium heights and equilibrium time for different mass inflow rates

    5. Conclusions

    (1) The proppant concentration varies in vertical fractures of the SC-CO2fracturing. Based on proppant volume fraction, velocity and dimensionless height,these fractures can be divided into four regions-the low land area, the suspension area, the tumble area and the sand bank area. Of these four areas, the sand bank area and the suspension area are two key areas to determine the fracture shape.

    (2) The slick-water enjoys a better sand-carrying ability than the SC-CO2, thus the proppant could form a higher sand bank at a shorter time in the SC-CO2fluid compared with the slick-water, which means that the SC-CO2can lead to higher but shorter fracture compared with the slick water under the same condition.

    (3) In the SC-CO2fracturing, there are positive correlations between the proppant density, the proppant diameter, the solid volume fraction and the dimensionless equilibrium height, equilibrium time, as well as between the mass inflow rate and the equilibrium time and a negative correlation between the mass inflow rate and the dimensionless equilibrium height.

    (4) The results indicate that reducing the density of the proppant, the grain size of the proppant and the solid volume fraction or increasing the injection rate during the SC-CO2fracturing, we will have longer vertical fractures, but with lower height, thus the proppant will have similar filling effects as in fractures of the slick water fracturing. This study verifies the feasibility of the proppant transport by the SC-CO2fracturing in fractures. It provides a basis for the SC-CO2fracturing design.

    Acknowledgement

    This work was supported by the Science Foundation of China University of Petroleum, Beijing(Grant No. 2462013BJRC002).

    [1] Hou L., Sun B., Li Y. et al. Impact of unconventional oil and gas exploitation on fracturing equipment and materials development [J].Natural Gas Industry, 2013, 33(12):105-110(in Chinese).

    [2] Dong D., Zou C., Yang H. et al. Progress and prospects of shale gas exploration and development in China [J].Acta Petrolei Sinica, 2012, 33(1): 107-114(in Chinese).

    [3] Sakmar S. L. Shale gas development in North America:An overview of the regulatory and environmental challenges facing the industry [C].North American Unconventional Gas Conference and Exhibition. The Woodlands,USA, 2011.

    [4] Touzel P. Managing environmental and social risks in China [C].International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production.Perth, Australia, 2012.

    [5] Anderson R. L., Ratcliffe I., Greenwell H. C. et al. Clay swelling-A challenge in the oilfield [J].Earth-Science Reviews, 2010, 98(3-4): 201-216.

    [6] Shen Z., Wang H., Li G. Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide [J].Petroleum Exploration and Development, 2010, 37(6):743-747.

    [7] Wang H., Shen Z., Li G. Feasibility analysis on shale gas exploitation with supercritical CO2[J].Petroleum Drilling Techniques, 2011, 39(3): 30-35(in Chinese).

    [8] He Z. G., Li G. S., Wang H. Z. et al. Numerical simulation of the abrasive supercritical carbon dioxide jet: The flow field and influence factors analysis [J].Journal of Hydrodynamics, 2016, 28(2): 238-246.

    [9] McClure M., Babazadeh M., Shiozawa S. et al. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks [J].SPE Journal,2017, 21(4): 1302-1320.

    [10] Gomaa A., Hudson H., Nelson S. et al. Computational fluid dynamics applied to investigate development of highly conductive channels within the fracture geometry[J].SPE Production and Operations, 2017, 32(4):392-403.

    [11] Liu Y. Settling and hydrodynamic retardation of proppants in hydraulic fractures [D]. Doctoral Thesis, Austin, USA:The University of Texas, 2006.

    [12] Li L., Wang Z., Qiu Z. et al. An experimental study on carrying cuttings features for supercritical carbon dioxide drilling fluid [J].Acta Petrolei Sinica, 2011, 32(2):355-359(in Chinese).

    [13] Shen Z. H., Wang H. Z., Li G. S. Numerical sumilation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section [J].Petroleum Drilling Techniques, 2011, 38(2): 233-236(in Chinese).

    [14] ANSYS Inc. ANSYS FLUENT 12.0 theory guide [M].ANSYS Inc., 2009, 558-569.

    [15] Peng D. Y., Robinson D. B. A new two-constant equation of state [J].Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.

    [16] Span R., Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa [J].Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.

    [17]Li X., Li G., Wang H. et al. A coupled model for predicting flowing temperature and pressure distribution in drilling ultra-short radius radial wells [C].IADC/SPE Asia Pacific Drilling Technology Conference, Singapore, 2016.[18] Li X., Li G., Wang H. et al. A unified model for wellbore flow and heat transfer in pure CO2injection for geological sequestration, EOR and fracturing operations [J].International Journal of Greenhouse Gas Control, 2017, 57:102-115.

    [19] Aungier R. H. A fast, accurate real gas equation of state for fluid dynamic analysis applications [J].Journal of Fluids Engineering, 1995, 117(2): 277-281.

    [20] ANSYS Inc. ANSYS FLUENT 12.0 user’s guide [M].ANSYS Inc., 2009, 593-604.

    [21] Liu Y. Sharma M. M. Effect of fracture width and fluid rheology on proppant settling and retardation: An experimental study [C].SPE Annual Technical Conference and Exhibition. Dallas, USA, 2005.

    [22] Wang F. J. Computational fluid dynamics analysis-theory and application of CFD software [M]. Beijing: Tsinghua University Press, 2004, 196-200(in Chinese).

    猜你喜歡
    先知
    春江水暖鴨先知
    高 士
    寶藏(2019年6期)2019-01-15 14:52:30
    《先知》中的立體世界觀美學(xué)
    最好的財(cái)富
    我不是什么先知
    延河(2017年7期)2017-07-19 20:52:04
    春天的小先知(外兩首)
    春天來(lái)了
    臥佛
    詩(shī)林(2016年5期)2016-10-25 05:51:26
    春江水暖鴨先知
    春江水暖鴨先知
    国产一区二区 视频在线| 国产黄频视频在线观看| 免费在线观看黄色视频的| 国产片内射在线| 日本欧美国产在线视频| 国产野战对白在线观看| 久久av网站| 欧美日韩亚洲综合一区二区三区_| 精品免费久久久久久久清纯 | 亚洲中文av在线| 亚洲欧美成人精品一区二区| 久久久久久久久久久久大奶| 精品一区在线观看国产| 黄网站色视频无遮挡免费观看| 波多野结衣av一区二区av| 久久女婷五月综合色啪小说| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲 | 亚洲色图 男人天堂 中文字幕| 激情五月婷婷亚洲| 一级黄片播放器| 久久精品aⅴ一区二区三区四区| 最近中文字幕2019免费版| 国产极品粉嫩免费观看在线| 好男人视频免费观看在线| 黄色 视频免费看| 午夜福利,免费看| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 久久久久久久大尺度免费视频| 高清视频免费观看一区二区| 成人手机av| 国产日韩一区二区三区精品不卡| 亚洲国产欧美日韩在线播放| 久久精品人人爽人人爽视色| 少妇人妻 视频| 中文字幕av电影在线播放| 美女视频免费永久观看网站| 久久久久久久久久久免费av| 精品一区二区免费观看| 国产精品熟女久久久久浪| 久久久国产欧美日韩av| 99国产综合亚洲精品| 精品一区二区免费观看| 在线 av 中文字幕| 久热这里只有精品99| 欧美精品一区二区大全| 制服人妻中文乱码| 女的被弄到高潮叫床怎么办| 夫妻性生交免费视频一级片| 少妇的丰满在线观看| 国产在视频线精品| 精品一品国产午夜福利视频| 丝袜人妻中文字幕| 最黄视频免费看| 日韩伦理黄色片| 妹子高潮喷水视频| av国产久精品久网站免费入址| 国产99久久九九免费精品| 国产成人a∨麻豆精品| 一本久久精品| 咕卡用的链子| www.熟女人妻精品国产| 大码成人一级视频| 国产亚洲午夜精品一区二区久久| 青春草亚洲视频在线观看| 男男h啪啪无遮挡| 黄色视频在线播放观看不卡| 亚洲精品中文字幕在线视频| 亚洲成av片中文字幕在线观看| 国产精品无大码| 久久久久久久久免费视频了| 自线自在国产av| 国产又色又爽无遮挡免| 欧美在线黄色| 丁香六月天网| 精品少妇一区二区三区视频日本电影 | 久久久久精品久久久久真实原创| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 午夜福利视频精品| 男人爽女人下面视频在线观看| 国产精品免费视频内射| xxxhd国产人妻xxx| 免费av中文字幕在线| 中文字幕色久视频| 亚洲一级一片aⅴ在线观看| 久久午夜综合久久蜜桃| 人妻人人澡人人爽人人| 妹子高潮喷水视频| 美女高潮到喷水免费观看| 少妇人妻 视频| 精品卡一卡二卡四卡免费| av在线app专区| 五月开心婷婷网| 人成视频在线观看免费观看| 最近最新中文字幕大全免费视频 | 啦啦啦啦在线视频资源| 超碰97精品在线观看| 亚洲av在线观看美女高潮| 国产精品一二三区在线看| 久久精品亚洲熟妇少妇任你| 青春草国产在线视频| 国产色婷婷99| 中文欧美无线码| 亚洲 欧美一区二区三区| 如何舔出高潮| 天天影视国产精品| 精品一区二区三卡| 亚洲第一av免费看| 最近的中文字幕免费完整| 久热爱精品视频在线9| 男男h啪啪无遮挡| 欧美日韩国产mv在线观看视频| 国产在视频线精品| 国产精品国产三级国产专区5o| 少妇 在线观看| 美女国产高潮福利片在线看| 丰满少妇做爰视频| 国产精品久久久久久精品电影小说| 久久精品亚洲熟妇少妇任你| 丰满迷人的少妇在线观看| 熟女少妇亚洲综合色aaa.| √禁漫天堂资源中文www| 亚洲婷婷狠狠爱综合网| 亚洲精品第二区| 国产黄色视频一区二区在线观看| 久久久久久久大尺度免费视频| 国产又爽黄色视频| 亚洲,欧美精品.| 国产在线视频一区二区| 亚洲国产欧美在线一区| 建设人人有责人人尽责人人享有的| 一本一本久久a久久精品综合妖精| 成人手机av| 日日摸夜夜添夜夜爱| 亚洲美女搞黄在线观看| 欧美老熟妇乱子伦牲交| 天天影视国产精品| 国产成人系列免费观看| 男人舔女人的私密视频| 侵犯人妻中文字幕一二三四区| 一级毛片我不卡| 欧美人与性动交α欧美软件| 免费黄频网站在线观看国产| 亚洲精品aⅴ在线观看| 亚洲av电影在线观看一区二区三区| 欧美 日韩 精品 国产| 国产av精品麻豆| 亚洲国产中文字幕在线视频| 亚洲精品国产av蜜桃| 亚洲第一区二区三区不卡| 日韩av免费高清视频| 免费日韩欧美在线观看| 亚洲婷婷狠狠爱综合网| 黄色毛片三级朝国网站| 人人澡人人妻人| 国精品久久久久久国模美| 国产精品久久久久久精品电影小说| 成年av动漫网址| 999久久久国产精品视频| 丝瓜视频免费看黄片| 午夜福利乱码中文字幕| 看免费成人av毛片| 十分钟在线观看高清视频www| 99久久99久久久精品蜜桃| 亚洲第一av免费看| 黄频高清免费视频| 视频在线观看一区二区三区| av有码第一页| 欧美日韩亚洲综合一区二区三区_| 欧美日韩综合久久久久久| 只有这里有精品99| 中国三级夫妇交换| 少妇人妻精品综合一区二区| 国产成人精品在线电影| 成人影院久久| 嫩草影视91久久| 交换朋友夫妻互换小说| 在线观看免费高清a一片| 亚洲国产看品久久| 亚洲av成人精品一二三区| 一级毛片我不卡| av线在线观看网站| 亚洲精品中文字幕在线视频| 在线观看www视频免费| 国产日韩欧美亚洲二区| 日韩一区二区视频免费看| 九草在线视频观看| 国产精品三级大全| 国产亚洲一区二区精品| 国产又爽黄色视频| 国产熟女欧美一区二区| 免费高清在线观看日韩| 欧美激情极品国产一区二区三区| 亚洲av电影在线进入| 91国产中文字幕| 精品卡一卡二卡四卡免费| 成人午夜精彩视频在线观看| e午夜精品久久久久久久| 少妇人妻精品综合一区二区| 波野结衣二区三区在线| 天堂8中文在线网| 国产亚洲精品第一综合不卡| 青草久久国产| 下体分泌物呈黄色| 美女脱内裤让男人舔精品视频| 成人影院久久| 久久狼人影院| 99热国产这里只有精品6| 国产精品久久久久久精品电影小说| 国产在线视频一区二区| 男女边吃奶边做爰视频| 国产亚洲av片在线观看秒播厂| 欧美日韩成人在线一区二区| 亚洲一区中文字幕在线| 叶爱在线成人免费视频播放| 黄色怎么调成土黄色| 久久国产精品男人的天堂亚洲| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看 | 妹子高潮喷水视频| 欧美黄色片欧美黄色片| 国产成人一区二区在线| 久久鲁丝午夜福利片| 叶爱在线成人免费视频播放| 狠狠婷婷综合久久久久久88av| 午夜日本视频在线| 99久久99久久久精品蜜桃| 国产淫语在线视频| 日韩一本色道免费dvd| 欧美精品一区二区免费开放| 日本午夜av视频| 中国三级夫妇交换| 黄片播放在线免费| 国产精品免费视频内射| 中文字幕人妻丝袜制服| 男男h啪啪无遮挡| 欧美变态另类bdsm刘玥| av片东京热男人的天堂| 欧美日韩亚洲高清精品| 超色免费av| 无限看片的www在线观看| 18禁国产床啪视频网站| 777米奇影视久久| 在线免费观看不下载黄p国产| 精品一品国产午夜福利视频| 爱豆传媒免费全集在线观看| 国产欧美日韩一区二区三区在线| 大香蕉久久成人网| 少妇 在线观看| 欧美日韩一区二区视频在线观看视频在线| 毛片一级片免费看久久久久| 日韩,欧美,国产一区二区三区| 亚洲国产中文字幕在线视频| 天堂俺去俺来也www色官网| 亚洲成人国产一区在线观看 | 国产成人系列免费观看| 午夜免费男女啪啪视频观看| 美女大奶头黄色视频| 国产人伦9x9x在线观看| 久久婷婷青草| 大码成人一级视频| 无遮挡黄片免费观看| 欧美日韩成人在线一区二区| 国产av国产精品国产| 亚洲欧美日韩另类电影网站| 亚洲国产成人一精品久久久| 免费看不卡的av| 天堂中文最新版在线下载| 人人妻人人澡人人看| 国产人伦9x9x在线观看| 丝袜脚勾引网站| 久久狼人影院| 国产男女超爽视频在线观看| a级毛片在线看网站| 午夜老司机福利片| 久久人人爽av亚洲精品天堂| 天堂俺去俺来也www色官网| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦中文免费视频观看日本| 亚洲人成网站在线观看播放| 午夜久久久在线观看| 极品少妇高潮喷水抽搐| 亚洲av成人精品一二三区| 欧美精品亚洲一区二区| 国产探花极品一区二区| 亚洲色图 男人天堂 中文字幕| svipshipincom国产片| 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 久久鲁丝午夜福利片| av一本久久久久| 国产xxxxx性猛交| 色婷婷av一区二区三区视频| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免| 叶爱在线成人免费视频播放| 亚洲国产最新在线播放| 亚洲成色77777| 色视频在线一区二区三区| 久久久精品免费免费高清| 日日撸夜夜添| videos熟女内射| 亚洲欧洲国产日韩| 五月天丁香电影| 亚洲,欧美精品.| 国产成人精品久久二区二区91 | 国产成人欧美在线观看 | 中国国产av一级| 久久精品熟女亚洲av麻豆精品| 桃花免费在线播放| 亚洲少妇的诱惑av| 色婷婷av一区二区三区视频| 十八禁高潮呻吟视频| 在线观看免费午夜福利视频| 国产精品蜜桃在线观看| 一区在线观看完整版| 麻豆精品久久久久久蜜桃| 人成视频在线观看免费观看| 老司机深夜福利视频在线观看 | 精品酒店卫生间| 91老司机精品| 亚洲男人天堂网一区| 久久久久精品国产欧美久久久 | 黑人猛操日本美女一级片| 欧美日韩国产mv在线观看视频| 一边摸一边做爽爽视频免费| 亚洲国产看品久久| 国产熟女欧美一区二区| 国产一区亚洲一区在线观看| 久久久久国产精品人妻一区二区| 青春草视频在线免费观看| 精品国产乱码久久久久久小说| 久久青草综合色| 九色亚洲精品在线播放| 另类亚洲欧美激情| 午夜av观看不卡| 亚洲欧美清纯卡通| 日本黄色日本黄色录像| 天美传媒精品一区二区| 亚洲第一青青草原| 在线观看国产h片| 国产午夜精品一二区理论片| 搡老乐熟女国产| av视频免费观看在线观看| 日韩av免费高清视频| 国产色婷婷99| 欧美日韩亚洲国产一区二区在线观看 | 王馨瑶露胸无遮挡在线观看| 在线观看免费视频网站a站| 最近最新中文字幕大全免费视频 | 又大又黄又爽视频免费| 久久久久精品国产欧美久久久 | 不卡视频在线观看欧美| 哪个播放器可以免费观看大片| 狂野欧美激情性bbbbbb| a级毛片在线看网站| 国产片特级美女逼逼视频| 大话2 男鬼变身卡| 97人妻天天添夜夜摸| 交换朋友夫妻互换小说| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 丰满饥渴人妻一区二区三| 国产精品偷伦视频观看了| 亚洲欧美激情在线| 日本av免费视频播放| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久小说| 女的被弄到高潮叫床怎么办| 美女大奶头黄色视频| 久久久久精品性色| 婷婷色麻豆天堂久久| 韩国av在线不卡| 男女边摸边吃奶| 免费在线观看视频国产中文字幕亚洲 | 深夜精品福利| 精品久久久久久电影网| 曰老女人黄片| 国产在线免费精品| 日本猛色少妇xxxxx猛交久久| 高清在线视频一区二区三区| 国产成人欧美在线观看 | 国产在视频线精品| av线在线观看网站| 亚洲国产欧美一区二区综合| 免费观看性生交大片5| 午夜福利乱码中文字幕| 国产熟女午夜一区二区三区| 久久久久久久久免费视频了| 国产野战对白在线观看| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| 超碰97精品在线观看| 精品国产国语对白av| 伊人久久大香线蕉亚洲五| 国产av码专区亚洲av| √禁漫天堂资源中文www| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 中文字幕av电影在线播放| 亚洲伊人色综图| 男女下面插进去视频免费观看| 国产精品女同一区二区软件| 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 国产成人精品在线电影| 日本欧美国产在线视频| 亚洲精品自拍成人| 国产精品久久久久久久久免| 亚洲欧美一区二区三区黑人| 亚洲欧洲日产国产| 中国三级夫妇交换| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 国产高清国产精品国产三级| av在线老鸭窝| 视频区图区小说| 国产精品一二三区在线看| 国产一区二区激情短视频 | 成人国产麻豆网| 好男人视频免费观看在线| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 在线观看国产h片| 国产精品蜜桃在线观看| 伊人亚洲综合成人网| 免费观看性生交大片5| 极品少妇高潮喷水抽搐| 国产黄频视频在线观看| 欧美日韩av久久| 国产一区二区激情短视频 | 老熟女久久久| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡| 午夜激情久久久久久久| 宅男免费午夜| 日日摸夜夜添夜夜爱| 精品国产一区二区三区久久久樱花| 国产精品嫩草影院av在线观看| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 在线天堂中文资源库| 一级毛片黄色毛片免费观看视频| 在线观看三级黄色| 亚洲精品日韩在线中文字幕| 国产精品嫩草影院av在线观看| 亚洲成人av在线免费| 一二三四中文在线观看免费高清| 精品一品国产午夜福利视频| 中国三级夫妇交换| www.自偷自拍.com| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 1024视频免费在线观看| www日本在线高清视频| 精品国产一区二区三区久久久樱花| 99久久综合免费| 肉色欧美久久久久久久蜜桃| 侵犯人妻中文字幕一二三四区| 亚洲天堂av无毛| 国产深夜福利视频在线观看| 高清av免费在线| 国产成人一区二区在线| netflix在线观看网站| 亚洲一码二码三码区别大吗| 久久久久久免费高清国产稀缺| 国产精品秋霞免费鲁丝片| 一级爰片在线观看| 国产一区二区 视频在线| 亚洲av日韩精品久久久久久密 | 亚洲,一卡二卡三卡| 国产在线视频一区二区| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 精品亚洲成国产av| 最近最新中文字幕免费大全7| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 亚洲伊人色综图| 日韩一卡2卡3卡4卡2021年| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲国产日韩| 九九爱精品视频在线观看| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 亚洲天堂av无毛| 国产成人欧美| 欧美人与性动交α欧美精品济南到| 麻豆精品久久久久久蜜桃| 伊人亚洲综合成人网| 9热在线视频观看99| 男的添女的下面高潮视频| 久久久久久免费高清国产稀缺| 日本vs欧美在线观看视频| h视频一区二区三区| 精品少妇久久久久久888优播| 日本猛色少妇xxxxx猛交久久| 亚洲精品美女久久久久99蜜臀 | 精品亚洲成国产av| 久久久久人妻精品一区果冻| 成人亚洲欧美一区二区av| 狂野欧美激情性bbbbbb| 久久久精品国产亚洲av高清涩受| 久久久精品免费免费高清| 高清不卡的av网站| 国产精品久久久久久人妻精品电影 | 看十八女毛片水多多多| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 日韩精品免费视频一区二区三区| av在线播放精品| 最近最新中文字幕大全免费视频 | 在线天堂中文资源库| 欧美国产精品va在线观看不卡| 国产黄频视频在线观看| 无遮挡黄片免费观看| 久久热在线av| 国产有黄有色有爽视频| 性色av一级| 七月丁香在线播放| a级片在线免费高清观看视频| 午夜日韩欧美国产| 久久免费观看电影| 亚洲av在线观看美女高潮| 激情五月婷婷亚洲| 色网站视频免费| 日韩一区二区三区影片| 国产97色在线日韩免费| 一本一本久久a久久精品综合妖精| 美国免费a级毛片| 大香蕉久久成人网| 亚洲欧美色中文字幕在线| 色视频在线一区二区三区| 精品国产乱码久久久久久男人| www日本在线高清视频| 久久av网站| 久久免费观看电影| 午夜激情av网站| 中文天堂在线官网| 久久久久精品性色| 51午夜福利影视在线观看| av国产久精品久网站免费入址| 欧美日韩综合久久久久久| 一本大道久久a久久精品| 亚洲欧美精品自产自拍| 亚洲一区中文字幕在线| 母亲3免费完整高清在线观看| 亚洲欧美日韩另类电影网站| 别揉我奶头~嗯~啊~动态视频 | 欧美成人午夜精品| 亚洲成国产人片在线观看| 中文字幕人妻丝袜一区二区 | 国产精品无大码| 亚洲少妇的诱惑av| 成年女人毛片免费观看观看9 | 日韩一区二区三区影片| 日韩av不卡免费在线播放| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 日韩中文字幕欧美一区二区 | 天堂8中文在线网| 亚洲国产精品一区二区三区在线| 纯流量卡能插随身wifi吗| 成人国产av品久久久| 成人国语在线视频| 黑人巨大精品欧美一区二区蜜桃| 最近最新中文字幕免费大全7| 国产免费又黄又爽又色| 国产成人啪精品午夜网站| 午夜免费男女啪啪视频观看| 看免费av毛片| 美女高潮到喷水免费观看| 亚洲欧美清纯卡通| 国产成人精品无人区| 亚洲精品第二区| 国产黄频视频在线观看| 国产精品蜜桃在线观看| 一本—道久久a久久精品蜜桃钙片| 成年动漫av网址| 色视频在线一区二区三区| 波野结衣二区三区在线| 女性被躁到高潮视频| 天天躁夜夜躁狠狠久久av| 免费看av在线观看网站| 午夜老司机福利片| 一级爰片在线观看| √禁漫天堂资源中文www| 欧美黑人欧美精品刺激| 一二三四中文在线观看免费高清| 性高湖久久久久久久久免费观看| 欧美人与性动交α欧美软件| 亚洲精品自拍成人| 国产精品久久久久久精品古装| 日韩不卡一区二区三区视频在线| 丝袜喷水一区| 亚洲欧洲精品一区二区精品久久久 | 国产 一区精品| 80岁老熟妇乱子伦牲交| 无限看片的www在线观看| av福利片在线| 欧美老熟妇乱子伦牲交| 老司机亚洲免费影院| 日韩精品有码人妻一区| 欧美黄色片欧美黄色片| 下体分泌物呈黄色| 一级毛片 在线播放| 成年人免费黄色播放视频| 韩国av在线不卡| 久久久国产一区二区| 99精国产麻豆久久婷婷|