• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transport feasibility of proppant by supercritical carbon dioxide fracturing in reservoir fractures *

    2018-07-06 10:01:58XianzhiSong宋先知GenshengLi李根生BinGuo郭斌HaizhuWang王海柱XiaojiangLi李小江Zehao呂澤昊
    關(guān)鍵詞:先知

    Xian-zhi Song (宋先知), Gen-sheng Li (李根生), Bin Guo (郭斌), Hai-zhu Wang (王海柱),Xiao-jiang Li (李小江) , Ze-hao Lü (呂澤昊)

    1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, Beijing 102249, China

    2. PetroChina Tarim Oilfield Company, Korla 841000, China

    Introduction

    China is rich in shale gas and its exploration and development are in a very extensive scale. Stimulation of the reservoir volume fracturing is an important technique for the efficient development of shale gas reservoirs. Currently, the most common technique used in the shale gas reservoir is the slick-water fracturing[1-2]. Due to its low viscosity, the slick-water has good anti-drag effects that help to form complex fractures. But the slick-water for the unconventional reservoir fracturing has also some undesirable features,such as the unwieldiness of the flowback fluid disposal and the reservoir pollution[3-5].

    The SC-CO2is a clean and waterless fracturing fluid that can prevent both the clay swelling caused by the water-based fracturing fluid and reduce the reservoir pollution. Thus, it can be used for the unconventional reservoir fracturing[6-7]. Due to its low density and viscosity compared to the slick-water, the ability to carry sand directly affects the shale gas reservoir fracturing stimulation in fractures[8].

    Many theoretical and experimental studies focus on the proppant settlement and the migration laws in conventional hydraulic fracturing fractures[9-10]. Liu[11]developed new empirical and analytical models for proppant transport and settling in hydraulic fractures.In these models, the sensitivity analysis is applied and these models can be used in any hydraulic fracture simulator. The sand carrying ability of the SC-CO2within the wellbore in the drilling process was studied.Li et al.[12]showed that the variation trend of the carrying-cuttings ability is related with the deviation angle. Shen et al.[13]performed numerical simulations for the cutting-carrying ability of the SC-CO2drilling at horizontal sections. But the sand carrying ability of the SC-CO2in the fracturing process was not well studied in sand carrying environments in the wellbore.The two-phase flow of the SC-CO2and the proppants is very complicated because the proppant concentration is high during the fracturing process in narrow and complex fractures.

    Because of the high temperature and high pressure condition for the SC-CO2in fractures, the experiment of the proppant transport by the SC-CO2fracturing is very difficult. In this paper, the numerical simulation method is used to study this problem systematically. Therefore the feasibility of the proppant transport by the SC-CO2fracturing and the slick-water fracturing in reservoir fractures is studied here as well as the influence of various parameters on the SC-CO2sand carrying ability. This study verifies the feasibility of the proppant transport by the SC-CO2fracturing in fractures, which provides a basis for the SC-CO2fracturing design.

    1. Basic model

    There are three multi-phase models based on the Euler-Euler approach in the FLUENT software: the VOF model, the Eulerian model and the Mixture model. The VOF model is suitable for solving problems of stratified flow and free surface tracking.With the Eulerian model, the momentum and continuity equations of each phase are solved separately.The Mixture model as a simplified form of the Eulerian model, can be used to simulate the multiphase flow field with relative velocities and can be applied to problems of particle settling, as is relevant in the cases of this paper. Besides, the Mixture model enjoys almost the same accuracy but with less computational cost as compared to the Eulerian model[14].

    The Peng-Robinson equation[15]is generally superior in calculating the density of the liquid CO2.However, it performs poorly with respect to the supercritical phase of CO2. The Span-Wagner equation[16]was developed for CO2and is considered as the top choice of the equation of state for calculating the property of pure CO2[17-18]. Unfortunately, this equation is too complicated to be used in engineering calculations. The Aungier-Redlich-Kwong equation of state[19]was used for the state equation of the SC-CO2because of its high accuracy and efficiency, especially for the supercritical state of CO2[20]. A physical model of the fractures was established based on the correlation.

    1.1 Mathematical model

    1.1.1 Continuity equation

    wheremρ is the mixture density,mv is the massaveraged velocity.

    1.1.2 Momentum equation

    wherepρ is the density of the phasep,pis the pressure, g is the acceleration of gravity,pα is the volume fraction of the phasep,,dr pv is the drift velocity of the secondary phasepandmμ is the viscosity of the mixture.

    1.1.3 Energy equation

    wherepEis the energy of the phasep,pv is the velocity of the phasep,effkis the effective conductivity andTis the temperature.

    1.1.4 Volume fraction equation

    whereqpm˙ is the mass transfer from the phaseqto the phasep,pqm˙ is the mass transfer from the phasepto the phaseq.

    1.1.5 Aungier-Redlich-Kwong state equation

    whereRis the gas constant,rTis the reduced temperature,cTis the critical temperature,cpis the critical pressure,cVis the critical specific volume,Vis the specific volume and ω is the acentric factor.

    1.2 Physical model

    The SC-CO2fracturing is still in the theoretical research stage and the parameters of the fracture geometry are not yet clear. A similarity geometric model (as shown in Fig. 1) was established based on the size of the fracture model in the literature[21]. The simulated fracture is a cuboid of 2 070 mm in length,495 mm in height and 9 mm in width. A total of 430×100×4 computational cells are used to represent the simulation domain. The sand-carrying fluid enters the left side of the fracture and exits from the right side of the fracture.

    Fig. 1 (Color Online) Schematic diagram of physical model and mesh densification

    According to the fracture operation, the mass flow inlet is used and the mass inflow rates of sand-carrying fluid and the proppant are defined. The inlet pressure and temperature are determined. To improve the calculation precision and the convergence speed, the turbulence intensity and the hydraulic diameters at both inlets and outlets are set correspondingly. The pressure outlet is used (the formation pressure). The no slip wall and the stationary wall are used, with a constant temperature. The filtration loss of the SC-CO2is ignored.

    1.3 Model solution

    The model is solved using th?e state-of-the-art CFD software–ANSYS FLUENT. The standardk-ε model is adopted in this study for the turbulence calculation. In order to reduce errors due to the artificial viscosity item in the low-order discretization schemes, the second-order upwind scheme is adopted.Under certain conditions, with the second-order upwind scheme, the same level of calculation accuracy can be achieved as with the QUICK scheme and the MUSCL scheme, but with a shortened calculation time. The SIMPLE method is used to solve the coupled equations of velocity and pressure, as shown to be stable by numerical tests[22]. In all cases,at least 10 000 iterations are required to make, with the convergence criterion: (1) the residual of the iteration is less than 10-5, or (2) the difference of the mass flow between inlet and outlet is less than 0.5%of that of the inlet mass flow.

    1.4 Model verification

    To the best of our knowledge, there is no experiment of the proppant transport by the SC-CO2fluid carried out. Since the numerical model built in this paper is applicable for any kind of fluid, the slick water is used to verify the model against the experiment, In the process of the proppant transport by the slick water, Liu[11]suggests that the proppant bed buildup consists of three stages. In the first stage,the proppant bed builds up gradually as a function of time. In the next stage, the bed grows only in height.The third stage sees a gradual increase of the proppant bed with a reduced discharge section so that the flow rate increases. The increase of the flow rate finally suspends the injected proppant, and the maximum height of the sand bank is reached and then remains unchanged. This state is called the equilibrium-here,the flow rate is called the equilibrium flow rate, and the height of the sand bank is called the equilibrium height (he). The time is called the equilibrium time.The injected proppant only increases the length of the bank in the flow direction. Numerical simulation comparisons are made based on the conditions in the literature[11]. Figure 2(a) shows the case of the first phase as given in the literature[11], while Figs. 2(b),2(c) shows the cases of the second stage and third stage in the literature[11]. With the numerical model,the three stages of the formation process of the sand bank are reproduced, similar to the three stages proposed by Liu according to the experiment, which validates our model.

    Fig. 2 (Color Online) Three stages of sand bank formation in numerical simulations

    2. Distribution characteristics of proppant in SCCO2 in fractures

    Figure 3 shows the contour of the proppant volume fraction in the vertical profile of the fracture.Figure 4 shows the proppant volume fraction in the fracture height direction of line a in Fig. 3, Fig. 5 shows the proppant velocity ()vin the fracture height direction of line b in Fig. 3. From Figs. 4, 5, we can summarize the cases as in the following Table 1

    Fig. 3 (Color Online) The contour of proppant volume fraction in vertical profile of fracture. Boundary conditions: inlet mass flow rate: 2 kg/s, outlet pressure: 40 MPa, medium properties: proppant density: 2 540 kg/m3, proppant diameter: 40 mesh size, solid volume fraction: 30%, SCCO2 viscosity: 0.06 mPa·s

    Fig. 4 The proppant volume fraction in the fracture height direction

    From the vertical profile of the fracture as seen in Fig. 3, it is clear that we have four regions based on the concentration. The first region is the low sand area at the top of the fracture. In this region, the proppant volume fraction is less than 0.05, and the proppant velocity is over 0.15 m/s. The second region is a suspension area next to the low sand area. In this region, the proppant volume fraction ranges between 0.05 and 0.3. With the proppant concentration gradient, the proppant velocity is greater than 0.15 m/s.The third region is the tumble area below the suspension area with the proppant volume fraction between 0.3 and 0.6, and the proppant velocity is between 0.10 m/s and 0.65 m/s. The fourth and final region is the sand area at the bottom of the fracture with the proppant volume fraction more than 0.6, and its proppant velocity is less than 0.05 m/s.

    3. Sand bank distribution comparison between SCCO2 and slick-water

    Figure 6 shows the contours of the sand bank distribution, where the cases of the SC-CO2and theslick-water are compared. During the initial stage of proppant injecting (t= 5s), the forming speed of the sand bank in the SC-CO2is greater than that of the slick-water. Because the density of the SC-CO2is less than that of the slick-water under the condition of the same mass inflow rate and solid volume fraction, and the proppant volume injected in the SC-CO2is more than that in the slick-water per unit time. Meanwhile the fluidization ability of the slick-water is better than that of the SC-CO2. Thus, with lower sedimentation velocities of the proppant in the slick-water, we will have longer proppant transport-this means settling closer to the outlet. The proppant in the SC-CO2first reaches the largest filling state in the fracture (t=40s) while the proppant in the slick-water reaches the largest filling state later in the fracture (t= 100 s).

    Table 1 Proppant distribution characteristics

    Fig. 6 (Color Online) Comparisons of the contours of sand bank distribution between SC-CO2 and slick-water

    Fig. 7 The comparison of the maximum height of the sand bank between SC-CO2 and slick-water at different times

    Figure 7 compares the maximum heightmax( )hof the sand bank between the cases of the SC-CO2and the slick-water in different time intervals ()t. The maximum height of the sand bank in the SC-CO2is larger than that in the slick-water at all time points,and its height difference first increases and then is maintained unchanged. Before the time of 20 s, the height of the sand bank in the SC-CO2increases rapidly. From =20stto =35st, the height of the sand bank increases slowly and then after =35st,the height stabilizes to a constant value. For the slickwater, the height of the sand bank increases slowly until the time of 90 s. After that it keeps unchanged.The equilibrium time in the SC-CO2is shorter than that of the slick-water but the equilibrium height in the SC-CO2is greater than that in the slick-water. Therefore under the same condition, the slick-water has a stronger sand-carrying ability than the SC-CO2.Further study is needed to ensure that the proppant in the SC-CO2and in the slick-water has a similar filling effect.

    4. Sensitivity analysis

    4.1 Proppant density

    Figure 8 shows the dimensionless equilibrium heights and equilibrium time for different proppant densities. The velocity of the proppant sedimentation,and the dimensionless equilibrium height increase with the increase of the proppant density. The equilibrium time decreases with the increase of the proppant density. When the proppant density is small, such as 1 040 kg/m3, the proppant could not easily settle to form a sand bank because it has a strong proppant fluidization ability. Therefore, the height of the sand bank is less than 60% of the fracture height, and the equilibrium time is close to 60 s. Conversely, increasing the proppant density can help the proppant to settle and form a sand bank in a shorter time.Therefore reducing the proppant density can reduce the equilibrium height and thus the risk of sand plugging-this ensures a uniform proppant settlement in the fracture, as discussed before, with a similar filling effect as that of the slick water.

    Fig. 8 The dimensionless equilibrium heights and equilibrium time for different proppant densities

    4.2 Solid volume fraction

    Figure 9 shows the dimensionless equilibrium heights and equilibrium time for different solid volume fractions. As shown in Fig. 9, the dimensionless equilibrium height increases slightly with the increase of the solid volume fraction, while the equilibrium time decreases substantially. This is because the convective proppant transport effects increase with the increase of the solid volume fraction and the proppant sedimentation becomes faster. The sand-carrying fluids with a high solid volume fraction make it easy to form a sand plug in the fracture at early stages of the SC-CO2fracturing. Therefore, to achieve a longer fracture requires a lower solid volume fraction, on the other hand, to achieve a higher fracture requires a higher solid volume fraction. What is more, the solid volume fraction does not have much influence on the equilibrium height. That means that the solid volume fraction can not be used to control the height of the vertical fracture.

    Fig. 9 The dimensionless equilibrium heights and equilibrium time for different solid volume fractions

    Fig. 10 The dimensionless equilibrium heights and equilibriumtime for different proppant diameters

    4.3 Proppant diameter

    Figure 10 shows the dimensionless equilibrium heights and equilibrium time for different proppant diameters ()D. The dimensionless equilibrium height increases with the increase of the proppant diameter,while the equilibrium time decreases. With the diameter size of 10 mesh, the proppants show the strongest wall effect[17], the fastest sedimentation, the largest porosity of the sand bank, the largest dimensionless equilibrium height, and the shortest equilibrium time. Therefore, when the fracture length is long enough, a sand plug easily occurs because for the proppants with large diameters, we will have a large dimensionless height. The proppant cannot be transported to the remote section of the fracture. With a sand diameter as commonly adopted (20/40 mesh) in the slick water fracturing, long fractures could not be achieved in the SC-CO2fluid. Consequently, a small proppant diameter is an advisable choice to achieve a longer fracture, but with a lower height.

    4.4 Mass inflow rate

    Figure 11 shows the dimensionless equilibrium heights and equilibrium time for different mass inflow rates ()Q. As shown in Fig. 11, both the equilibrium height and the equilibrium time decrease with the increase of the mass flow rate. Considering the cases of the mass inflow rates of 1.0 kg/s and 1.5 kg/s, the equilibrium time at the mass inflow rate of 1.5 kg/s is less than that at the mass inflow rate of 1.0 kg/s because the higher the mass inflow rate, the higher the injected proppant volume per unit time-this decreases the time needed to form a sand bank. The dimensionless equilibrium height at the mass inflow rate of 1.5 kg/s is less than that at the mass inflow rate of 1.0 kg/s. A higher mass inflow rateleads to a larger injected proppant velocity. In turn, we will have a larger suspension area and a larger tumble area and a smaller sand bank area, which leads to a longer fracture at a shorter time.

    Fig. 11 The dimensionless equilibrium heights and equilibrium time for different mass inflow rates

    5. Conclusions

    (1) The proppant concentration varies in vertical fractures of the SC-CO2fracturing. Based on proppant volume fraction, velocity and dimensionless height,these fractures can be divided into four regions-the low land area, the suspension area, the tumble area and the sand bank area. Of these four areas, the sand bank area and the suspension area are two key areas to determine the fracture shape.

    (2) The slick-water enjoys a better sand-carrying ability than the SC-CO2, thus the proppant could form a higher sand bank at a shorter time in the SC-CO2fluid compared with the slick-water, which means that the SC-CO2can lead to higher but shorter fracture compared with the slick water under the same condition.

    (3) In the SC-CO2fracturing, there are positive correlations between the proppant density, the proppant diameter, the solid volume fraction and the dimensionless equilibrium height, equilibrium time, as well as between the mass inflow rate and the equilibrium time and a negative correlation between the mass inflow rate and the dimensionless equilibrium height.

    (4) The results indicate that reducing the density of the proppant, the grain size of the proppant and the solid volume fraction or increasing the injection rate during the SC-CO2fracturing, we will have longer vertical fractures, but with lower height, thus the proppant will have similar filling effects as in fractures of the slick water fracturing. This study verifies the feasibility of the proppant transport by the SC-CO2fracturing in fractures. It provides a basis for the SC-CO2fracturing design.

    Acknowledgement

    This work was supported by the Science Foundation of China University of Petroleum, Beijing(Grant No. 2462013BJRC002).

    [1] Hou L., Sun B., Li Y. et al. Impact of unconventional oil and gas exploitation on fracturing equipment and materials development [J].Natural Gas Industry, 2013, 33(12):105-110(in Chinese).

    [2] Dong D., Zou C., Yang H. et al. Progress and prospects of shale gas exploration and development in China [J].Acta Petrolei Sinica, 2012, 33(1): 107-114(in Chinese).

    [3] Sakmar S. L. Shale gas development in North America:An overview of the regulatory and environmental challenges facing the industry [C].North American Unconventional Gas Conference and Exhibition. The Woodlands,USA, 2011.

    [4] Touzel P. Managing environmental and social risks in China [C].International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production.Perth, Australia, 2012.

    [5] Anderson R. L., Ratcliffe I., Greenwell H. C. et al. Clay swelling-A challenge in the oilfield [J].Earth-Science Reviews, 2010, 98(3-4): 201-216.

    [6] Shen Z., Wang H., Li G. Feasibility analysis of coiled tubing drilling with supercritical carbon dioxide [J].Petroleum Exploration and Development, 2010, 37(6):743-747.

    [7] Wang H., Shen Z., Li G. Feasibility analysis on shale gas exploitation with supercritical CO2[J].Petroleum Drilling Techniques, 2011, 39(3): 30-35(in Chinese).

    [8] He Z. G., Li G. S., Wang H. Z. et al. Numerical simulation of the abrasive supercritical carbon dioxide jet: The flow field and influence factors analysis [J].Journal of Hydrodynamics, 2016, 28(2): 238-246.

    [9] McClure M., Babazadeh M., Shiozawa S. et al. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks [J].SPE Journal,2017, 21(4): 1302-1320.

    [10] Gomaa A., Hudson H., Nelson S. et al. Computational fluid dynamics applied to investigate development of highly conductive channels within the fracture geometry[J].SPE Production and Operations, 2017, 32(4):392-403.

    [11] Liu Y. Settling and hydrodynamic retardation of proppants in hydraulic fractures [D]. Doctoral Thesis, Austin, USA:The University of Texas, 2006.

    [12] Li L., Wang Z., Qiu Z. et al. An experimental study on carrying cuttings features for supercritical carbon dioxide drilling fluid [J].Acta Petrolei Sinica, 2011, 32(2):355-359(in Chinese).

    [13] Shen Z. H., Wang H. Z., Li G. S. Numerical sumilation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section [J].Petroleum Drilling Techniques, 2011, 38(2): 233-236(in Chinese).

    [14] ANSYS Inc. ANSYS FLUENT 12.0 theory guide [M].ANSYS Inc., 2009, 558-569.

    [15] Peng D. Y., Robinson D. B. A new two-constant equation of state [J].Industrial and Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.

    [16] Span R., Wagner W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa [J].Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.

    [17]Li X., Li G., Wang H. et al. A coupled model for predicting flowing temperature and pressure distribution in drilling ultra-short radius radial wells [C].IADC/SPE Asia Pacific Drilling Technology Conference, Singapore, 2016.[18] Li X., Li G., Wang H. et al. A unified model for wellbore flow and heat transfer in pure CO2injection for geological sequestration, EOR and fracturing operations [J].International Journal of Greenhouse Gas Control, 2017, 57:102-115.

    [19] Aungier R. H. A fast, accurate real gas equation of state for fluid dynamic analysis applications [J].Journal of Fluids Engineering, 1995, 117(2): 277-281.

    [20] ANSYS Inc. ANSYS FLUENT 12.0 user’s guide [M].ANSYS Inc., 2009, 593-604.

    [21] Liu Y. Sharma M. M. Effect of fracture width and fluid rheology on proppant settling and retardation: An experimental study [C].SPE Annual Technical Conference and Exhibition. Dallas, USA, 2005.

    [22] Wang F. J. Computational fluid dynamics analysis-theory and application of CFD software [M]. Beijing: Tsinghua University Press, 2004, 196-200(in Chinese).

    猜你喜歡
    先知
    春江水暖鴨先知
    高 士
    寶藏(2019年6期)2019-01-15 14:52:30
    《先知》中的立體世界觀美學(xué)
    最好的財(cái)富
    我不是什么先知
    延河(2017年7期)2017-07-19 20:52:04
    春天的小先知(外兩首)
    春天來(lái)了
    臥佛
    詩(shī)林(2016年5期)2016-10-25 05:51:26
    春江水暖鴨先知
    春江水暖鴨先知
    99久久精品热视频| 亚洲,欧美,日韩| 特大巨黑吊av在线直播| 级片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产免费一级a男人的天堂| 搡老岳熟女国产| 美女大奶头视频| 少妇丰满av| 久久人人爽人人爽人人片va| 观看美女的网站| 亚洲av免费高清在线观看| 国产成人av教育| 制服丝袜大香蕉在线| 狂野欧美激情性xxxx在线观看| 嫩草影院精品99| 免费大片18禁| 亚洲五月天丁香| 人妻少妇偷人精品九色| 国产精品伦人一区二区| 亚洲精品色激情综合| 男女下面进入的视频免费午夜| 久久久久久大精品| 制服丝袜大香蕉在线| 免费观看的影片在线观看| 亚洲人成伊人成综合网2020| 如何舔出高潮| 人妻久久中文字幕网| 男女那种视频在线观看| 亚洲中文日韩欧美视频| 成年女人看的毛片在线观看| 国产视频一区二区在线看| 午夜影院日韩av| 日韩精品有码人妻一区| 久久久久久大精品| 久久国内精品自在自线图片| 国产精品美女特级片免费视频播放器| 午夜福利成人在线免费观看| 国产亚洲精品综合一区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情久久久久久爽电影| 变态另类成人亚洲欧美熟女| 1000部很黄的大片| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 久久久久久国产a免费观看| а√天堂www在线а√下载| 赤兔流量卡办理| 黄色一级大片看看| 欧美又色又爽又黄视频| 午夜福利在线在线| 九九久久精品国产亚洲av麻豆| 88av欧美| 亚洲最大成人av| 亚洲国产精品成人综合色| 亚洲av免费高清在线观看| aaaaa片日本免费| 亚洲图色成人| 观看免费一级毛片| netflix在线观看网站| 伊人久久精品亚洲午夜| 婷婷精品国产亚洲av| 成年女人看的毛片在线观看| av中文乱码字幕在线| 成人国产麻豆网| 长腿黑丝高跟| 国产中年淑女户外野战色| 午夜日韩欧美国产| 欧美日本亚洲视频在线播放| 免费av毛片视频| 联通29元200g的流量卡| 精品一区二区三区av网在线观看| 免费在线观看日本一区| 人妻丰满熟妇av一区二区三区| 欧美人与善性xxx| 国产精品国产高清国产av| 欧美精品啪啪一区二区三区| 1000部很黄的大片| 亚洲国产精品sss在线观看| 精品一区二区免费观看| 国产精品女同一区二区软件 | 国国产精品蜜臀av免费| 波多野结衣高清作品| 超碰av人人做人人爽久久| 成人午夜高清在线视频| 亚洲va在线va天堂va国产| www.www免费av| 两人在一起打扑克的视频| 午夜久久久久精精品| 亚洲午夜理论影院| 久久久久久久久久成人| 又紧又爽又黄一区二区| 99久久久亚洲精品蜜臀av| 亚洲av中文av极速乱 | 女的被弄到高潮叫床怎么办 | 亚洲18禁久久av| 午夜亚洲福利在线播放| 毛片女人毛片| 成熟少妇高潮喷水视频| 免费一级毛片在线播放高清视频| 天天一区二区日本电影三级| 国产精品一区二区性色av| 精品人妻视频免费看| 久久久久久久午夜电影| 免费看av在线观看网站| 成人国产综合亚洲| 国产av不卡久久| 日韩 亚洲 欧美在线| 国产精品人妻久久久久久| 亚洲自拍偷在线| 亚洲欧美日韩卡通动漫| 国内精品久久久久精免费| 一区二区三区高清视频在线| 最近中文字幕高清免费大全6 | 欧美日本亚洲视频在线播放| 久久午夜福利片| 又黄又爽又刺激的免费视频.| 午夜福利高清视频| 岛国在线免费视频观看| 国产av一区在线观看免费| 成年女人看的毛片在线观看| 免费大片18禁| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 99久久精品国产国产毛片| 美女被艹到高潮喷水动态| 人人妻人人澡欧美一区二区| 午夜老司机福利剧场| 成人美女网站在线观看视频| 亚洲精品日韩av片在线观看| 国内精品宾馆在线| 成人永久免费在线观看视频| 在线免费观看的www视频| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品综合一区在线观看| 99热网站在线观看| 很黄的视频免费| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品人妻久久久影院| 午夜激情欧美在线| 亚洲国产精品合色在线| 天堂√8在线中文| 国产中年淑女户外野战色| 国产精品乱码一区二三区的特点| 亚洲自偷自拍三级| a在线观看视频网站| 天堂影院成人在线观看| 又黄又爽又刺激的免费视频.| av国产免费在线观看| 国产黄a三级三级三级人| 欧美黑人巨大hd| 色av中文字幕| 成人高潮视频无遮挡免费网站| 搡老岳熟女国产| 欧美成人性av电影在线观看| 男人狂女人下面高潮的视频| 国产精品亚洲美女久久久| 久久人人精品亚洲av| 国产一区二区激情短视频| 日本a在线网址| 少妇猛男粗大的猛烈进出视频 | 琪琪午夜伦伦电影理论片6080| 亚洲av五月六月丁香网| 午夜福利高清视频| 久久99热这里只有精品18| 91久久精品国产一区二区三区| 99久久精品国产国产毛片| 国产久久久一区二区三区| 日本熟妇午夜| 最好的美女福利视频网| 国产av不卡久久| 天美传媒精品一区二区| 午夜精品久久久久久毛片777| 国产精品一区二区免费欧美| 在线观看免费视频日本深夜| 99热只有精品国产| 久99久视频精品免费| 欧美高清成人免费视频www| 22中文网久久字幕| 精品久久久久久久久av| 乱系列少妇在线播放| 99热这里只有是精品50| 欧美区成人在线视频| 亚洲综合色惰| 亚洲五月天丁香| 校园春色视频在线观看| 欧美日韩瑟瑟在线播放| 午夜福利欧美成人| 国产黄色小视频在线观看| 两人在一起打扑克的视频| 欧美成人免费av一区二区三区| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 欧美另类亚洲清纯唯美| 成人一区二区视频在线观看| 熟妇人妻久久中文字幕3abv| 精品人妻1区二区| 男女下面进入的视频免费午夜| 久久久久久大精品| 亚洲精品影视一区二区三区av| 欧美xxxx性猛交bbbb| 蜜桃亚洲精品一区二区三区| 免费av不卡在线播放| 国产高清视频在线观看网站| 免费观看人在逋| 男插女下体视频免费在线播放| 十八禁国产超污无遮挡网站| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 久久午夜福利片| 欧美最黄视频在线播放免费| 国产伦在线观看视频一区| 99视频精品全部免费 在线| 亚洲 国产 在线| 村上凉子中文字幕在线| 欧美性猛交黑人性爽| 亚洲成人久久爱视频| 国产精品乱码一区二三区的特点| 最新中文字幕久久久久| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久久丰满 | 成人国产一区最新在线观看| 69人妻影院| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 搡老妇女老女人老熟妇| 国产精品伦人一区二区| 麻豆成人av在线观看| 精品午夜福利在线看| 精品久久久久久久末码| 性欧美人与动物交配| 又紧又爽又黄一区二区| 欧美精品国产亚洲| 国产淫片久久久久久久久| 韩国av一区二区三区四区| 一进一出抽搐gif免费好疼| 亚洲熟妇中文字幕五十中出| 国产成人av教育| 免费av观看视频| 麻豆久久精品国产亚洲av| 欧美精品国产亚洲| 狂野欧美白嫩少妇大欣赏| 国产成人一区二区在线| 国产男靠女视频免费网站| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 国产久久久一区二区三区| 午夜福利在线观看免费完整高清在 | 两个人视频免费观看高清| 亚洲不卡免费看| 999久久久精品免费观看国产| 天堂动漫精品| 乱系列少妇在线播放| 在线观看舔阴道视频| 少妇人妻一区二区三区视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲人成网站在线播| 免费av不卡在线播放| 五月玫瑰六月丁香| 能在线免费观看的黄片| 看黄色毛片网站| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 99久久精品国产国产毛片| 国产 一区 欧美 日韩| 91午夜精品亚洲一区二区三区 | 国产精品不卡视频一区二区| 国产精品无大码| 97热精品久久久久久| 男女视频在线观看网站免费| 亚洲欧美清纯卡通| 精品久久久久久久久久免费视频| 精品不卡国产一区二区三区| 久久精品影院6| xxxwww97欧美| 国产探花极品一区二区| 久久久成人免费电影| 免费观看的影片在线观看| 天堂av国产一区二区熟女人妻| 亚洲,欧美,日韩| av在线亚洲专区| 18禁黄网站禁片免费观看直播| 99久久无色码亚洲精品果冻| 久久国内精品自在自线图片| 丝袜美腿在线中文| 日韩大尺度精品在线看网址| 亚洲 国产 在线| 亚洲av成人av| 国产日本99.免费观看| 中文字幕av在线有码专区| 日本三级黄在线观看| 伦理电影大哥的女人| 国产三级在线视频| 精品久久国产蜜桃| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 免费大片18禁| 成熟少妇高潮喷水视频| 欧美最新免费一区二区三区| 色哟哟·www| 国产亚洲精品久久久com| 两个人视频免费观看高清| 欧美3d第一页| 欧美最新免费一区二区三区| 婷婷六月久久综合丁香| 69av精品久久久久久| 最新在线观看一区二区三区| 欧美+日韩+精品| 五月伊人婷婷丁香| 久久国内精品自在自线图片| 国产成人一区二区在线| 久久亚洲精品不卡| 给我免费播放毛片高清在线观看| netflix在线观看网站| 国产精品av视频在线免费观看| 亚洲一区高清亚洲精品| 国产精品福利在线免费观看| 干丝袜人妻中文字幕| 在线观看av片永久免费下载| 久久午夜亚洲精品久久| 精品一区二区三区视频在线观看免费| 高清毛片免费观看视频网站| 在线天堂最新版资源| 亚洲精华国产精华精| 婷婷亚洲欧美| 亚洲精品影视一区二区三区av| 成人高潮视频无遮挡免费网站| 欧美性感艳星| 赤兔流量卡办理| 亚洲精品粉嫩美女一区| 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 啦啦啦韩国在线观看视频| 亚州av有码| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 一本精品99久久精品77| 久久99热这里只有精品18| 亚洲男人的天堂狠狠| eeuss影院久久| 女人被狂操c到高潮| 国产av在哪里看| 在线免费观看不下载黄p国产 | 成年女人毛片免费观看观看9| 天堂网av新在线| av天堂在线播放| videossex国产| 国产伦精品一区二区三区四那| 五月伊人婷婷丁香| 免费看美女性在线毛片视频| 欧美日韩国产亚洲二区| 亚洲性夜色夜夜综合| 少妇的逼水好多| 麻豆国产97在线/欧美| 久久久精品大字幕| 亚洲熟妇熟女久久| 亚洲av中文字字幕乱码综合| 淫秽高清视频在线观看| 尾随美女入室| 精品免费久久久久久久清纯| 少妇高潮的动态图| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 久久6这里有精品| 又黄又爽又免费观看的视频| 毛片一级片免费看久久久久 | 偷拍熟女少妇极品色| 中文资源天堂在线| 国内毛片毛片毛片毛片毛片| 伊人久久精品亚洲午夜| 男女视频在线观看网站免费| 久久香蕉精品热| 亚洲欧美清纯卡通| 12—13女人毛片做爰片一| 99精品久久久久人妻精品| 悠悠久久av| 99在线视频只有这里精品首页| 小说图片视频综合网站| 制服丝袜大香蕉在线| xxxwww97欧美| 午夜福利视频1000在线观看| 内地一区二区视频在线| 国产毛片a区久久久久| 日本 av在线| 简卡轻食公司| 免费无遮挡裸体视频| 国产国拍精品亚洲av在线观看| 极品教师在线视频| 成人美女网站在线观看视频| 99国产极品粉嫩在线观看| 97热精品久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 一夜夜www| 国产精品一区二区三区四区免费观看 | 十八禁网站免费在线| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| 搡老熟女国产l中国老女人| 免费观看人在逋| 国内精品一区二区在线观看| 成人无遮挡网站| 99视频精品全部免费 在线| 给我免费播放毛片高清在线观看| 亚洲专区中文字幕在线| 美女高潮的动态| 日韩中字成人| 国产aⅴ精品一区二区三区波| 欧美黑人欧美精品刺激| 日韩一区二区视频免费看| a级毛片a级免费在线| 尾随美女入室| 欧美zozozo另类| 国产黄片美女视频| 99久久精品国产国产毛片| 成人av一区二区三区在线看| 99热这里只有是精品在线观看| 国产精品无大码| 中文字幕免费在线视频6| 免费av毛片视频| 亚洲在线自拍视频| 琪琪午夜伦伦电影理论片6080| 国产亚洲精品av在线| 一夜夜www| 婷婷精品国产亚洲av| 日本一二三区视频观看| 国产一级毛片七仙女欲春2| 能在线免费观看的黄片| 无遮挡黄片免费观看| 精品午夜福利视频在线观看一区| 一进一出好大好爽视频| 成人欧美大片| 超碰av人人做人人爽久久| 国产精品国产高清国产av| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看 | 一级av片app| 18禁黄网站禁片免费观看直播| 美女 人体艺术 gogo| 国产精品一区二区性色av| 色精品久久人妻99蜜桃| 亚洲无线观看免费| АⅤ资源中文在线天堂| 中文字幕人妻熟人妻熟丝袜美| 99热这里只有是精品50| 一a级毛片在线观看| 啦啦啦啦在线视频资源| 亚洲乱码一区二区免费版| 极品教师在线视频| 丰满人妻一区二区三区视频av| АⅤ资源中文在线天堂| 在线国产一区二区在线| 久久6这里有精品| 在线天堂最新版资源| 人妻少妇偷人精品九色| 国产一区二区三区av在线 | 成年女人毛片免费观看观看9| 男女做爰动态图高潮gif福利片| 男女那种视频在线观看| 中文字幕熟女人妻在线| 国产黄片美女视频| av女优亚洲男人天堂| 国产精品福利在线免费观看| 亚洲第一电影网av| 九色成人免费人妻av| 亚洲精华国产精华液的使用体验 | 久久久精品欧美日韩精品| 久久久久国产精品人妻aⅴ院| 久久久久国内视频| 国产三级中文精品| 成人亚洲精品av一区二区| 日韩欧美三级三区| 免费av观看视频| 日韩av在线大香蕉| 精品一区二区三区人妻视频| 国产69精品久久久久777片| 最新中文字幕久久久久| 啦啦啦观看免费观看视频高清| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 久久国内精品自在自线图片| 最好的美女福利视频网| 黄色丝袜av网址大全| 色哟哟·www| 天天一区二区日本电影三级| 毛片女人毛片| 亚洲自拍偷在线| 国产在视频线在精品| 色哟哟·www| 成人高潮视频无遮挡免费网站| 春色校园在线视频观看| 嫩草影视91久久| 99久国产av精品| 亚洲av美国av| 色5月婷婷丁香| 久久午夜福利片| 国产乱人视频| 亚洲美女搞黄在线观看 | 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 国产精品一区二区免费欧美| 深爱激情五月婷婷| 亚洲中文字幕日韩| 最新在线观看一区二区三区| 国产精品,欧美在线| 波多野结衣巨乳人妻| 丝袜美腿在线中文| 国产精品综合久久久久久久免费| 成熟少妇高潮喷水视频| 亚洲内射少妇av| 伊人久久精品亚洲午夜| 精品欧美国产一区二区三| 亚洲欧美日韩无卡精品| 亚洲在线观看片| 欧美日韩乱码在线| 亚洲中文字幕一区二区三区有码在线看| 两人在一起打扑克的视频| 亚洲av.av天堂| 日韩在线高清观看一区二区三区 | 日韩国内少妇激情av| 亚洲欧美清纯卡通| 国产午夜精品久久久久久一区二区三区 | 夜夜夜夜夜久久久久| 久久久成人免费电影| 中文字幕av在线有码专区| 天天躁日日操中文字幕| 男人舔奶头视频| 欧美国产日韩亚洲一区| 欧美一区二区国产精品久久精品| 网址你懂的国产日韩在线| 国产精品美女特级片免费视频播放器| 日本 av在线| 精品久久久久久久人妻蜜臀av| 啪啪无遮挡十八禁网站| 日韩欧美 国产精品| 校园春色视频在线观看| 国产精品日韩av在线免费观看| 精品福利观看| 无人区码免费观看不卡| 黄片wwwwww| 色av中文字幕| 亚洲综合色惰| 午夜精品一区二区三区免费看| 国产欧美日韩精品亚洲av| 日日夜夜操网爽| 九九热线精品视视频播放| 亚洲国产日韩欧美精品在线观看| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添av毛片 | 国产探花极品一区二区| 久久久久国内视频| 午夜福利18| 天堂网av新在线| 两个人视频免费观看高清| 一进一出抽搐gif免费好疼| 内地一区二区视频在线| 日韩强制内射视频| 在线天堂最新版资源| 成人鲁丝片一二三区免费| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看 | 又爽又黄无遮挡网站| 欧美黑人欧美精品刺激| 又黄又爽又免费观看的视频| 一进一出抽搐动态| 色综合亚洲欧美另类图片| 尾随美女入室| 亚洲欧美日韩高清专用| 久久亚洲精品不卡| 亚洲成av人片在线播放无| 啪啪无遮挡十八禁网站| 婷婷精品国产亚洲av在线| 国产 一区 欧美 日韩| 国国产精品蜜臀av免费| 国产午夜精品论理片| 亚洲国产精品成人综合色| 一个人看的www免费观看视频| 春色校园在线视频观看| 午夜免费成人在线视频| 精品久久久久久成人av| 久久久久久久久大av| 国产精品永久免费网站| 国产精品人妻久久久影院| 看片在线看免费视频| 听说在线观看完整版免费高清| 欧美日韩瑟瑟在线播放| 日韩高清综合在线| 日本-黄色视频高清免费观看| 男人的好看免费观看在线视频| 日本免费一区二区三区高清不卡| 99热6这里只有精品| 少妇人妻一区二区三区视频| 国产精品永久免费网站| 国产国拍精品亚洲av在线观看| 18+在线观看网站| 69av精品久久久久久| 日本a在线网址| 黄色配什么色好看| 久9热在线精品视频| 热99在线观看视频| 亚洲精华国产精华液的使用体验 | 亚洲av第一区精品v没综合| 中文字幕av成人在线电影| 亚洲精品乱码久久久v下载方式| 亚洲熟妇中文字幕五十中出| 日日摸夜夜添夜夜添av毛片 | 亚洲经典国产精华液单| 99久久精品国产国产毛片| 久久欧美精品欧美久久欧美| 亚洲av电影不卡..在线观看| 亚州av有码| 91在线观看av| 最近最新免费中文字幕在线| av在线蜜桃| 免费看av在线观看网站|