• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *

    2018-07-06 10:01:58YapingJu琚亞平SiLiu劉思ChuhuaZhang張楚華
    關(guān)鍵詞:亞平

    Ya-ping Ju (琚亞平), Si Liu (劉思), Chu-hua Zhang (張楚華)

    1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

    2. Shanghai Turbine Works, Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240, China

    Introduction

    The vortex pumps, also known as the regenerative or peripheral pumps, are capable of developing a high head at a low flow rate within a single stage. As a kind of blade pumps, the vortex pump primarily consists of a casing, an impeller, an inlet pipe, an outlet pipe and a stripper. As shown in Fig. 1(a), the casing forms an annular side channel and the impeller has a number of blades at the periphery of its rotating disc. The stripper is inserted downstream the outlet pipe to prevent the fluid leakage from the outlet pipe to the internal passage. As the impeller rotates, the fluid enters the pump through an inlet pipe, passes through the channel in a helical way, and then discharges out of the pump through an outlet pipe (Fig.1(b)). The helical flow pattern involves complicated vortex structures such as longitudinal, radial and axial vortices, allowing the fluid particles to circulate in a repeated or regenerative way between the side channel and the rotating impeller (Fig. 1(c)). These repeated vortex structures enable a single-stage vortex pump to develop a head 2-4 times higher in comparison with that developed by a single-stage centrifugal pump at the same tip speed[1-2]. In addition to this hydrodynamic merit, the vortex pump also has a compact size and is easy to manufacture with a low cost. Therefore,the vortex pump has increasingly become an important alternative or supplement to the centrifugal pump[3], the positive displacement pump and even the diffusion pump[4], and found successful applications in industrial fields such as the chemical engineering, the refrigeration, the fuel cell, the aerospace, the vacuum and the medical devices.

    Compared with the other types of blade pumps such as the axial-flow and centrifugal pumps, the vortex pumps are. however, not well studied. Historically, diverse theories were put forward to interpret the working mechanisms of the vortex pump, among which the momentum exchange theories were found to be more precise, as presented by Song et al.[5], Yoo et al.[6]and Meakhail et al.[7]. According to the momentum exchange theories, some 1-D analytical models and flow loss models were developed by Quail et al.[8,9]and Liu[10]to predict the hydraulic performance of the vortex pumps, and were also extended by Badami and Mura[11]and Song et al.[12]to predict the aerodynamic performance of the vortex blowers and compressors. However, since these simplified models rely heavily on empirical correlations, or experimental and CFD data, they fail to reveal the 3-D internal flow field and are only limited to the stage of the preliminary design of the vortex pumps.

    To develop more advanced vortex pumps via the modern design optimization tools[13-16], an important step is to understand how the blade geometry affects the hydraulic performance as well as the internal flow of the vortex pump. The computational fluid dynamics(CFD) method based on the 3-D fully viscous flow model offers a more precise way to not only predict the performance, but also reveal the detailed flow structures in the vortex pumps[17-18]. Furthermore, the CFD results can be used to validate or revise the 1-D simplified models, and to supplement or interpret the experimental measurements[19]. However, to our best knowledge, most CFD studies of the vortex pumps were limited to the cases of 2-D radial straight blades,and the studies of the vortex pumps with twisted blades or 3-D blades[7,20]were few, which are,however, important issues for further improvements of the hydraulic performance of the vortex pumps, and therefore for the technological advancements and the wide applications of the vortex pumps.

    In the present study, two types of new blades,namely 2-D and 3-D corner blades, are introduced to the design of the vortex pump. Primary efforts are devoted to numerically investigating the effect of different blade shapes on the hydraulic performance and the vortex structures of the vortex pumps. This work is expected to provide a theoretical basis for the future design optimization of advanced vortex pumps.

    1. Methodology

    1.1 Concept of corner blades

    The baseline vortex pump under consideration is provided by Daikin LTD, with a rectangular crosssection for its annular side channel and traditional 2-D radial straight blades. Important dimensions and operating conditions of this baseline pump are listed in Table 1.

    To improve the hydraulic performance of this vortex pump, two types of new blades, namely 2-D and 3-D corner blades, are proposed and investigated in this study. Here the term corner means that both sides of the impeller blade form a corner shape rather than a straight shape at the symmetric line of the impeller, as illustrated in Fig. 2. In Fig. 2(a), two parameters, β and γ, are introduced to define the blade setting angles at the hub and the tip, respectively.Accordingly, the traditional 2-D radial straight blade is characterized by β = γ = 90°, the 2-D corner blade by β = γ ≠90°, and the 3-D corner blade by β≠γ,i.e., a kind of twisted blades. Note that here the 3D corner blade is as in a ruled surface of straight lines joining corresponding points on the hub and tip contours. For either the 2-D or 3-D corner blade, it is defined to beforward if γ>90° and backward if γ < 90°.

    Fig. 1 (Color online) Schematic diagrams of the vortex pump

    Table 1 Main parameters of the baseline vortex pump

    In this study, the hydraulic performances of 13 vortex pumps with different corner blades (β=γ=60°, 80°, 100°, 110°, 120°, 130° and 140° for 2-D corner blades, and β=90°,γ= 60°, 80°, 100°, 110°,120° and 130° for 3-D corner blades) are numerically investigated and compared with that of the baseline pump with radial straight blades (β = γ = 90°). In all these cases, the hub and casing profiles, the clearances,the blade number and the blade thickness are kept unchanged.

    Fig. 2 Geometry descriptions of the blade

    1.2 CFD model

    The hydraulic performance of the vortex pump is obtained by the numerical solution of the 3-D steady incompressible Reynolds-averaged Navier-Stokes equations through a finite-volume method solver, the Fluent 6.3. The S-A turbulence model is adopted to close the turbulence terms. The convection terms of the governing equations are discretized by the secondorder upwind scheme and the diffusion terms by the second-order central scheme. The pressure-based SIMPLE algorithm is employed to treat the flow velocity-pressure coupling.

    The impeller region is set to be rotational while the other flow domains are set to be stationary. The rotor-stator interfaces are modeled by the multiple reference frame (MRF) approach or the frozen rotor technique. This rotor-stator treatment technique was recently applied to study the vortex pumps[9]and the

    vortex blowers[11]with acceptable accuracy for the performance and the flow patterns. At the inlet, the total pressure is fixed to be 1 107 kPa and the flow direction is specified to be normal to the boundary. At the outlet, the static pressure is given and adjusted within the range from 1 207 kPa to 2 507 kPa for different flow rates. Nonslip conditions are applied to the solid walls. The efficiency of the vortex pump in this study is defined as follows

    whereQis the volumetric flow rate,His the pump head andPis the pump input power.

    The multi-block structured grids are generated in the computational region (Fig. 3). To better capture the boundary layer, the area-averaged+yof the first inner nodes close to the solid surface of the passage is generally kept below 5.0. The grid independence is examined for the baseline pump via successively increasing the grid number until the pump head and efficiency are essentially no longer changed. As shown in Table 2, three sets of grids are evaluated and the grid independence is achieved when the grid number is 1 129 785. Hereafter, the grid numbers of all the vortex pumps to be investigated in this study are kept around 1 130 000.

    Fig. 3 Computational grids

    Figure 4 shows the comparison of the pump efficiency η between the CFD results and the Daikin LDT measurements. As can be seen, the variation trend of the predicted efficiency curve is well consistent with the measurement data. The predicted value is slightly larger than the measurement data, which is reasonable and can be explained by the absence of the leakage flow, the disk resistances and the mechanical losses in the CFD simulation. Overally,the above CFD method is considered to be reliable in predicting the hydrodynamic performance of the vortex pump.

    Table 2 Examination of grid independence

    Fig. 4 Comparison of the pump efficiency between CFD results and experimental data

    2. Results and discussions

    2.1 2-D corner blades

    2.1.1 Hydraulic performance

    Figure 5 shows the calculated hydraulic performance curves of the vortex pumps with different 2-D blade shapes. In particular, the headHand the efficiency η of each vortex pump at the design point are listed in Table 3. In comparison with the radial straight blade, the 2-D forward corner blades are found to enjoy a better hydraulic performance in terms of the pump efficiency and head, while the 2-D backward ones show a worse hydraulic performance.In addition, the pump head is found to increase with the increase of the blade angle. At the blade angle of 130° (β = γ = 130°), the efficiency of the 2-D-blade vortex pump reaches the highest, i.e., 36.72%.

    2.1.2 Vortex structure

    For an insight into the performance improvement or deterioration of the above vortex pumps, the flows in three typical vortex pumps with the 2-D forward 130° blade, the straight blade and the 2-D backward 60° blade are analyzed, respectively. Hereafter, all flow fields investigated are within the impeller blade passage opposite to the pump stripper, which is considered in the developed flow region of the vortex pump. The flow fields in different planes within that passage, as illustrated in Fig. 6, are primarily examined in this study. As can be seen, Plane B-B is equivalent with the meridional plane while Planes A-A and C-C are perpendicular to the axial and radial directions, respectively.

    Fig. 5 Hydraulic performance curves of 2-D-blade vortex pumps

    Table 3 Designpointperformanceof2-D-bladevortex pumps

    Figure 7 shows the flow velocity vectors in the meridional plane (Plane B-B in Fig. 6), from which the longitudinal vortices in the vortex pumps can be clearly observed. In Fig. 7(a), the 2-D forward 130°blade is observed to have a pair of well-organized and strong longitudinal vortices with their centers approximately on the border line between the blade and the side channel. In that case, most of the fluids discharge from the blade tip rather than from the blade side.According to the momentum exchange theory presented by Song et al.[5], this allows a substantial centrifugal force to be imparted to the fluids and creates a large discharge tangential momentum to be transferred for the high head. In Fig. 7(c), the 2-D backward 60° blade is observed to have double pairs of longitudinal vortices. The pair of the primary vortices (downside) has a much weaker vortex intensity with their centers obviously inside the impeller blade passage. Consequently, most of the fluids leave the blade passage from the blade side rather than from the blade tip. Worse still, the pair of the secondary vortices (upside) near the blade tip induces the fluids to enter the impeller through the blade tip and to flow centripetally just as within a radial turbine. Such a turbine-like flow pattern is supposed to have a negative effect on the energy transfer from the impeller to the fluids. This explains why the vortex pump with the backward blade has a much lower head.As for the radial straight blade in Fig. 7(b), the longitudinal vortex flow is similar to, but obviously weaker than that in the forward corner blade.

    Fig. 6 A schematic diagram of different planes in the pump passage

    Figure 8 shows the relative flow velocity vectors in Plane C-C, which is close to the hub side where the flow incidences in the entry region of the blade passage can be observed. Due to the different blade angles (β) at the hub, the flow incidences are found to be different for those of the vortex pumps with different blade types. As can be seen, the 2-D forward 130° blade enables a good match between the blade shape and the relative flow, leading to relatively small incidence losses and hence a high efficiency of the vortex pump. In Fig. 8(b), the match between the blade and the relative flow is observed to become worse. For the 2-D backward 60° blade in Fig. 8(c),this match is further deteriorated with an even poorer flow guidance at the hub, with the largest incidence losses, which is adverse to the pump efficiency.

    Fig. 7 Longitudinal vortices in 2-D-blade vortex pumps

    Fig. 8 Hub-side relative flow velocities in 2-D-blade vortex pumps

    2.2 3-D corner blades

    2.2.1 Hydraulic performance

    For the 3-D-blade vortex pumps in this study, as previously mentioned, the blade angle β is fixed to be 90° at the hub while the angle γ varies from 60°to 130° at the tip. The calculated hydraulic performance curves of the vortex pumps with different 3-D corner blades are shown in Fig. 9. Table 4 lists the head and the efficiency of each vortex pump at the design point. As can be seen, the 3-D-blade vortex pumps have similar performance variation trends as the 2-D-blade vortex pumps. The 3-D forward corner blades are found to outperform the radial straight blade in terms of both the efficiency and the head,while the 3-D backward blades show poorer performance. In addition, compared with the 2-D-blade vortex pumps, the 3-D-blade vortex pumps generally show a higher pump efficiency and a lower head,except for the case of the 3-D backward 60° blade,which achieves a higher head than the 2-D backward 60° blade. The highest efficiency (38.49%) of the 3D-blade vortex pump at the design point is achieved at =120γ°.

    Fig. 9 Hydraulic performance curvesof 3-D-bladevortex pumps

    2.2.2 Vortex structure

    The flow fields in the three typical pumps with the 3-D forward 120° blade, the straight blade and the 3-D backward 60° blade are examined and analyzed as follows.

    Figure 10 shows the flow velocity vectors in the meridional plane (Plane B-B). Similar to the 2-D blades in Fig. 7, the 3-D forward 120° blade performs the best while the 3-D backward 60° blade performs the worst owing to the structure of the longitudinal vortices. Compared with the 2-D corner blade, the 3-D forward blade is observed to have weaker longitudinal vortices and the fluids discharge from both the blade tip and the blade side (Fig. 10(a)). According to the momentum exchange theory[5], the 3-D forward corner blade can develop a smaller discharge tangential momentum and thus a smaller pump head than the corresponding 2-D forward corner blade. For the 3-D backward 60° blade in Fig. 10(c), although the negative secondary vortices (upside) at the blade tip are stronger than those of the 2-D backward 60° blade shown in Fig. 7(c), due to stronger primary vortices(downside) with their centers moving closer to the blade side, more fluids are allowed to be discharged for the momentum exchange. This explains why the 3-D backward 60° blade yields a higher pump head than the 2-D backward 60° blade.

    Table 4 Designpointperformanceof3-D-blade vortex pumps

    Fig. 11 Axial vortices in 3-D-blade vortex pumps

    Fig. 12 Radial vortices in 3-D-blade vortex pumps

    Since the investigated 3-D corner blades share the same blade angles at the hub (β= 90°), no significant differences are observed for the flow incidences near the entry region. Attention is thus directed towards the relative velocities in Plane C-C located at 50 percent point of the blade height, as shown in Fig.11. In this figure, the axial vortices within the impeller blade passage and the tip clearance vortices can be observed. Since the axial vortices are bounded by the blade surfaces and the impeller hub, they make small contributions to the momentum exchange of the fluids between the side channel and the impeller blade passage. Instead, the presence of the axial vortices disturbs the flow, with increased flow losses within the pump. Among the three blade types, the 3-D forward 120° blade is found to have the smallest axial vortex region, which helps to maintain a high pump efficiency. The tip clearance flow, driven from the blade pressure surface to the suction surface by the pressure difference, implies that the forward blade induces a smaller relative flow velocity and thus a larger absolute flow velocity in the tip clearance. This explains the relatively large design flow rate for the 3-D forward 120° blade as listed in Table 4. Figure 12 shows the relative velocities in Plane A-A of the three pumps, from which the structures of the radial vortices can be observed. Being bounded by the blade surfaces and the impeller disc, the radial vortices also contribute little to the momentum exchange but with flow losses, especially in the case of the 3-D backward 60°blade. Overally, the 3-D backward blade induces larger axial and radial vortices, with larger flow losses and thus a lower pump efficiency in comparison with the 3-D forward blade.

    To sum up, the longitudinal vortices are mainly responsible for the head of the vortex pump while the pump efficiency is closely related to the flow incidences at the hub as well as the axial and radial vortices. A high-performance vortex pump should be characterized by well-organized longitudinal vortices,minimized flow incidences at the hub as well as minimized axial and radial vortices within the impeller blade passage.

    3. Conclusions

    A new design concept, namely the corner blade,is proposed for the vortex pump. Compared with the traditional radial straight blade, the 2-D and 3-D forward corner blades can be used to improve the hydraulic performance of the vortex pump in terms of efficiency and head while both 2-D and 3-D backward corner blades show a degraded hydraulic performance.

    The pump head can be increased by strengthening the well-organized longitudinal vortices to drive more fluids to leave from the blade tip rather than from the blade side. The pump efficiency can be increased by reducing the incidence angle at the hub and by weakening the axial and radial vortices within the impeller blade passage.

    The above findings are useful for improving the hydraulic performance of vortex pumps. Future work will take advantage of the modern design optimization methods to develop advanced vortex pumps.

    [1] Tan P., Sha Y., Bai X. et al. A Performance test and internal flow field simulation of a vortex pump [J].Applied Sciences, 2017, 7(12):1273.

    [2] Sha Y. Experiments on performance and internal flow of a vortex pump [J].Transactions of the Chinese Society of Agriculture Engineering, 2011, 27(4): 141-146.

    [3] Mihalic T., Guzovic Z., Predin A. Performances and flow analysis in the centrifugal vortex pump [J].Journal of Fluid Engineering, 2013, 135(1): 011107.

    [4] Shirinov A., Oberbeck S. High vacuum side channel pump working against atmosphere [J].Vacuum, 2011, 85(12):1174-1177.

    [5] Song J. W., Engeda A., Chung M. K. A modified theory for the flow mechanism in regenerative flow pump [J].Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy, 2003, 217(3):311-321.

    [6] Yoo I. S., Park M. R., Chung M. K. Improved momentum exchange theory for incompressible regenerative turbomachines [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005,219(7): 567-581.

    [7] Meakhail T., Park S. O. An improved theory for regenerative pump performance [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, 219(3): 213-222.

    [8] Quail F. J., Stickland M. T., Scanlon T. J. Design optimisation of a regenerative pump using numerical and experimental techniques [J].International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21(1):95-111.

    [9] Quail F. J., Scanlon T. J., Baumgartner A. Design study of a regenerative pump using one-dimensional and threedimensional numerical techniques [J].European Journal of Mechanics-B/Fluids,2012, 31: 181-187.

    [10] Liu S. Investigation on performance prediction and design methods for vortex pumps [D]. Master Thesis, Xi’an,China: Xi’an Jiaotong University, 2013(in Chinese).

    [11] Badami M., Mura M. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications [J].Energy Conversion and Management,2012, 55: 93-100.

    [12] Song J. W., Raheel M., Engeda A. A compressible flow theory for regenerative compressors with aerofoil blades[J].Proceedings of Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science, 2003,217(7): 1241-1257.

    [13] Ju Y., Qin R., Kipouros T. et al. A high-dimensional design optimisation method for centrifugal impellers [J].Proceedings of Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(3): 272-288.

    [14] Ju Y. P., Zhang C. H. Multi-point and multi-objective optimization design method for industrial axial compressor cascades [J].Proceedings of Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(6): 1481-1493.

    [15] Ju Y. P., Zhang C. H., Chi X. L. Optimization of centrifugal impellers for uniform discharge flow and wide operating range [J].AIAAJournal of Propulsion and Power, 2012, 28(5): 888-899.

    [16] Jiang D. L., Lu J. X., Dai L. et al. A numerical simulation of and experimental research on optimum efficiency of vortex pumps [J].China Rural Water and Hydropower,2012, 4: 92-98.

    [17] Kang S. H., Rye S. H. Reynolds number effects on the performance characteristics of a small regenerative pump[J].Journal of Fluid Engineering, 2009, 131(6): 061104.

    [18] Karanth K. V., Manjunath M. S., Kumar S. et al. Numerical study of a self priming regenerative pump for improved performance using geometric modifications [J].International Journal of Current Engineering and Technology, 2015, 5(1): 104-109.

    [19] Quail F. J., Stickland M., Scanlon T. Numerical and experimental design study of a regenerative pump [C].World Congress on Engineering 2009, London, UK, 2009.

    [20] Angela G., Paul U. T., Sebastian W. et al. Design parameters of vortex pumps: a meta-analysis of experimental studies [J].Energies, 2017, 10(1): 58.

    猜你喜歡
    亞平
    航天員王亞平的太空生活
    軍事文摘(2023年10期)2023-06-09 09:14:20
    一起完成想象作文
    王亞平講述出艙:“伸手摘星”的夢想實(shí)現(xiàn)了?。ㄉ希?/a>
    軍事文摘(2022年20期)2023-01-10 07:19:44
    Optical scheme to demonstrate state-independent quantum contextuality
    探討超聲檢查在甲狀腺腫塊良惡性鑒別中的診斷價(jià)值
    減刑、假釋的目的探究與制度完善*——兼與張亞平博士商榷
    刑法論叢(2018年2期)2018-10-10 03:31:58
    孔亞平和她的三個(gè)夢
    中國公路(2017年14期)2017-09-26 11:51:37
    平拋運(yùn)動(dòng)潛能知識(shí)測試題
    機(jī)械能潛能知識(shí)訓(xùn)練試題
    南海隨筆
    草原(2016年1期)2016-01-31 21:21:51
    天天躁夜夜躁狠狠久久av| 69精品国产乱码久久久| 日韩熟女老妇一区二区性免费视频| 国产日韩欧美亚洲二区| 好男人视频免费观看在线| 高清av免费在线| 免费播放大片免费观看视频在线观看| 91午夜精品亚洲一区二区三区| 90打野战视频偷拍视频| 国产精品女同一区二区软件| 亚洲成人av在线免费| 老司机影院成人| av卡一久久| 伦精品一区二区三区| 亚洲欧美精品综合一区二区三区 | av网站在线播放免费| 日韩人妻精品一区2区三区| 国产欧美亚洲国产| 韩国精品一区二区三区| 美女福利国产在线| 黑人欧美特级aaaaaa片| xxx大片免费视频| 伊人亚洲综合成人网| 捣出白浆h1v1| 国产精品香港三级国产av潘金莲 | 色网站视频免费| 久久久久久久亚洲中文字幕| 国产精品嫩草影院av在线观看| 久久综合国产亚洲精品| 久久久精品国产亚洲av高清涩受| 精品午夜福利在线看| 国产精品秋霞免费鲁丝片| 日本免费在线观看一区| 少妇的逼水好多| 国产一区有黄有色的免费视频| 精品99又大又爽又粗少妇毛片| 国产精品99久久99久久久不卡 | 各种免费的搞黄视频| 伦理电影大哥的女人| 国产成人午夜福利电影在线观看| 香蕉精品网在线| 中文乱码字字幕精品一区二区三区| 久久午夜福利片| 日日摸夜夜添夜夜爱| 亚洲精品国产色婷婷电影| 精品久久蜜臀av无| av免费在线看不卡| 99香蕉大伊视频| 黄片无遮挡物在线观看| 亚洲一码二码三码区别大吗| 国产精品av久久久久免费| 美女高潮到喷水免费观看| 国产毛片在线视频| 日韩欧美一区视频在线观看| 丝袜喷水一区| 亚洲精品国产av蜜桃| 一级黄片播放器| 黄色视频在线播放观看不卡| 美女福利国产在线| 毛片一级片免费看久久久久| 黄色毛片三级朝国网站| 午夜福利视频精品| 男女边吃奶边做爰视频| 各种免费的搞黄视频| 国产精品三级大全| 国产精品欧美亚洲77777| 亚洲av福利一区| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕人妻熟女乱码| 91aial.com中文字幕在线观看| 中文欧美无线码| 超色免费av| 视频在线观看一区二区三区| 亚洲精品,欧美精品| 免费观看a级毛片全部| 久久精品国产自在天天线| 少妇人妻 视频| 精品久久久久久电影网| 久久这里只有精品19| 中国三级夫妇交换| 亚洲精品乱久久久久久| 国产精品免费大片| 最近最新中文字幕免费大全7| 亚洲av福利一区| 丰满乱子伦码专区| 色视频在线一区二区三区| 国产视频首页在线观看| 免费在线观看黄色视频的| 成人国语在线视频| 一级片'在线观看视频| 午夜日本视频在线| 欧美xxⅹ黑人| 亚洲,欧美,日韩| 宅男免费午夜| 1024香蕉在线观看| 精品少妇黑人巨大在线播放| 欧美激情极品国产一区二区三区| 十八禁网站网址无遮挡| 国产av精品麻豆| 在线精品无人区一区二区三| 亚洲久久久国产精品| 亚洲,欧美,日韩| 欧美日韩综合久久久久久| 纵有疾风起免费观看全集完整版| 免费高清在线观看视频在线观看| 久久99蜜桃精品久久| 久久久精品国产亚洲av高清涩受| 国产精品亚洲av一区麻豆 | 黄片大片在线免费观看| 制服诱惑二区| 久99久视频精品免费| 色婷婷av一区二区三区视频| 97超级碰碰碰精品色视频在线观看| 老司机午夜十八禁免费视频| 国产麻豆69| 91麻豆av在线| 制服人妻中文乱码| 91老司机精品| 人人澡人人妻人| 级片在线观看| 欧美最黄视频在线播放免费 | 成人精品一区二区免费| 高清欧美精品videossex| 久久国产精品影院| 在线观看免费视频网站a站| 免费看a级黄色片| 巨乳人妻的诱惑在线观看| 亚洲第一av免费看| 久久精品国产清高在天天线| 天堂动漫精品| 日本免费a在线| 露出奶头的视频| 国产一区二区三区在线臀色熟女 | 怎么达到女性高潮| 免费观看精品视频网站| 99久久99久久久精品蜜桃| 变态另类成人亚洲欧美熟女 | 人人澡人人妻人| 国产精品野战在线观看 | 亚洲男人天堂网一区| 一进一出好大好爽视频| 99在线人妻在线中文字幕| 日韩av在线大香蕉| 在线观看午夜福利视频| 一级,二级,三级黄色视频| 日韩高清综合在线| 黄片大片在线免费观看| 欧美人与性动交α欧美精品济南到| 国产精品美女特级片免费视频播放器 | 日韩成人在线观看一区二区三区| 91精品三级在线观看| 国产精品国产av在线观看| 成年人免费黄色播放视频| 午夜精品久久久久久毛片777| 精品熟女少妇八av免费久了| 亚洲一卡2卡3卡4卡5卡精品中文| 女人被狂操c到高潮| 亚洲情色 制服丝袜| 欧美最黄视频在线播放免费 | 国产精品99久久99久久久不卡| 亚洲人成网站在线播放欧美日韩| 亚洲av成人不卡在线观看播放网| 美女午夜性视频免费| 国产蜜桃级精品一区二区三区| 国产免费现黄频在线看| a级毛片在线看网站| 极品教师在线免费播放| a级毛片在线看网站| 国产国语露脸激情在线看| 欧洲精品卡2卡3卡4卡5卡区| 黄色毛片三级朝国网站| 国产精品98久久久久久宅男小说| 亚洲精品国产区一区二| 新久久久久国产一级毛片| 久久国产精品男人的天堂亚洲| 亚洲视频免费观看视频| av在线天堂中文字幕 | 99riav亚洲国产免费| 欧美在线一区亚洲| 国产av又大| 视频区图区小说| www.精华液| 免费观看精品视频网站| 欧美日韩精品网址| 超碰97精品在线观看| 999久久久国产精品视频| av欧美777| 日韩视频一区二区在线观看| 亚洲五月婷婷丁香| 国产97色在线日韩免费| 亚洲精品国产一区二区精华液| 看片在线看免费视频| 可以在线观看毛片的网站| 久久精品亚洲精品国产色婷小说| 在线观看www视频免费| 精品国产一区二区三区四区第35| 亚洲精品美女久久av网站| 高清黄色对白视频在线免费看| 一级作爱视频免费观看| 老司机午夜福利在线观看视频| 国产精品野战在线观看 | 精品久久久久久久毛片微露脸| 久久亚洲真实| www.www免费av| 国产麻豆69| 亚洲欧洲精品一区二区精品久久久| 欧美人与性动交α欧美软件| 亚洲人成网站在线播放欧美日韩| 色老头精品视频在线观看| 激情视频va一区二区三区| 嫩草影视91久久| 亚洲男人天堂网一区| 啪啪无遮挡十八禁网站| 在线观看免费午夜福利视频| 久久久久精品国产欧美久久久| 亚洲精品av麻豆狂野| 亚洲精品粉嫩美女一区| 国产午夜精品久久久久久| 在线观看日韩欧美| 国产精品永久免费网站| 国产成+人综合+亚洲专区| 不卡一级毛片| 精品人妻在线不人妻| 性色av乱码一区二区三区2| 久久九九热精品免费| 久久久久精品国产欧美久久久| 国产免费男女视频| 亚洲专区中文字幕在线| 午夜免费观看网址| 亚洲一码二码三码区别大吗| 欧美丝袜亚洲另类 | 国产精品爽爽va在线观看网站 | 精品国产乱子伦一区二区三区| 中文字幕精品免费在线观看视频| 午夜精品国产一区二区电影| 精品乱码久久久久久99久播| 国产成人精品无人区| 最新在线观看一区二区三区| 国产精品野战在线观看 | 国产精品偷伦视频观看了| 欧美日韩亚洲国产一区二区在线观看| 精品久久久精品久久久| 99国产极品粉嫩在线观看| 黄色视频不卡| 日韩高清综合在线| 女人被狂操c到高潮| 色播在线永久视频| 国产精品综合久久久久久久免费 | 欧美性长视频在线观看| 韩国精品一区二区三区| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全免费视频| 日本撒尿小便嘘嘘汇集6| 一级毛片精品| 亚洲三区欧美一区| 久久精品国产亚洲av香蕉五月| 欧美成人性av电影在线观看| 久久久国产一区二区| 女性被躁到高潮视频| 在线观看一区二区三区激情| 极品教师在线免费播放| 国产亚洲欧美98| 精品国产国语对白av| 伊人久久大香线蕉亚洲五| 人人妻人人爽人人添夜夜欢视频| 制服诱惑二区| 美女扒开内裤让男人捅视频| 欧美 亚洲 国产 日韩一| 精品人妻1区二区| 日韩视频一区二区在线观看| 女警被强在线播放| 免费一级毛片在线播放高清视频 | 日本免费一区二区三区高清不卡 | 黄色视频不卡| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 欧美精品啪啪一区二区三区| 亚洲国产毛片av蜜桃av| 在线看a的网站| 成年女人毛片免费观看观看9| 国产伦一二天堂av在线观看| 日本黄色视频三级网站网址| 亚洲专区中文字幕在线| 亚洲男人天堂网一区| 十八禁人妻一区二区| 欧美中文日本在线观看视频| 正在播放国产对白刺激| 成人亚洲精品av一区二区 | 欧美性长视频在线观看| 成人av一区二区三区在线看| 久久天堂一区二区三区四区| 一个人观看的视频www高清免费观看 | 久久久久久久午夜电影 | 成人特级黄色片久久久久久久| 欧美老熟妇乱子伦牲交| 国产精品久久视频播放| 国产日韩一区二区三区精品不卡| 亚洲成人免费电影在线观看| 精品一品国产午夜福利视频| 大香蕉久久成人网| 亚洲免费av在线视频| 岛国在线观看网站| 免费少妇av软件| 亚洲黑人精品在线| 男女高潮啪啪啪动态图| 精品福利观看| 在线观看免费视频网站a站| 久久天躁狠狠躁夜夜2o2o| 黑人猛操日本美女一级片| 亚洲专区国产一区二区| 黄片小视频在线播放| 99在线视频只有这里精品首页| 亚洲 欧美一区二区三区| 纯流量卡能插随身wifi吗| 亚洲精品粉嫩美女一区| 男人操女人黄网站| 日韩大尺度精品在线看网址 | 成人国产一区最新在线观看| 国产亚洲欧美在线一区二区| 中文字幕人妻熟女乱码| 91精品国产国语对白视频| 18禁观看日本| 国产午夜精品久久久久久| 精品国产一区二区久久| 亚洲专区字幕在线| 日韩 欧美 亚洲 中文字幕| av网站免费在线观看视频| 久久伊人香网站| 一区二区三区激情视频| 五月开心婷婷网| 十分钟在线观看高清视频www| 曰老女人黄片| 88av欧美| 国产精品美女特级片免费视频播放器 | 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 国产单亲对白刺激| 精品福利观看| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| 国产高清国产精品国产三级| 91九色精品人成在线观看| 亚洲精品久久午夜乱码| 成人亚洲精品av一区二区 | 国产精品秋霞免费鲁丝片| 99精国产麻豆久久婷婷| 男女床上黄色一级片免费看| 国产成人精品在线电影| 欧美日韩亚洲综合一区二区三区_| 首页视频小说图片口味搜索| 成年版毛片免费区| 亚洲激情在线av| 日韩有码中文字幕| 亚洲午夜理论影院| 国产在线观看jvid| av超薄肉色丝袜交足视频| 黄色a级毛片大全视频| 韩国精品一区二区三区| 99精国产麻豆久久婷婷| 免费久久久久久久精品成人欧美视频| 国产亚洲精品久久久久久毛片| 国产免费现黄频在线看| 在线av久久热| 变态另类成人亚洲欧美熟女 | 另类亚洲欧美激情| 成人黄色视频免费在线看| 欧美乱码精品一区二区三区| 免费少妇av软件| 久久久久国内视频| 脱女人内裤的视频| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| 国内久久婷婷六月综合欲色啪| 中文亚洲av片在线观看爽| 国产午夜精品久久久久久| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| 午夜精品在线福利| 91九色精品人成在线观看| 日本 av在线| 18美女黄网站色大片免费观看| 欧美最黄视频在线播放免费 | videosex国产| 欧美成人免费av一区二区三区| 手机成人av网站| 中文字幕人妻丝袜一区二区| 精品久久久久久电影网| 亚洲专区字幕在线| 欧美黑人精品巨大| 精品熟女少妇八av免费久了| 日韩免费高清中文字幕av| 国产精品久久久人人做人人爽| 制服诱惑二区| 无限看片的www在线观看| 亚洲精品一二三| 在线观看免费午夜福利视频| 香蕉久久夜色| 黄片小视频在线播放| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 天堂动漫精品| 自拍欧美九色日韩亚洲蝌蚪91| 国产99白浆流出| 亚洲国产精品一区二区三区在线| 高潮久久久久久久久久久不卡| 亚洲精品一区av在线观看| 中国美女看黄片| 可以在线观看毛片的网站| 日本欧美视频一区| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 99riav亚洲国产免费| 99精品在免费线老司机午夜| 天天影视国产精品| 超色免费av| 免费在线观看视频国产中文字幕亚洲| 国产91精品成人一区二区三区| 久久这里只有精品19| 少妇 在线观看| 黄片小视频在线播放| 精品国产一区二区久久| 黄色成人免费大全| 亚洲人成77777在线视频| 日本三级黄在线观看| 亚洲 国产 在线| 麻豆av在线久日| 亚洲中文日韩欧美视频| 亚洲第一av免费看| 在线观看免费日韩欧美大片| 精品国内亚洲2022精品成人| 午夜福利欧美成人| 久久香蕉激情| 欧美久久黑人一区二区| 欧美一区二区精品小视频在线| 午夜亚洲福利在线播放| 免费在线观看日本一区| 成人三级黄色视频| 男人的好看免费观看在线视频 | 好看av亚洲va欧美ⅴa在| 国产精品二区激情视频| 成年女人毛片免费观看观看9| 国产高清视频在线播放一区| 亚洲七黄色美女视频| 国产亚洲精品综合一区在线观看 | 午夜福利在线免费观看网站| 高清欧美精品videossex| 好男人电影高清在线观看| 国产精品久久视频播放| 韩国av一区二区三区四区| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 日韩中文字幕欧美一区二区| 亚洲欧美一区二区三区黑人| 中文字幕av电影在线播放| 精品人妻在线不人妻| 视频区图区小说| 女同久久另类99精品国产91| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 久久狼人影院| 操美女的视频在线观看| 又紧又爽又黄一区二区| 满18在线观看网站| 热re99久久国产66热| 在线免费观看的www视频| 免费久久久久久久精品成人欧美视频| 国产男靠女视频免费网站| 男人的好看免费观看在线视频 | 伊人久久大香线蕉亚洲五| a在线观看视频网站| 欧美日韩av久久| 99国产综合亚洲精品| 欧美最黄视频在线播放免费 | 一边摸一边抽搐一进一小说| www日本在线高清视频| 国产一区二区三区在线臀色熟女 | 99国产精品免费福利视频| √禁漫天堂资源中文www| 亚洲精品一区av在线观看| 久99久视频精品免费| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 国产熟女xx| 国产精品香港三级国产av潘金莲| 久久精品成人免费网站| 黑人欧美特级aaaaaa片| 国产高清视频在线播放一区| 成在线人永久免费视频| 亚洲男人的天堂狠狠| 老熟妇乱子伦视频在线观看| 亚洲精品久久成人aⅴ小说| 久久久久国内视频| 国产在线精品亚洲第一网站| 一边摸一边抽搐一进一出视频| 搡老岳熟女国产| 久久精品91无色码中文字幕| 黄片播放在线免费| 日本免费一区二区三区高清不卡 | 日韩免费av在线播放| 免费女性裸体啪啪无遮挡网站| 亚洲男人的天堂狠狠| 亚洲精品成人av观看孕妇| 日韩三级视频一区二区三区| 国产精品亚洲av一区麻豆| 岛国在线观看网站| 亚洲成人国产一区在线观看| 波多野结衣一区麻豆| 在线观看舔阴道视频| 在线观看一区二区三区| 成年人黄色毛片网站| 黑人操中国人逼视频| 国产精品香港三级国产av潘金莲| 18美女黄网站色大片免费观看| 免费在线观看日本一区| 日本 av在线| 久久精品国产清高在天天线| 久久热在线av| 一本大道久久a久久精品| 搡老岳熟女国产| 中国美女看黄片| 国产成人免费无遮挡视频| 国产男靠女视频免费网站| 亚洲七黄色美女视频| www.熟女人妻精品国产| 免费在线观看影片大全网站| 午夜亚洲福利在线播放| 国产av一区在线观看免费| 久久婷婷成人综合色麻豆| 亚洲九九香蕉| 国产av一区在线观看免费| 亚洲 国产 在线| 日本a在线网址| 黑人欧美特级aaaaaa片| 亚洲全国av大片| 免费人成视频x8x8入口观看| 黄色a级毛片大全视频| 婷婷精品国产亚洲av在线| 亚洲黑人精品在线| 久久 成人 亚洲| 欧美黑人精品巨大| 色婷婷av一区二区三区视频| 亚洲精品在线观看二区| 免费在线观看亚洲国产| 999久久久精品免费观看国产| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 18美女黄网站色大片免费观看| 一二三四在线观看免费中文在| 中亚洲国语对白在线视频| 9热在线视频观看99| 交换朋友夫妻互换小说| 女性被躁到高潮视频| 男女下面插进去视频免费观看| 超碰成人久久| 狠狠狠狠99中文字幕| 亚洲国产精品合色在线| 欧美在线一区亚洲| 亚洲国产精品合色在线| 国产精品久久久久久人妻精品电影| 日韩国内少妇激情av| 亚洲av熟女| 激情在线观看视频在线高清| 男女下面插进去视频免费观看| 超碰成人久久| 人成视频在线观看免费观看| 欧美精品亚洲一区二区| 99riav亚洲国产免费| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 侵犯人妻中文字幕一二三四区| 亚洲精华国产精华精| 中文亚洲av片在线观看爽| 成年人黄色毛片网站| 国产一区二区三区视频了| 99精品久久久久人妻精品| 99久久人妻综合| 国产亚洲欧美98| 久久国产精品男人的天堂亚洲| 成人亚洲精品av一区二区 | 岛国视频午夜一区免费看| 精品国产乱子伦一区二区三区| 亚洲精品美女久久久久99蜜臀| 黄色毛片三级朝国网站| 亚洲狠狠婷婷综合久久图片| 91在线观看av| 91成年电影在线观看| 国产免费男女视频| cao死你这个sao货| 精品少妇一区二区三区视频日本电影| 99riav亚洲国产免费| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看| 色哟哟哟哟哟哟| 热99re8久久精品国产| 午夜影院日韩av| 99久久综合精品五月天人人| 久久亚洲精品不卡| 久久影院123| 亚洲精品国产精品久久久不卡| 在线国产一区二区在线| 日本免费a在线| 美女国产高潮福利片在线看| 一级片免费观看大全| 麻豆成人av在线观看| 久久午夜亚洲精品久久| 亚洲专区中文字幕在线| 欧美黄色淫秽网站| 在线观看一区二区三区| 久久人妻av系列| 19禁男女啪啪无遮挡网站| 欧美乱码精品一区二区三区| 高清黄色对白视频在线免费看| 在线观看66精品国产| 成年人黄色毛片网站|