• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of blade shape on hydraulic performance and vortex structure of vortex pumps *

    2018-07-06 10:01:58YapingJu琚亞平SiLiu劉思ChuhuaZhang張楚華
    關(guān)鍵詞:亞平

    Ya-ping Ju (琚亞平), Si Liu (劉思), Chu-hua Zhang (張楚華)

    1. School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

    2. Shanghai Turbine Works, Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240, China

    Introduction

    The vortex pumps, also known as the regenerative or peripheral pumps, are capable of developing a high head at a low flow rate within a single stage. As a kind of blade pumps, the vortex pump primarily consists of a casing, an impeller, an inlet pipe, an outlet pipe and a stripper. As shown in Fig. 1(a), the casing forms an annular side channel and the impeller has a number of blades at the periphery of its rotating disc. The stripper is inserted downstream the outlet pipe to prevent the fluid leakage from the outlet pipe to the internal passage. As the impeller rotates, the fluid enters the pump through an inlet pipe, passes through the channel in a helical way, and then discharges out of the pump through an outlet pipe (Fig.1(b)). The helical flow pattern involves complicated vortex structures such as longitudinal, radial and axial vortices, allowing the fluid particles to circulate in a repeated or regenerative way between the side channel and the rotating impeller (Fig. 1(c)). These repeated vortex structures enable a single-stage vortex pump to develop a head 2-4 times higher in comparison with that developed by a single-stage centrifugal pump at the same tip speed[1-2]. In addition to this hydrodynamic merit, the vortex pump also has a compact size and is easy to manufacture with a low cost. Therefore,the vortex pump has increasingly become an important alternative or supplement to the centrifugal pump[3], the positive displacement pump and even the diffusion pump[4], and found successful applications in industrial fields such as the chemical engineering, the refrigeration, the fuel cell, the aerospace, the vacuum and the medical devices.

    Compared with the other types of blade pumps such as the axial-flow and centrifugal pumps, the vortex pumps are. however, not well studied. Historically, diverse theories were put forward to interpret the working mechanisms of the vortex pump, among which the momentum exchange theories were found to be more precise, as presented by Song et al.[5], Yoo et al.[6]and Meakhail et al.[7]. According to the momentum exchange theories, some 1-D analytical models and flow loss models were developed by Quail et al.[8,9]and Liu[10]to predict the hydraulic performance of the vortex pumps, and were also extended by Badami and Mura[11]and Song et al.[12]to predict the aerodynamic performance of the vortex blowers and compressors. However, since these simplified models rely heavily on empirical correlations, or experimental and CFD data, they fail to reveal the 3-D internal flow field and are only limited to the stage of the preliminary design of the vortex pumps.

    To develop more advanced vortex pumps via the modern design optimization tools[13-16], an important step is to understand how the blade geometry affects the hydraulic performance as well as the internal flow of the vortex pump. The computational fluid dynamics(CFD) method based on the 3-D fully viscous flow model offers a more precise way to not only predict the performance, but also reveal the detailed flow structures in the vortex pumps[17-18]. Furthermore, the CFD results can be used to validate or revise the 1-D simplified models, and to supplement or interpret the experimental measurements[19]. However, to our best knowledge, most CFD studies of the vortex pumps were limited to the cases of 2-D radial straight blades,and the studies of the vortex pumps with twisted blades or 3-D blades[7,20]were few, which are,however, important issues for further improvements of the hydraulic performance of the vortex pumps, and therefore for the technological advancements and the wide applications of the vortex pumps.

    In the present study, two types of new blades,namely 2-D and 3-D corner blades, are introduced to the design of the vortex pump. Primary efforts are devoted to numerically investigating the effect of different blade shapes on the hydraulic performance and the vortex structures of the vortex pumps. This work is expected to provide a theoretical basis for the future design optimization of advanced vortex pumps.

    1. Methodology

    1.1 Concept of corner blades

    The baseline vortex pump under consideration is provided by Daikin LTD, with a rectangular crosssection for its annular side channel and traditional 2-D radial straight blades. Important dimensions and operating conditions of this baseline pump are listed in Table 1.

    To improve the hydraulic performance of this vortex pump, two types of new blades, namely 2-D and 3-D corner blades, are proposed and investigated in this study. Here the term corner means that both sides of the impeller blade form a corner shape rather than a straight shape at the symmetric line of the impeller, as illustrated in Fig. 2. In Fig. 2(a), two parameters, β and γ, are introduced to define the blade setting angles at the hub and the tip, respectively.Accordingly, the traditional 2-D radial straight blade is characterized by β = γ = 90°, the 2-D corner blade by β = γ ≠90°, and the 3-D corner blade by β≠γ,i.e., a kind of twisted blades. Note that here the 3D corner blade is as in a ruled surface of straight lines joining corresponding points on the hub and tip contours. For either the 2-D or 3-D corner blade, it is defined to beforward if γ>90° and backward if γ < 90°.

    Fig. 1 (Color online) Schematic diagrams of the vortex pump

    Table 1 Main parameters of the baseline vortex pump

    In this study, the hydraulic performances of 13 vortex pumps with different corner blades (β=γ=60°, 80°, 100°, 110°, 120°, 130° and 140° for 2-D corner blades, and β=90°,γ= 60°, 80°, 100°, 110°,120° and 130° for 3-D corner blades) are numerically investigated and compared with that of the baseline pump with radial straight blades (β = γ = 90°). In all these cases, the hub and casing profiles, the clearances,the blade number and the blade thickness are kept unchanged.

    Fig. 2 Geometry descriptions of the blade

    1.2 CFD model

    The hydraulic performance of the vortex pump is obtained by the numerical solution of the 3-D steady incompressible Reynolds-averaged Navier-Stokes equations through a finite-volume method solver, the Fluent 6.3. The S-A turbulence model is adopted to close the turbulence terms. The convection terms of the governing equations are discretized by the secondorder upwind scheme and the diffusion terms by the second-order central scheme. The pressure-based SIMPLE algorithm is employed to treat the flow velocity-pressure coupling.

    The impeller region is set to be rotational while the other flow domains are set to be stationary. The rotor-stator interfaces are modeled by the multiple reference frame (MRF) approach or the frozen rotor technique. This rotor-stator treatment technique was recently applied to study the vortex pumps[9]and the

    vortex blowers[11]with acceptable accuracy for the performance and the flow patterns. At the inlet, the total pressure is fixed to be 1 107 kPa and the flow direction is specified to be normal to the boundary. At the outlet, the static pressure is given and adjusted within the range from 1 207 kPa to 2 507 kPa for different flow rates. Nonslip conditions are applied to the solid walls. The efficiency of the vortex pump in this study is defined as follows

    whereQis the volumetric flow rate,His the pump head andPis the pump input power.

    The multi-block structured grids are generated in the computational region (Fig. 3). To better capture the boundary layer, the area-averaged+yof the first inner nodes close to the solid surface of the passage is generally kept below 5.0. The grid independence is examined for the baseline pump via successively increasing the grid number until the pump head and efficiency are essentially no longer changed. As shown in Table 2, three sets of grids are evaluated and the grid independence is achieved when the grid number is 1 129 785. Hereafter, the grid numbers of all the vortex pumps to be investigated in this study are kept around 1 130 000.

    Fig. 3 Computational grids

    Figure 4 shows the comparison of the pump efficiency η between the CFD results and the Daikin LDT measurements. As can be seen, the variation trend of the predicted efficiency curve is well consistent with the measurement data. The predicted value is slightly larger than the measurement data, which is reasonable and can be explained by the absence of the leakage flow, the disk resistances and the mechanical losses in the CFD simulation. Overally,the above CFD method is considered to be reliable in predicting the hydrodynamic performance of the vortex pump.

    Table 2 Examination of grid independence

    Fig. 4 Comparison of the pump efficiency between CFD results and experimental data

    2. Results and discussions

    2.1 2-D corner blades

    2.1.1 Hydraulic performance

    Figure 5 shows the calculated hydraulic performance curves of the vortex pumps with different 2-D blade shapes. In particular, the headHand the efficiency η of each vortex pump at the design point are listed in Table 3. In comparison with the radial straight blade, the 2-D forward corner blades are found to enjoy a better hydraulic performance in terms of the pump efficiency and head, while the 2-D backward ones show a worse hydraulic performance.In addition, the pump head is found to increase with the increase of the blade angle. At the blade angle of 130° (β = γ = 130°), the efficiency of the 2-D-blade vortex pump reaches the highest, i.e., 36.72%.

    2.1.2 Vortex structure

    For an insight into the performance improvement or deterioration of the above vortex pumps, the flows in three typical vortex pumps with the 2-D forward 130° blade, the straight blade and the 2-D backward 60° blade are analyzed, respectively. Hereafter, all flow fields investigated are within the impeller blade passage opposite to the pump stripper, which is considered in the developed flow region of the vortex pump. The flow fields in different planes within that passage, as illustrated in Fig. 6, are primarily examined in this study. As can be seen, Plane B-B is equivalent with the meridional plane while Planes A-A and C-C are perpendicular to the axial and radial directions, respectively.

    Fig. 5 Hydraulic performance curves of 2-D-blade vortex pumps

    Table 3 Designpointperformanceof2-D-bladevortex pumps

    Figure 7 shows the flow velocity vectors in the meridional plane (Plane B-B in Fig. 6), from which the longitudinal vortices in the vortex pumps can be clearly observed. In Fig. 7(a), the 2-D forward 130°blade is observed to have a pair of well-organized and strong longitudinal vortices with their centers approximately on the border line between the blade and the side channel. In that case, most of the fluids discharge from the blade tip rather than from the blade side.According to the momentum exchange theory presented by Song et al.[5], this allows a substantial centrifugal force to be imparted to the fluids and creates a large discharge tangential momentum to be transferred for the high head. In Fig. 7(c), the 2-D backward 60° blade is observed to have double pairs of longitudinal vortices. The pair of the primary vortices (downside) has a much weaker vortex intensity with their centers obviously inside the impeller blade passage. Consequently, most of the fluids leave the blade passage from the blade side rather than from the blade tip. Worse still, the pair of the secondary vortices (upside) near the blade tip induces the fluids to enter the impeller through the blade tip and to flow centripetally just as within a radial turbine. Such a turbine-like flow pattern is supposed to have a negative effect on the energy transfer from the impeller to the fluids. This explains why the vortex pump with the backward blade has a much lower head.As for the radial straight blade in Fig. 7(b), the longitudinal vortex flow is similar to, but obviously weaker than that in the forward corner blade.

    Fig. 6 A schematic diagram of different planes in the pump passage

    Figure 8 shows the relative flow velocity vectors in Plane C-C, which is close to the hub side where the flow incidences in the entry region of the blade passage can be observed. Due to the different blade angles (β) at the hub, the flow incidences are found to be different for those of the vortex pumps with different blade types. As can be seen, the 2-D forward 130° blade enables a good match between the blade shape and the relative flow, leading to relatively small incidence losses and hence a high efficiency of the vortex pump. In Fig. 8(b), the match between the blade and the relative flow is observed to become worse. For the 2-D backward 60° blade in Fig. 8(c),this match is further deteriorated with an even poorer flow guidance at the hub, with the largest incidence losses, which is adverse to the pump efficiency.

    Fig. 7 Longitudinal vortices in 2-D-blade vortex pumps

    Fig. 8 Hub-side relative flow velocities in 2-D-blade vortex pumps

    2.2 3-D corner blades

    2.2.1 Hydraulic performance

    For the 3-D-blade vortex pumps in this study, as previously mentioned, the blade angle β is fixed to be 90° at the hub while the angle γ varies from 60°to 130° at the tip. The calculated hydraulic performance curves of the vortex pumps with different 3-D corner blades are shown in Fig. 9. Table 4 lists the head and the efficiency of each vortex pump at the design point. As can be seen, the 3-D-blade vortex pumps have similar performance variation trends as the 2-D-blade vortex pumps. The 3-D forward corner blades are found to outperform the radial straight blade in terms of both the efficiency and the head,while the 3-D backward blades show poorer performance. In addition, compared with the 2-D-blade vortex pumps, the 3-D-blade vortex pumps generally show a higher pump efficiency and a lower head,except for the case of the 3-D backward 60° blade,which achieves a higher head than the 2-D backward 60° blade. The highest efficiency (38.49%) of the 3D-blade vortex pump at the design point is achieved at =120γ°.

    Fig. 9 Hydraulic performance curvesof 3-D-bladevortex pumps

    2.2.2 Vortex structure

    The flow fields in the three typical pumps with the 3-D forward 120° blade, the straight blade and the 3-D backward 60° blade are examined and analyzed as follows.

    Figure 10 shows the flow velocity vectors in the meridional plane (Plane B-B). Similar to the 2-D blades in Fig. 7, the 3-D forward 120° blade performs the best while the 3-D backward 60° blade performs the worst owing to the structure of the longitudinal vortices. Compared with the 2-D corner blade, the 3-D forward blade is observed to have weaker longitudinal vortices and the fluids discharge from both the blade tip and the blade side (Fig. 10(a)). According to the momentum exchange theory[5], the 3-D forward corner blade can develop a smaller discharge tangential momentum and thus a smaller pump head than the corresponding 2-D forward corner blade. For the 3-D backward 60° blade in Fig. 10(c), although the negative secondary vortices (upside) at the blade tip are stronger than those of the 2-D backward 60° blade shown in Fig. 7(c), due to stronger primary vortices(downside) with their centers moving closer to the blade side, more fluids are allowed to be discharged for the momentum exchange. This explains why the 3-D backward 60° blade yields a higher pump head than the 2-D backward 60° blade.

    Table 4 Designpointperformanceof3-D-blade vortex pumps

    Fig. 11 Axial vortices in 3-D-blade vortex pumps

    Fig. 12 Radial vortices in 3-D-blade vortex pumps

    Since the investigated 3-D corner blades share the same blade angles at the hub (β= 90°), no significant differences are observed for the flow incidences near the entry region. Attention is thus directed towards the relative velocities in Plane C-C located at 50 percent point of the blade height, as shown in Fig.11. In this figure, the axial vortices within the impeller blade passage and the tip clearance vortices can be observed. Since the axial vortices are bounded by the blade surfaces and the impeller hub, they make small contributions to the momentum exchange of the fluids between the side channel and the impeller blade passage. Instead, the presence of the axial vortices disturbs the flow, with increased flow losses within the pump. Among the three blade types, the 3-D forward 120° blade is found to have the smallest axial vortex region, which helps to maintain a high pump efficiency. The tip clearance flow, driven from the blade pressure surface to the suction surface by the pressure difference, implies that the forward blade induces a smaller relative flow velocity and thus a larger absolute flow velocity in the tip clearance. This explains the relatively large design flow rate for the 3-D forward 120° blade as listed in Table 4. Figure 12 shows the relative velocities in Plane A-A of the three pumps, from which the structures of the radial vortices can be observed. Being bounded by the blade surfaces and the impeller disc, the radial vortices also contribute little to the momentum exchange but with flow losses, especially in the case of the 3-D backward 60°blade. Overally, the 3-D backward blade induces larger axial and radial vortices, with larger flow losses and thus a lower pump efficiency in comparison with the 3-D forward blade.

    To sum up, the longitudinal vortices are mainly responsible for the head of the vortex pump while the pump efficiency is closely related to the flow incidences at the hub as well as the axial and radial vortices. A high-performance vortex pump should be characterized by well-organized longitudinal vortices,minimized flow incidences at the hub as well as minimized axial and radial vortices within the impeller blade passage.

    3. Conclusions

    A new design concept, namely the corner blade,is proposed for the vortex pump. Compared with the traditional radial straight blade, the 2-D and 3-D forward corner blades can be used to improve the hydraulic performance of the vortex pump in terms of efficiency and head while both 2-D and 3-D backward corner blades show a degraded hydraulic performance.

    The pump head can be increased by strengthening the well-organized longitudinal vortices to drive more fluids to leave from the blade tip rather than from the blade side. The pump efficiency can be increased by reducing the incidence angle at the hub and by weakening the axial and radial vortices within the impeller blade passage.

    The above findings are useful for improving the hydraulic performance of vortex pumps. Future work will take advantage of the modern design optimization methods to develop advanced vortex pumps.

    [1] Tan P., Sha Y., Bai X. et al. A Performance test and internal flow field simulation of a vortex pump [J].Applied Sciences, 2017, 7(12):1273.

    [2] Sha Y. Experiments on performance and internal flow of a vortex pump [J].Transactions of the Chinese Society of Agriculture Engineering, 2011, 27(4): 141-146.

    [3] Mihalic T., Guzovic Z., Predin A. Performances and flow analysis in the centrifugal vortex pump [J].Journal of Fluid Engineering, 2013, 135(1): 011107.

    [4] Shirinov A., Oberbeck S. High vacuum side channel pump working against atmosphere [J].Vacuum, 2011, 85(12):1174-1177.

    [5] Song J. W., Engeda A., Chung M. K. A modified theory for the flow mechanism in regenerative flow pump [J].Proceedings of the Institution of Mechanical Engineers,Part A: Journal of Power and Energy, 2003, 217(3):311-321.

    [6] Yoo I. S., Park M. R., Chung M. K. Improved momentum exchange theory for incompressible regenerative turbomachines [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005,219(7): 567-581.

    [7] Meakhail T., Park S. O. An improved theory for regenerative pump performance [J].Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2005, 219(3): 213-222.

    [8] Quail F. J., Stickland M. T., Scanlon T. J. Design optimisation of a regenerative pump using numerical and experimental techniques [J].International Journal of Numerical Methods for Heat and Fluid Flow, 2011, 21(1):95-111.

    [9] Quail F. J., Scanlon T. J., Baumgartner A. Design study of a regenerative pump using one-dimensional and threedimensional numerical techniques [J].European Journal of Mechanics-B/Fluids,2012, 31: 181-187.

    [10] Liu S. Investigation on performance prediction and design methods for vortex pumps [D]. Master Thesis, Xi’an,China: Xi’an Jiaotong University, 2013(in Chinese).

    [11] Badami M., Mura M. Comparison between 3D and 1D simulations of a regenerative blower for fuel cell applications [J].Energy Conversion and Management,2012, 55: 93-100.

    [12] Song J. W., Raheel M., Engeda A. A compressible flow theory for regenerative compressors with aerofoil blades[J].Proceedings of Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science, 2003,217(7): 1241-1257.

    [13] Ju Y., Qin R., Kipouros T. et al. A high-dimensional design optimisation method for centrifugal impellers [J].Proceedings of Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2016, 230(3): 272-288.

    [14] Ju Y. P., Zhang C. H. Multi-point and multi-objective optimization design method for industrial axial compressor cascades [J].Proceedings of Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(6): 1481-1493.

    [15] Ju Y. P., Zhang C. H., Chi X. L. Optimization of centrifugal impellers for uniform discharge flow and wide operating range [J].AIAAJournal of Propulsion and Power, 2012, 28(5): 888-899.

    [16] Jiang D. L., Lu J. X., Dai L. et al. A numerical simulation of and experimental research on optimum efficiency of vortex pumps [J].China Rural Water and Hydropower,2012, 4: 92-98.

    [17] Kang S. H., Rye S. H. Reynolds number effects on the performance characteristics of a small regenerative pump[J].Journal of Fluid Engineering, 2009, 131(6): 061104.

    [18] Karanth K. V., Manjunath M. S., Kumar S. et al. Numerical study of a self priming regenerative pump for improved performance using geometric modifications [J].International Journal of Current Engineering and Technology, 2015, 5(1): 104-109.

    [19] Quail F. J., Stickland M., Scanlon T. Numerical and experimental design study of a regenerative pump [C].World Congress on Engineering 2009, London, UK, 2009.

    [20] Angela G., Paul U. T., Sebastian W. et al. Design parameters of vortex pumps: a meta-analysis of experimental studies [J].Energies, 2017, 10(1): 58.

    猜你喜歡
    亞平
    航天員王亞平的太空生活
    軍事文摘(2023年10期)2023-06-09 09:14:20
    一起完成想象作文
    王亞平講述出艙:“伸手摘星”的夢想實(shí)現(xiàn)了?。ㄉ希?/a>
    軍事文摘(2022年20期)2023-01-10 07:19:44
    Optical scheme to demonstrate state-independent quantum contextuality
    探討超聲檢查在甲狀腺腫塊良惡性鑒別中的診斷價(jià)值
    減刑、假釋的目的探究與制度完善*——兼與張亞平博士商榷
    刑法論叢(2018年2期)2018-10-10 03:31:58
    孔亞平和她的三個(gè)夢
    中國公路(2017年14期)2017-09-26 11:51:37
    平拋運(yùn)動(dòng)潛能知識(shí)測試題
    機(jī)械能潛能知識(shí)訓(xùn)練試題
    南海隨筆
    草原(2016年1期)2016-01-31 21:21:51
    久久国产精品大桥未久av| 国产亚洲av片在线观看秒播厂| 久久久久久久精品精品| 日本一区二区免费在线视频| 精品国产一区二区三区久久久樱花| 久久久久精品人妻al黑| 亚洲av成人不卡在线观看播放网 | 青草久久国产| 色精品久久人妻99蜜桃| 91精品三级在线观看| 波多野结衣av一区二区av| 国产无遮挡羞羞视频在线观看| 亚洲精品久久午夜乱码| 91麻豆av在线| 婷婷色麻豆天堂久久| 国产欧美亚洲国产| 国产又爽黄色视频| 精品国产超薄肉色丝袜足j| 99九九在线精品视频| 国产片内射在线| 精品一区二区三区四区五区乱码 | 国产精品偷伦视频观看了| 国产精品九九99| 国产精品香港三级国产av潘金莲 | 母亲3免费完整高清在线观看| 一区福利在线观看| 一区二区三区激情视频| 少妇猛男粗大的猛烈进出视频| 日本猛色少妇xxxxx猛交久久| 免费在线观看黄色视频的| 亚洲黑人精品在线| www.av在线官网国产| 久久狼人影院| 老汉色∧v一级毛片| 欧美 亚洲 国产 日韩一| 久久国产精品人妻蜜桃| 成人国语在线视频| 大香蕉久久成人网| 国产高清不卡午夜福利| 久久亚洲精品不卡| 国产无遮挡羞羞视频在线观看| 美国免费a级毛片| 成人18禁高潮啪啪吃奶动态图| 人人妻人人澡人人看| 最新的欧美精品一区二区| 久久人妻熟女aⅴ| 亚洲欧美精品自产自拍| av视频免费观看在线观看| 在线亚洲精品国产二区图片欧美| 天天躁日日躁夜夜躁夜夜| 欧美少妇被猛烈插入视频| 日本色播在线视频| 男女之事视频高清在线观看 | 80岁老熟妇乱子伦牲交| 中文乱码字字幕精品一区二区三区| 欧美精品一区二区免费开放| 中文字幕人妻丝袜制服| 久久av网站| 日韩精品免费视频一区二区三区| 国产深夜福利视频在线观看| 在线 av 中文字幕| av国产精品久久久久影院| 成人影院久久| 久9热在线精品视频| 日韩一本色道免费dvd| 国产精品九九99| 国产精品香港三级国产av潘金莲 | 久久久国产精品麻豆| 国产成人一区二区在线| av欧美777| 国产日韩欧美亚洲二区| 欧美 日韩 精品 国产| 91成人精品电影| 久久国产精品男人的天堂亚洲| 国产在线一区二区三区精| 美女午夜性视频免费| 亚洲国产毛片av蜜桃av| 中文字幕制服av| 亚洲成人免费电影在线观看 | 亚洲国产欧美一区二区综合| 久久久亚洲精品成人影院| 日韩av不卡免费在线播放| 国产女主播在线喷水免费视频网站| 久久99一区二区三区| 亚洲成色77777| videosex国产| 女性生殖器流出的白浆| 在线精品无人区一区二区三| 日韩电影二区| 免费黄频网站在线观看国产| 国产爽快片一区二区三区| 欧美成人午夜精品| 国产精品熟女久久久久浪| 久久 成人 亚洲| 校园人妻丝袜中文字幕| 久久热在线av| 国产高清videossex| 中文字幕色久视频| 精品久久久久久电影网| 中文欧美无线码| 欧美xxⅹ黑人| 51午夜福利影视在线观看| 51午夜福利影视在线观看| 天堂中文最新版在线下载| 免费女性裸体啪啪无遮挡网站| 久久精品国产亚洲av高清一级| 成在线人永久免费视频| 国产欧美亚洲国产| 久久女婷五月综合色啪小说| 久久人妻福利社区极品人妻图片 | 国产成人一区二区三区免费视频网站 | 狂野欧美激情性bbbbbb| 高清欧美精品videossex| 亚洲欧美精品综合一区二区三区| 久久国产精品影院| 亚洲欧美精品综合一区二区三区| 午夜视频精品福利| 欧美97在线视频| avwww免费| 欧美激情 高清一区二区三区| 赤兔流量卡办理| 宅男免费午夜| 1024香蕉在线观看| 午夜免费男女啪啪视频观看| 久久狼人影院| 日韩精品免费视频一区二区三区| 少妇精品久久久久久久| 国产深夜福利视频在线观看| 性色av一级| 丰满饥渴人妻一区二区三| 日韩一区二区三区影片| 欧美精品亚洲一区二区| 曰老女人黄片| 777久久人妻少妇嫩草av网站| 欧美 亚洲 国产 日韩一| 欧美性长视频在线观看| 2021少妇久久久久久久久久久| av电影中文网址| 在现免费观看毛片| 久久久久网色| 中文乱码字字幕精品一区二区三区| 国产老妇伦熟女老妇高清| 国产老妇伦熟女老妇高清| av不卡在线播放| 欧美国产精品va在线观看不卡| 一本综合久久免费| a级毛片黄视频| 午夜激情av网站| 一级a爱视频在线免费观看| 9热在线视频观看99| 欧美精品亚洲一区二区| 黑丝袜美女国产一区| 1024香蕉在线观看| 亚洲成人国产一区在线观看 | 国产成人av教育| 在线av久久热| av网站在线播放免费| 午夜久久久在线观看| 午夜久久久在线观看| svipshipincom国产片| 久久综合国产亚洲精品| 国产精品一区二区免费欧美 | 在线av久久热| 啦啦啦在线观看免费高清www| 伦理电影免费视频| 一级毛片电影观看| 丰满迷人的少妇在线观看| 丰满迷人的少妇在线观看| 啦啦啦中文免费视频观看日本| 丁香六月欧美| 高清不卡的av网站| 91九色精品人成在线观看| 不卡av一区二区三区| 无限看片的www在线观看| 亚洲五月色婷婷综合| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品国产av在线观看| 国产一卡二卡三卡精品| 五月开心婷婷网| 美女脱内裤让男人舔精品视频| 男女之事视频高清在线观看 | 少妇人妻久久综合中文| 91麻豆av在线| 久久久久久久久免费视频了| 久久 成人 亚洲| 精品久久久精品久久久| 手机成人av网站| 亚洲欧美激情在线| 国产成人欧美| 亚洲av在线观看美女高潮| 国产一区有黄有色的免费视频| 成年动漫av网址| 亚洲国产精品999| 成在线人永久免费视频| 亚洲一码二码三码区别大吗| 天天躁夜夜躁狠狠久久av| 国产色视频综合| 七月丁香在线播放| 国产精品 欧美亚洲| 日本av手机在线免费观看| 91精品国产国语对白视频| 一本综合久久免费| 国产精品国产三级国产专区5o| 亚洲国产欧美日韩在线播放| 波多野结衣av一区二区av| 午夜福利一区二区在线看| av有码第一页| 天天操日日干夜夜撸| 久久九九热精品免费| 可以免费在线观看a视频的电影网站| 伦理电影免费视频| 在线观看免费高清a一片| 亚洲一区中文字幕在线| 欧美日韩亚洲高清精品| 一个人免费看片子| 免费在线观看完整版高清| 免费观看av网站的网址| 亚洲av欧美aⅴ国产| 操出白浆在线播放| 国产精品三级大全| 久久 成人 亚洲| 一级a爱视频在线免费观看| 好男人电影高清在线观看| 精品视频人人做人人爽| 亚洲,欧美精品.| 日本a在线网址| 视频区图区小说| 国产亚洲午夜精品一区二区久久| 国精品久久久久久国模美| 一边摸一边抽搐一进一出视频| 丝袜在线中文字幕| 久久狼人影院| 亚洲av日韩精品久久久久久密 | 777米奇影视久久| 啦啦啦中文免费视频观看日本| 女性被躁到高潮视频| 男人舔女人的私密视频| h视频一区二区三区| 90打野战视频偷拍视频| 国产黄色免费在线视频| 久久久久视频综合| 久久久久久久久免费视频了| 男人爽女人下面视频在线观看| 亚洲 国产 在线| 80岁老熟妇乱子伦牲交| 老司机影院毛片| 最新的欧美精品一区二区| 99热网站在线观看| 丰满迷人的少妇在线观看| 午夜福利影视在线免费观看| 超碰97精品在线观看| 少妇精品久久久久久久| 十八禁网站网址无遮挡| 人体艺术视频欧美日本| 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 国产精品一区二区在线不卡| 午夜福利视频精品| 午夜福利视频在线观看免费| 一区二区日韩欧美中文字幕| 黄色一级大片看看| 男的添女的下面高潮视频| 国产欧美日韩综合在线一区二区| 免费av中文字幕在线| 国产免费视频播放在线视频| 97人妻天天添夜夜摸| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久人人做人人爽| 免费观看av网站的网址| 日韩制服骚丝袜av| 久久国产亚洲av麻豆专区| 国产一级毛片在线| kizo精华| 国产福利在线免费观看视频| 欧美日韩福利视频一区二区| 搡老乐熟女国产| 欧美人与性动交α欧美软件| 免费黄频网站在线观看国产| 美女脱内裤让男人舔精品视频| 黄色片一级片一级黄色片| 两个人看的免费小视频| 中文字幕精品免费在线观看视频| 久久人人97超碰香蕉20202| 国产一卡二卡三卡精品| 一级,二级,三级黄色视频| 成人国产av品久久久| 一级黄色大片毛片| 国产爽快片一区二区三区| 午夜福利乱码中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费午夜福利视频| 国产高清videossex| 亚洲精品日本国产第一区| 男女午夜视频在线观看| 老汉色av国产亚洲站长工具| 最近最新中文字幕大全免费视频 | 国产精品久久久久久精品电影小说| 日韩制服丝袜自拍偷拍| 少妇被粗大的猛进出69影院| 久久久国产精品麻豆| 午夜av观看不卡| 国产人伦9x9x在线观看| a 毛片基地| 波多野结衣av一区二区av| 女人久久www免费人成看片| 国产色视频综合| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品av麻豆狂野| 国产精品99久久99久久久不卡| 国产在线一区二区三区精| 亚洲成人国产一区在线观看 | 王馨瑶露胸无遮挡在线观看| 欧美亚洲日本最大视频资源| 亚洲男人天堂网一区| 中国美女看黄片| 亚洲综合色网址| 国产老妇伦熟女老妇高清| 国产野战对白在线观看| 丝袜美腿诱惑在线| 国产成人av教育| 国产av国产精品国产| 亚洲熟女毛片儿| 两个人免费观看高清视频| 最近最新中文字幕大全免费视频 | 午夜两性在线视频| 一区二区日韩欧美中文字幕| 精品国产乱码久久久久久男人| 日韩伦理黄色片| 久久青草综合色| 丝袜在线中文字幕| 亚洲精品美女久久久久99蜜臀 | 女性被躁到高潮视频| 91成人精品电影| 国产成人精品在线电影| 在线观看免费午夜福利视频| 亚洲欧美日韩高清在线视频 | 男女边摸边吃奶| 久久久久国产一级毛片高清牌| 脱女人内裤的视频| 狠狠精品人妻久久久久久综合| 午夜福利,免费看| 制服诱惑二区| 精品一区二区三区av网在线观看 | 十八禁高潮呻吟视频| 日韩熟女老妇一区二区性免费视频| 久久精品亚洲av国产电影网| 久久午夜综合久久蜜桃| 欧美成人午夜精品| 国产91精品成人一区二区三区 | 午夜激情av网站| 热99久久久久精品小说推荐| 久久久亚洲精品成人影院| 一边亲一边摸免费视频| 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| 成年人免费黄色播放视频| 免费女性裸体啪啪无遮挡网站| 成人三级做爰电影| 女人爽到高潮嗷嗷叫在线视频| av线在线观看网站| 成人亚洲精品一区在线观看| 波多野结衣一区麻豆| 50天的宝宝边吃奶边哭怎么回事| 久久精品久久久久久久性| 国产又爽黄色视频| 在线看a的网站| 国产精品欧美亚洲77777| 狂野欧美激情性bbbbbb| 80岁老熟妇乱子伦牲交| 国产成人影院久久av| 中文字幕av电影在线播放| 精品人妻熟女毛片av久久网站| 这个男人来自地球电影免费观看| 青青草视频在线视频观看| 狠狠精品人妻久久久久久综合| 性高湖久久久久久久久免费观看| 欧美日韩福利视频一区二区| 好男人视频免费观看在线| 涩涩av久久男人的天堂| 午夜福利在线免费观看网站| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区久久| 少妇精品久久久久久久| 男女下面插进去视频免费观看| 亚洲精品国产色婷婷电影| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 最黄视频免费看| 一本综合久久免费| 国产真人三级小视频在线观看| cao死你这个sao货| 亚洲国产中文字幕在线视频| 97精品久久久久久久久久精品| 亚洲,欧美,日韩| 婷婷色麻豆天堂久久| 中文字幕高清在线视频| 欧美在线黄色| 1024视频免费在线观看| 国产高清国产精品国产三级| 欧美日韩黄片免| 国产男女超爽视频在线观看| 国产精品亚洲av一区麻豆| 97人妻天天添夜夜摸| 亚洲久久久国产精品| 国产欧美日韩综合在线一区二区| 国产老妇伦熟女老妇高清| 亚洲精品美女久久久久99蜜臀 | 五月天丁香电影| 国产伦理片在线播放av一区| 午夜av观看不卡| 日韩 亚洲 欧美在线| 亚洲,欧美,日韩| 亚洲av成人精品一二三区| 超碰成人久久| 久久久精品免费免费高清| 男人操女人黄网站| 99九九在线精品视频| 亚洲国产看品久久| 国产精品成人在线| 真人做人爱边吃奶动态| 亚洲第一av免费看| 最新的欧美精品一区二区| 日日夜夜操网爽| 国产日韩欧美亚洲二区| 精品福利永久在线观看| 校园人妻丝袜中文字幕| 午夜福利视频在线观看免费| 嫁个100分男人电影在线观看 | 亚洲欧美精品自产自拍| 国产精品一区二区免费欧美 | 久久久久久久大尺度免费视频| 男女免费视频国产| 激情五月婷婷亚洲| 韩国精品一区二区三区| 亚洲一区二区三区欧美精品| 女人爽到高潮嗷嗷叫在线视频| 日韩电影二区| 国产熟女午夜一区二区三区| 国产在视频线精品| 国产精品久久久人人做人人爽| 69精品国产乱码久久久| 免费在线观看黄色视频的| 搡老乐熟女国产| 999精品在线视频| 午夜福利免费观看在线| 国产精品免费大片| 超碰97精品在线观看| 老司机影院毛片| 丰满人妻熟妇乱又伦精品不卡| 丰满饥渴人妻一区二区三| 黄色一级大片看看| 婷婷丁香在线五月| 国产精品国产三级国产专区5o| 大香蕉久久网| 多毛熟女@视频| 国产高清视频在线播放一区 | 午夜福利在线免费观看网站| 国产精品一区二区免费欧美 | 国产在线一区二区三区精| 日本a在线网址| 91老司机精品| 国产在线观看jvid| 国产精品一国产av| 制服人妻中文乱码| 十八禁高潮呻吟视频| 香蕉国产在线看| 欧美日韩av久久| 亚洲av日韩精品久久久久久密 | 午夜91福利影院| 国产91精品成人一区二区三区 | 热re99久久精品国产66热6| 亚洲中文av在线| 国产精品免费大片| 国产爽快片一区二区三区| 欧美日韩成人在线一区二区| 精品卡一卡二卡四卡免费| 赤兔流量卡办理| 两人在一起打扑克的视频| 韩国高清视频一区二区三区| 性色av乱码一区二区三区2| 国精品久久久久久国模美| 精品一区二区三卡| 观看av在线不卡| 亚洲精品日本国产第一区| 成人免费观看视频高清| 两个人看的免费小视频| 日本91视频免费播放| 大香蕉久久成人网| www日本在线高清视频| 亚洲中文av在线| 制服人妻中文乱码| 国产主播在线观看一区二区 | 日韩中文字幕欧美一区二区 | 精品一品国产午夜福利视频| 亚洲免费av在线视频| 老司机靠b影院| 十八禁人妻一区二区| 一本大道久久a久久精品| 国产不卡av网站在线观看| 亚洲国产av影院在线观看| 一级a爱视频在线免费观看| 午夜福利在线免费观看网站| 中国国产av一级| 久久国产精品男人的天堂亚洲| 中文字幕人妻熟女乱码| 欧美日韩av久久| 免费高清在线观看日韩| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av| 国产熟女午夜一区二区三区| 777久久人妻少妇嫩草av网站| 日韩熟女老妇一区二区性免费视频| 国产日韩一区二区三区精品不卡| 亚洲第一av免费看| 又大又黄又爽视频免费| 精品少妇一区二区三区视频日本电影| 国产免费福利视频在线观看| 久久国产精品人妻蜜桃| 日韩大片免费观看网站| 久久久久视频综合| 亚洲少妇的诱惑av| 国产精品一国产av| 国产黄色视频一区二区在线观看| 性色av乱码一区二区三区2| 久久99热这里只频精品6学生| 久久精品aⅴ一区二区三区四区| 性少妇av在线| 国产爽快片一区二区三区| 男女边摸边吃奶| 亚洲欧美清纯卡通| 岛国毛片在线播放| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 国产一区二区三区av在线| 欧美日韩精品网址| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 亚洲第一青青草原| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 亚洲国产精品国产精品| 亚洲色图 男人天堂 中文字幕| 精品国产超薄肉色丝袜足j| 欧美精品人与动牲交sv欧美| 日韩精品免费视频一区二区三区| 亚洲精品美女久久久久99蜜臀 | 亚洲午夜精品一区,二区,三区| 香蕉丝袜av| 大片免费播放器 马上看| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 久久狼人影院| 首页视频小说图片口味搜索 | 久久性视频一级片| 美女国产高潮福利片在线看| 美女脱内裤让男人舔精品视频| 亚洲成人手机| 黄色一级大片看看| 精品一区二区三区av网在线观看 | 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 久久久国产精品麻豆| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 欧美中文综合在线视频| 欧美97在线视频| 在线av久久热| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 免费在线观看影片大全网站 | 男女边吃奶边做爰视频| 国产淫语在线视频| 国产精品人妻久久久影院| 国产在线一区二区三区精| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 一区二区三区精品91| 亚洲专区国产一区二区| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 国产伦人伦偷精品视频| 欧美人与性动交α欧美软件| 美女脱内裤让男人舔精品视频| 亚洲欧美一区二区三区久久| 国产成人精品在线电影| 久久国产亚洲av麻豆专区| 成年人免费黄色播放视频| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 午夜免费鲁丝| 亚洲久久久国产精品| 我的亚洲天堂| 欧美黑人欧美精品刺激| av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 国产男人的电影天堂91| 国产又爽黄色视频| 国产男女内射视频| 午夜福利乱码中文字幕| 午夜久久久在线观看| 国产主播在线观看一区二区 | 午夜福利视频在线观看免费| 日韩大片免费观看网站| 国产精品麻豆人妻色哟哟久久| 狂野欧美激情性xxxx| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲免费av在线视频| 午夜福利视频在线观看免费| 大片电影免费在线观看免费| av视频免费观看在线观看| av一本久久久久| 尾随美女入室| av在线播放精品|