• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES *

    2018-05-14 01:43:32XinpingLong龍新平YunLong龍云WentingWang王文婷HuaiyuCheng程懷玉BinJi季斌
    關(guān)鍵詞:龍云新平

    Xin-ping Long (龍新平), Yun Long (龍云), Wen-ting Wang (王文婷), Huai-yu Cheng (程懷玉),Bin Ji (季斌)

    1. State Key Laboratory of Water Resources and Hydro power Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

    2. Key Laboratory of Jet Theory and New Technology of Hubei Province, Wuhan University, Wuhan 430072,China

    It is a great challenge for both experiment and numerical simulation to investigate the complicated transient cavitating flow. It is noted that numerical simulation of cavitating flow has achieved a remarkable progress in the last two decades. Li et al.[1,2]propose an improved all-speed Roe scheme for LES and obtain satisfactory results. The re-entrant jet[3]and shock wave[4]has attracted much attention. Peng et al.[5]observe the U-type fl ow structures around the hydrofoils in the cavitation tunnel. Ji et al.[6], Wang et al.[7], Long et al.[8]and Cheng et al.[9]study transient cavitating flow structure by high performance numerical methods and three-dimensional Lagrangian technology.

    All these researches enhance the understanding of the transient cavitating flow. However, less attention are paid to assessing the accuracy of these numerical results with systematic methodology and procedures. Verification and validation (V&V) is a basic procedure to evaluate the accuracy and reliability of numerical simulation, but the practical use of LES V&V is a big challenge[10]. Related studies of LES V&V are ongoing[11]. Freitag and Klein[12]have proposed a systematic grid and model variation method to estimate the numerical and modeling error.Xing[11]proposes a general framework for V&V of LES to get the numerical, modeling and their coupling errors. The investigations by Dutta and Xing[13]have achieved promising achievements.

    Inspired by the aforementioned studies, this letter carries out the large eddy simulation and error analysis of the attached turbulent cavitating flow around the Clark-Y hydrofoil. Comparisons between available experiments[14]and numerical results have been made. Quantitative analyses of LES errors are presented and cavitation influence on LES errors is also discussed.

    The chord lengthCof hydrofoil is 0.07 m and angle of attack is 8°. The length, width and height of the computational domain are 10.0C, 0.3Cand 2.7C, respectively. The boundary inlet velocity is set asU∞=10m/s , and outlet boundary is fixed at the static pressure pout, deriving from the cavitation number σ=0.8 (σ=(pout-pv)/(0.5ρU∞2)), wherepvis the saturated vapor pressure andρis the liquid density). Detailed information about the setup can see Ref. [15]. Case 1 is refined with the same mesh topology from Case 3, and Case 2 is the same as Case 1 except for the change of Smagorinsky constant.Detail information about mesh, model constant and calculations setup has been displayed in Table 1.

    Table 1 Mesh and model constant and calculation setup

    Herein, the LES errors estimation method, proposed by Freitag and Klein[12], has been employed.Some revised thoughts by Xing[11]have been adopted in this paper considering that the time step and grid spacing changing simultaneously. The numerical error and modeling error are estimated with power series expansions as a function ofh*and Δ:

    whereSCis the numerical benchmark,S1,S2,S3denotes the standards LES solution, the LES solution with a modified model contribution and solution on a coarser mesh, respectively.cNandcMare the unknown coefficient. The local spatial and temporal resolutionh*[11]is defined as

    where Δtis the time step andhis the local mesh size. Herehis equal to the filter width Δ. The model variation factor α=1.3. The time step and grid spacing share the same refinement ratior=1.6.pNandpMhas a large effect on the LES errors estimations.pN=1.7 andpM=1.5 were recommended by Dutta and Xing[16], whilepN=2 andpM=2/3 by Freitag and Klein[12]have been investigated and applied in some researches. Therefore,pN=2 andpM=2/3 are adopted in this paper.

    The numerical error and modeling error for case1 are corresponding to the first term and second term on the right hand sides of Eq. (1). The normalized averaged stream wise velocityu/U∞is chosen as the target variable to gain the numerical and modeling error. The velocity and cavitation data are obtained from the medial surface along the span wise location.

    Figure 1 shows the comparison of experimental and numerical snapshots of cavity shedding within one typical cycle. The experimental results are from Ref. [14]. Numerical results are used to represent the unsteady cavity evolution colored with vertical velocity. From Figs. 1(a)-1(d), it can be observed that the numerical results can capture the unsteady cavity evolution features, including the cavity inception,development and shedding along the hydrofoil suction face. The periodic cavity shedding behavior can lead to complex and turbulent flow structures. This can cause huge difficulties to accurately simulate the unsteady cavitating flow even with well performance numerical methods. Owing to the extensive use of LES in academic research in recent years, the reliability or risk assessment has become an essential step for LES results in cavitation. At present, it has the possibility to carry out quantitative LES errors analysis in cavitation simulation. Verification and validation of LES will be a necessary procedure in the future.

    Fig.1 (Color online)Timeevolution of cavity shedding in one typical cycle for Case1 (Left: Experimental results[14].Right: Cavitation patterns by iso-surface of αv=0.1)

    Figure 2 presents the average values versus different flow time about the normalized stream wise velocityu/U∞at monitoring point A (x/c=0.2,y/c=0.09) and point B (x/c=0.8,y/c=0.16). It can be seen that the variations ofu/U∞at the ending of statistical flow time are clearly smaller compared to the beginning of flow time. This ensures that the selection of final averaged velocity in this paper has almost no effect on obtaining the LES errors.

    Fig.2 Average values versus different flow time about the normalized stream wise velocities at monitoring points

    The magnitudes of numerical error and modeling error for Case 1 are shown in Fig.3 for the unsteady cavitating flow. From the results, it can be seen that the modeling error and numerical error are almost on the same order of magnitude in most situations, while the modeling error is often a bit larger if compared to numerical error. For each chord wise location in Fig.3,the numerical error and modeling error sometimes partially have opposite signs and they can offset each other. In Fig.3(a), the errors are large and squeezed in very little space at vertical direction, but sharply decrease to almost zero. The cavitation occurs generally around this narrow location, and the accuracy of the inner cavitating flow structure at this narrow location is a great difficulty for numerical simulation,also for experiments. This might be in charge of the error distribution in Fig.3(a). From Figs. 3(b)-3(e),the numerical and modeling errors start to oscillate along the vertical direction. The errors magnitudes and fluctuation levels gradually become larger fromx/c=0.4 tox/c=1.0. It has the similar tendency that the errors decrease to almost zero when the distance is far away from foil surface. The cavitation area becomes thicker from Figs. 3(b), 3(e). The velocity fluctuate sviolently due to the periodic cavity shedding,which can cause much large scale vortexstructure. It has a huge impact on the cavitation simulation. This might result in the errors changing in a large range. From above analyses, it can be con-cluded that the LES errors are significantly influenced by the unsteady cavitation.

    Fig.3 The numerical errors and modeling errors of averaged u/ U∞ at five chord wise locations for Case 1

    Large eddy simulation and error analyses of the attached turbulent cavitating flow around the Clark-Y hydrofoil has been made in this letter. Quantitative LES errors analyses of cavitation simulation are carried out and cavitation influence on LES errors is also discussed. The main conclusions can be summarized as follows:

    (1) The numerical results can capture the periodic cavity shedding behavior and they are in well agreement with the experiments. The shedding of cavity can lead to complex and turbulent flow structures,which results in great difficulties to model the details of the turbulent cavitating flow even with well performance numerical methods.

    (2) In this simulation of the transient cavitating flow, the modeling error and numerical error are on the same order of magnitude in most situations, while the modeling error is often a little bit larger than numerical error. The numerical error and modeling error sometimes have the opposite sign and they can partially offset each other.

    (3) The numerical error and modeling error are significantly influenced by the cavitation. The unsteady cavitation can extend the magnitudes and oscillation levels of LES numerical error and modeling error.

    It still has a long way to go for the quantitative LES reliability estimation with V&V. Owing to the extensive use of LES in academic research in recent years, the LES reliability estimation should become an essential part to LES results in cavitation. Due to that Smagorinsky constant cannot change arbitrarily, the LES error estimation method adopted in this paper needs more investigations. The three-equation method proposed by Dutta and Xing[16]may give more promising results. The LES error estimation applied in the unsteady cavitation simulation with the guideline of Ref. [16] will be the focus of our future investigations.

    [1] Li X. S., Li X. L. All-speed Roe scheme for the large eddy simulation of homogeneous decaying turbulence [J].International Journal of Computational Fluid Dynamics,2016, 30(1): 69-78.

    [2] Li X. S., Xu J. Z., Gu C. W. Preconditioning method and engineering application of large eddy simulation [J].Science in ChinaSeries G-Physics, Mechanics and Astronomy, 2008, 51(6): 667-677.

    [3] Wu Q., Huang B., Wang G. et al. The transient characteristics of cloud cavitating flow over a flexible hydrofoil[J].International Journal of Multiphase Flow, 2018, 99:162-173.

    [4] Cui P., Zhang A. M., Wang S. et al. Ice breaking by a collapsing bubble [J].Journal of Fluid Mechanics, 2018,841: 287-309.

    [5] Peng X. X., Ji B., Cao Y. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J].International Journal of Multiphase Flow, 2016, 79:10-22.

    [6] Ji B., Luo X., Arndt R. E. A. et al. Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil [J].International Journal of Multiphase Flow, 2015, 68:121-134.

    [7] Wang Y., Xu C., Wu X. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface [J].Physical Review Fluids, 2017, 2(8): 084303.

    [8] Long X., Cheng H., Ji B. et al. Large eddy simulation and Euler-Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil [J].International Journal of Multiphase Flow, 2018, 100:41-56.

    [9] Cheng H. Y., Long X. P., Ji B. et al. 3-D Lagrangian based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis [J].Journal of Hydrodynamics,2018, 30(1): 122-130.

    [10] Long Y., Long X., Ji B. et al. Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil [J].Journal of Hydrodynamics, 2017,29(4): 610-620.

    [11] Xing T. A general framework for verification and validation of large eddy simulations [J].Journal of Hydrodynamics, 2015, 27(2): 163-175.

    [12] Freitag M., Klein M. An improved method to assess the quality of large eddy simulations in the context of implicit filtering [J].Journal of Turbulence, 2006, 7(40): 1-11.

    [13] Dutta R., Xing T. Quantitative solution verification of large eddy simulation of channel flow [C].Proceedings of the 2nd Thermal and Fluid Engineering Conference and 4th International Workshop on Heat Transfer, Las Vegas,USA, 2017.

    [14] Huang B., Young Y. L., Wang G. et al. Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation [J].Journal of Fluids Engineering, 2013, 135(7): 071301.

    [15] Ji B., Long Y., Long X. P. et al. Large eddy simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions [J].Journalof Hydrodynamics,2017, 29(1): 27-39.

    [16] Dutta R., Xing T. Five-equation and robust three-equation methods for solution verification of large eddy simulation[J].Journal of Hydrodynamics,2018, 30(1): 23-33.

    猜你喜歡
    龍云新平
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    出滇抗戰(zhàn)時期龍云對滇軍的治理研究
    創(chuàng)造(2020年6期)2020-11-20 05:58:42
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    An integral calculation approach for numerical simulation of cavitating flow around a marine propeller behind the ship hull *
    URANS simulations of the tip-leakage cavitating flow with verification and validation procedures *
    你總是給我力量
    Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil*
    欧美+日韩+精品| 高清毛片免费观看视频网站| 老司机午夜福利在线观看视频| 午夜视频国产福利| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 精品欧美国产一区二区三| 亚洲美女搞黄在线观看 | 国产精品美女特级片免费视频播放器| 日韩大尺度精品在线看网址| 午夜福利在线观看免费完整高清在 | 国产成人影院久久av| 成熟少妇高潮喷水视频| 欧美不卡视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av一区综合| 精品熟女少妇八av免费久了| 天堂av国产一区二区熟女人妻| 不卡一级毛片| 亚洲国产欧洲综合997久久,| 午夜精品久久久久久毛片777| 又黄又爽又刺激的免费视频.| 在线观看66精品国产| 中文字幕人成人乱码亚洲影| 久久久久久久精品吃奶| 日本三级黄在线观看| 黄色一级大片看看| 国产精品av视频在线免费观看| 日日干狠狠操夜夜爽| 国产单亲对白刺激| 白带黄色成豆腐渣| 精品一区二区免费观看| 国产精华一区二区三区| 最近最新中文字幕大全电影3| 波野结衣二区三区在线| 亚洲美女视频黄频| 日韩欧美精品免费久久 | АⅤ资源中文在线天堂| 精品人妻熟女av久视频| 免费观看精品视频网站| 三级国产精品欧美在线观看| 国产一区二区亚洲精品在线观看| 无人区码免费观看不卡| 丁香六月欧美| 97碰自拍视频| 国产伦人伦偷精品视频| 精品午夜福利视频在线观看一区| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 欧美黑人巨大hd| 国产成人啪精品午夜网站| 欧美不卡视频在线免费观看| 欧美黄色片欧美黄色片| 熟女人妻精品中文字幕| a级一级毛片免费在线观看| 12—13女人毛片做爰片一| 波多野结衣高清作品| 亚洲最大成人手机在线| 赤兔流量卡办理| 国内少妇人妻偷人精品xxx网站| 哪里可以看免费的av片| 99热这里只有是精品在线观看 | 亚洲国产精品成人综合色| 91麻豆av在线| 三级男女做爰猛烈吃奶摸视频| 欧美bdsm另类| 夜夜爽天天搞| 日本一本二区三区精品| 嫩草影视91久久| 久久精品综合一区二区三区| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 在线十欧美十亚洲十日本专区| 97人妻精品一区二区三区麻豆| 日本免费a在线| 国产单亲对白刺激| 欧美日韩综合久久久久久 | 九九热线精品视视频播放| 欧美xxxx性猛交bbbb| 真人做人爱边吃奶动态| 亚洲精品一区av在线观看| 国产精品精品国产色婷婷| 久久久久性生活片| 伦理电影大哥的女人| 久久精品夜夜夜夜夜久久蜜豆| 日本 欧美在线| 国内久久婷婷六月综合欲色啪| 变态另类成人亚洲欧美熟女| 亚洲激情在线av| 99riav亚洲国产免费| 最近最新中文字幕大全电影3| 999久久久精品免费观看国产| 天堂√8在线中文| 久9热在线精品视频| 窝窝影院91人妻| 国产乱人视频| 亚洲av日韩精品久久久久久密| 在线看三级毛片| 欧美激情国产日韩精品一区| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 中文字幕免费在线视频6| 婷婷精品国产亚洲av| 一进一出好大好爽视频| 一本一本综合久久| 国产精品99久久久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 最后的刺客免费高清国语| 久久国产精品人妻蜜桃| 国产精品久久久久久亚洲av鲁大| 国产精品女同一区二区软件 | 激情在线观看视频在线高清| 国产高清视频在线观看网站| xxxwww97欧美| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av.av天堂| 青草久久国产| 搡老熟女国产l中国老女人| 国产精品亚洲一级av第二区| 男女下面进入的视频免费午夜| 久久久精品欧美日韩精品| 青草久久国产| 熟妇人妻久久中文字幕3abv| 免费电影在线观看免费观看| 在线看三级毛片| 人妻制服诱惑在线中文字幕| 日韩欧美三级三区| 久久99热6这里只有精品| 黄色一级大片看看| 有码 亚洲区| 一级黄片播放器| 国产午夜精品论理片| 婷婷色综合大香蕉| 欧美色视频一区免费| 真人做人爱边吃奶动态| 99久久精品热视频| 老司机午夜十八禁免费视频| 精品不卡国产一区二区三区| 国产一区二区三区在线臀色熟女| 99久国产av精品| 免费av不卡在线播放| 亚州av有码| 国产麻豆成人av免费视频| 日日摸夜夜添夜夜添av毛片 | 狠狠狠狠99中文字幕| 尤物成人国产欧美一区二区三区| 国产精品影院久久| 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 久久国产乱子免费精品| 欧美成狂野欧美在线观看| 99久久精品一区二区三区| 欧美又色又爽又黄视频| 嫁个100分男人电影在线观看| 成人欧美大片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av免费高清在线观看| 小蜜桃在线观看免费完整版高清| 九九久久精品国产亚洲av麻豆| 青草久久国产| 少妇熟女aⅴ在线视频| 91麻豆精品激情在线观看国产| 能在线免费观看的黄片| 亚洲专区国产一区二区| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 亚洲电影在线观看av| or卡值多少钱| av在线老鸭窝| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 精品久久久久久久久久久久久| 99久久久亚洲精品蜜臀av| 99国产综合亚洲精品| 免费黄网站久久成人精品 | 欧美丝袜亚洲另类 | 久久久成人免费电影| 久9热在线精品视频| 久久久久久久久久成人| 国产精品一区二区三区四区久久| 精品99又大又爽又粗少妇毛片 | 国产av不卡久久| 夜夜夜夜夜久久久久| 国产黄片美女视频| 中文字幕熟女人妻在线| 欧美高清性xxxxhd video| 不卡一级毛片| а√天堂www在线а√下载| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男女视频在线观看网站免费| 午夜日韩欧美国产| 久久亚洲精品不卡| 97超级碰碰碰精品色视频在线观看| 99久久九九国产精品国产免费| 免费高清视频大片| 久久精品国产亚洲av天美| 91久久精品电影网| 亚洲精品久久国产高清桃花| 国产成+人综合+亚洲专区| 免费av毛片视频| 亚洲人与动物交配视频| 亚洲 欧美 日韩 在线 免费| 欧美成人性av电影在线观看| 天堂av国产一区二区熟女人妻| 国内揄拍国产精品人妻在线| 欧美日韩福利视频一区二区| 国产乱人伦免费视频| 变态另类丝袜制服| 天堂影院成人在线观看| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 看十八女毛片水多多多| 极品教师在线免费播放| 日日夜夜操网爽| 97人妻精品一区二区三区麻豆| 观看美女的网站| 观看免费一级毛片| 欧美bdsm另类| 色视频www国产| 亚洲中文字幕日韩| 99久久无色码亚洲精品果冻| 中文字幕av在线有码专区| 久久婷婷人人爽人人干人人爱| 美女 人体艺术 gogo| 成人高潮视频无遮挡免费网站| 天堂√8在线中文| 亚洲avbb在线观看| 好男人电影高清在线观看| 一个人观看的视频www高清免费观看| 脱女人内裤的视频| av欧美777| 亚洲成人久久爱视频| 国产乱人伦免费视频| 午夜福利免费观看在线| 欧美最黄视频在线播放免费| 亚洲激情在线av| 久久久国产成人精品二区| 亚洲第一区二区三区不卡| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久精品电影| 很黄的视频免费| 国产亚洲精品久久久久久毛片| 深爱激情五月婷婷| 亚洲人成网站高清观看| 国产精品av视频在线免费观看| 老司机午夜十八禁免费视频| 国内少妇人妻偷人精品xxx网站| 久久午夜福利片| 18+在线观看网站| 久久久久久久久久黄片| 日本三级黄在线观看| 亚洲精品一区av在线观看| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 91av网一区二区| 可以在线观看的亚洲视频| av天堂中文字幕网| 一个人观看的视频www高清免费观看| 国产精品人妻久久久久久| 高清日韩中文字幕在线| 欧美中文日本在线观看视频| 免费看a级黄色片| 成年人黄色毛片网站| 看十八女毛片水多多多| 两个人视频免费观看高清| 国产在线男女| 有码 亚洲区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 毛片女人毛片| 亚洲成人免费电影在线观看| 欧美成人a在线观看| 亚洲,欧美,日韩| 哪里可以看免费的av片| 成人美女网站在线观看视频| 久久久久久久久大av| 婷婷丁香在线五月| 久久国产乱子免费精品| 欧美3d第一页| 人人妻,人人澡人人爽秒播| 国产精品嫩草影院av在线观看 | 欧美一区二区精品小视频在线| 97热精品久久久久久| 99国产精品一区二区三区| 亚洲国产欧美人成| 99热精品在线国产| 国产高清视频在线观看网站| 九色国产91popny在线| 国内揄拍国产精品人妻在线| 欧美极品一区二区三区四区| 美女免费视频网站| 中出人妻视频一区二区| 亚洲美女黄片视频| 99热这里只有是精品在线观看 | 成熟少妇高潮喷水视频| 欧美日本亚洲视频在线播放| 99久久精品国产亚洲精品| 亚洲一区二区三区色噜噜| 成人无遮挡网站| 成人高潮视频无遮挡免费网站| 黄色视频,在线免费观看| 国产av麻豆久久久久久久| 在线免费观看的www视频| 亚洲avbb在线观看| av欧美777| 成年女人毛片免费观看观看9| 日韩人妻高清精品专区| 18禁黄网站禁片午夜丰满| 午夜福利在线观看免费完整高清在 | 久久久久免费精品人妻一区二区| 最近视频中文字幕2019在线8| 成人欧美大片| 亚洲国产欧美人成| 赤兔流量卡办理| 国产黄a三级三级三级人| 国产aⅴ精品一区二区三区波| avwww免费| 久久精品国产99精品国产亚洲性色| 又粗又爽又猛毛片免费看| 亚洲av免费高清在线观看| 中文亚洲av片在线观看爽| 亚洲黑人精品在线| 亚洲av二区三区四区| 日本a在线网址| 91在线观看av| 18禁在线播放成人免费| 好看av亚洲va欧美ⅴa在| 90打野战视频偷拍视频| 午夜免费男女啪啪视频观看 | 免费电影在线观看免费观看| 久久人妻av系列| 九九久久精品国产亚洲av麻豆| 亚洲av电影不卡..在线观看| 一a级毛片在线观看| 国产精品久久久久久久久免 | 国产人妻一区二区三区在| 日本黄色视频三级网站网址| 嫁个100分男人电影在线观看| 日本成人三级电影网站| 99riav亚洲国产免费| 三级男女做爰猛烈吃奶摸视频| 免费搜索国产男女视频| av福利片在线观看| 97热精品久久久久久| 欧美最新免费一区二区三区 | 中文资源天堂在线| av在线天堂中文字幕| 亚洲午夜理论影院| 听说在线观看完整版免费高清| 国产在线男女| 极品教师在线免费播放| 久久精品国产亚洲av涩爱 | 日韩中文字幕欧美一区二区| 午夜精品在线福利| 1000部很黄的大片| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 1024手机看黄色片| 91久久精品电影网| 国产中年淑女户外野战色| 波多野结衣高清无吗| 18禁黄网站禁片午夜丰满| 中文字幕av成人在线电影| bbb黄色大片| 97碰自拍视频| 成人鲁丝片一二三区免费| 午夜免费成人在线视频| 国产精品亚洲av一区麻豆| 精品人妻视频免费看| 免费看日本二区| 亚洲国产精品sss在线观看| 老司机午夜福利在线观看视频| 亚洲国产精品999在线| 亚洲第一欧美日韩一区二区三区| 中文字幕人成人乱码亚洲影| 色尼玛亚洲综合影院| 搡女人真爽免费视频火全软件 | 男人的好看免费观看在线视频| 国产精品久久久久久久电影| 免费观看的影片在线观看| 国产亚洲精品久久久久久毛片| 嫁个100分男人电影在线观看| 亚洲第一电影网av| 久久久久久久久大av| 中文在线观看免费www的网站| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3| 久久久久久久久久黄片| av专区在线播放| 黄片小视频在线播放| 夜夜躁狠狠躁天天躁| 天堂动漫精品| 中文字幕av在线有码专区| 舔av片在线| 看黄色毛片网站| 亚洲精品456在线播放app | 亚洲最大成人av| 免费av观看视频| 我要搜黄色片| 亚洲经典国产精华液单 | 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 国产91精品成人一区二区三区| 最近最新中文字幕大全电影3| 男女床上黄色一级片免费看| 国产在线男女| 天美传媒精品一区二区| 亚洲av二区三区四区| 性色avwww在线观看| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频| 国产乱人视频| 国产单亲对白刺激| 婷婷六月久久综合丁香| 夜夜躁狠狠躁天天躁| 亚洲国产欧美人成| 国产免费男女视频| 老鸭窝网址在线观看| 欧美区成人在线视频| 日韩亚洲欧美综合| 婷婷精品国产亚洲av在线| 色视频www国产| 久久精品国产自在天天线| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美三级三区| 小蜜桃在线观看免费完整版高清| 国内毛片毛片毛片毛片毛片| 老司机深夜福利视频在线观看| 免费人成视频x8x8入口观看| 一区二区三区激情视频| 国产麻豆成人av免费视频| 亚洲乱码一区二区免费版| 一级av片app| 精品国产三级普通话版| 欧美一级a爱片免费观看看| 国产一区二区激情短视频| 免费av观看视频| 69人妻影院| h日本视频在线播放| 久久性视频一级片| 91午夜精品亚洲一区二区三区 | 国产精品亚洲美女久久久| 国产黄色小视频在线观看| 久久久久久久久中文| 哪里可以看免费的av片| 在线观看舔阴道视频| 欧美性感艳星| 国产亚洲精品av在线| 久久久久久国产a免费观看| 91九色精品人成在线观看| 欧美激情在线99| 亚洲中文字幕日韩| 精品无人区乱码1区二区| 婷婷色综合大香蕉| 久久久久久久亚洲中文字幕 | 欧美激情久久久久久爽电影| www.www免费av| 1000部很黄的大片| 又爽又黄无遮挡网站| 久久久成人免费电影| 国产探花在线观看一区二区| 日韩欧美免费精品| 国产视频一区二区在线看| 日韩有码中文字幕| 婷婷色综合大香蕉| 国产成人a区在线观看| 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 日韩欧美精品免费久久 | 欧美极品一区二区三区四区| 亚洲av美国av| 日日摸夜夜添夜夜添av毛片 | 国产在视频线在精品| 精品久久国产蜜桃| 欧美日韩瑟瑟在线播放| 男人和女人高潮做爰伦理| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 国产欧美日韩一区二区三| a级一级毛片免费在线观看| 男女之事视频高清在线观看| 日本黄色视频三级网站网址| 国产日本99.免费观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品一区二区三区免费看| 中文字幕熟女人妻在线| 变态另类成人亚洲欧美熟女| 18禁黄网站禁片午夜丰满| 3wmmmm亚洲av在线观看| 日本一本二区三区精品| 深爱激情五月婷婷| 在线天堂最新版资源| 非洲黑人性xxxx精品又粗又长| 在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 免费看美女性在线毛片视频| 在线天堂最新版资源| 老司机午夜十八禁免费视频| 国产伦精品一区二区三区视频9| 日日夜夜操网爽| а√天堂www在线а√下载| 欧美三级亚洲精品| 成人鲁丝片一二三区免费| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| av视频在线观看入口| 精品国产亚洲在线| 性欧美人与动物交配| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 亚洲精品影视一区二区三区av| 国产精品久久久久久久电影| 成年免费大片在线观看| 丰满人妻一区二区三区视频av| 在线播放无遮挡| 精品久久久久久久末码| 中文字幕av成人在线电影| 精品久久久久久成人av| 成年女人永久免费观看视频| 伦理电影大哥的女人| 亚洲人成电影免费在线| 中文字幕人成人乱码亚洲影| 国产精品电影一区二区三区| 91久久精品国产一区二区成人| 91久久精品电影网| 中文字幕免费在线视频6| 国产黄a三级三级三级人| 少妇高潮的动态图| bbb黄色大片| 国产伦精品一区二区三区视频9| 精品久久久久久久人妻蜜臀av| 国产精品久久久久久人妻精品电影| 麻豆久久精品国产亚洲av| 国产单亲对白刺激| 长腿黑丝高跟| 老熟妇乱子伦视频在线观看| 18禁黄网站禁片午夜丰满| 久久这里只有精品中国| 亚洲av中文字字幕乱码综合| 久久天躁狠狠躁夜夜2o2o| 欧美又色又爽又黄视频| 国产综合懂色| 天美传媒精品一区二区| 我的老师免费观看完整版| 亚洲第一欧美日韩一区二区三区| 久久精品影院6| 99久久九九国产精品国产免费| 日韩有码中文字幕| 久久婷婷人人爽人人干人人爱| 国产精品人妻久久久久久| 18禁裸乳无遮挡免费网站照片| 午夜福利在线在线| 九色国产91popny在线| 一个人免费在线观看电影| 1000部很黄的大片| 欧美高清性xxxxhd video| 90打野战视频偷拍视频| 中文亚洲av片在线观看爽| 久久精品国产99精品国产亚洲性色| 亚洲av成人av| 看十八女毛片水多多多| 免费在线观看亚洲国产| 亚洲av美国av| 久久久久国产精品人妻aⅴ院| 亚洲国产色片| 99久久精品热视频| 色5月婷婷丁香| 日韩亚洲欧美综合| 日本 av在线| 看黄色毛片网站| 嫁个100分男人电影在线观看| 久久国产乱子免费精品| 可以在线观看毛片的网站| 国产精品久久视频播放| 午夜福利18| 欧美最黄视频在线播放免费| 精品久久久久久久末码| 色在线成人网| 窝窝影院91人妻| 国模一区二区三区四区视频| 亚洲乱码一区二区免费版| 怎么达到女性高潮| 嫩草影院入口| 色在线成人网| 欧美潮喷喷水| 在线观看午夜福利视频| 成人三级黄色视频| 窝窝影院91人妻| www.www免费av| av国产免费在线观看| 天堂av国产一区二区熟女人妻| www.www免费av| 亚洲精品成人久久久久久| 少妇的逼水好多| 毛片女人毛片| 日本 av在线| 国产伦在线观看视频一区| 国产真实乱freesex| 香蕉av资源在线| 搞女人的毛片| 无人区码免费观看不卡| 88av欧美| 波野结衣二区三区在线| 久久久国产成人精品二区| 成年女人永久免费观看视频| 亚洲人成网站在线播放欧美日韩| 婷婷丁香在线五月| 亚洲狠狠婷婷综合久久图片|