• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Couple stress fluid flow in a rotating channel with peristalsis *

    2018-05-14 01:43:10AbdelmaboudSaraAbdelsalamKhMekheimer
    水動力學研究與進展 B輯 2018年2期

    Y. Abd elmaboud , Sara I. Abdelsalam , Kh. S. Mekheimer

    1. Mathematics Department, Faculty of Science and Arts, Khulais, University Of Jeddah, Jeddah, Saudi Arabia.

    2. Mathematics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt

    3. Department of Mechanical Engineering, University of California, Riverside, USA

    4. Mathematics Department, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, Egypt

    5. Basic Science Department, Faculty of Engineering, The British University in Egypt, Cairo, Egypt

    Introduction

    The theory of the couple stress (CS) fluid was first proposed by Stokes[1]in 1966. In this theory Stokes introduced the rotational field in terms of the velocity field for setting up the constitutive relationship between the stress and strain rates. Stokes microcontinuum theory allows for polar effects such as the presence of couple stresses, body couples and a nonsymmetric stress tensor.

    Peristaltic transport is one of the important topics that attracts scientific researchers in bio fluid mechanics branch. Peristaltic transport is a physical mechanism for the flow induced by the traveling wave. This mechanism is found in the body of living creatures,and it frequently occurs in organs such as ureter,intestines and arterioles (small arteries). The mechanism of peristaltic transport has also been found in the industry. There are many industrial applications that involve peristaltic transport, some of which, sanitary fluid transport, blood pumps in heart lung machine,and transport of corrosive fluids where the contact of the fluid with the machinery parts is prohibited. The first investigation of peristaltic transport was done by Latham[2]. Recently, considerable attention has been devoted to the problem of peristaltic transport with Newtonian or non-Newtonian fluid in channel or a tube[3-16].

    In most mathematical models there are some difficulties to achieve the exact solution. Homotopy analysis method (HAM) ( homotopy perturbation method (HPM) is a special case) is a new analytical technique that employs a transformation procedure which reduces the involved partial differential equations into ordinary differential equations. Series solutions of the resulting systems are constructed. The convergence of the obtained series solutions is seen through graphical results and tabular values. The method gives flexibility in the choice of basic functions for the solution and for the linear inversion operators (when compared with the Adomian decomposition method), while still retaining a simplicity that makes the method easily understandable from the standpoint of general perturbation methods. This method has been first introduced by Liao[17,18].Recently, many authors[19-22]have used HPM in a wide variety of scientific and engineering applications.

    Motivated by these ideas, the goal of this investigation is to study the couple stress fluid flow in a rotating channel with peristalsis. The governing equations are modeled and reduced to a simple form using the long wavelength approximation then solved using the HPM. The analyses for the velocity, pressure gradient, flow rate due to secondary velocity, and the pressure rise have been discussed for various values of the problem parameters.

    1. Formulation of the problem and mathematical model

    Consider a two-dimensional infinite channel filled with homogeneous incompressible couple stress fluid. We assume that the channel rotates with a constant angular speed Ω, about theZ′-axis. The flow is induced by sinusoidal wave trains propagating with constant speedc, along the channel walls (see Fig.1). The geometry of the wall surface is defined as

    whereais the half-width of the channel,bis the wave amplitude, λ is the wavelength andt′ is the time. With regard to the rotating frame the fluid velocity vector is given byV′= (U′(X′,Z′,t′),V′(X′,Z′,t′),W′(X′,Z′,t′)), whereU′,V′ andW′ are the velocity components inX′,Y′ andZ′, respectively. Introducing the wave frame (x′,y′,z′) that moves with velocitycaway from the fixed frame(X′,Y′,Z′). We employ the transformation:

    where (u′,v′,w′) are the velocity components in the wave frame, alsop′ andP′ are the pressures in the wave and fixed frames respectively.

    The governing equations for the couple stress fluid, taking into account the rotating frame, will be in the form:

    where ρ is the density, μ is the fluid viscosity, η is the couple stress fluid parameter,p′ =p′*-ρΩ2(x′2+y′2) /2 is the modified pressure andp′*is hydrostatic pressure.

    Fig.1 Geometry of the problem

    Assuming the components of the couple stress tensor are all zero at the wall[1,23], the corresponding non-slip boundary conditions will be:

    Consider the following non-dimensional variables and parameters:

    whereReis the Reynolds number, δ is the dimensionless wave number, γ (γ>0) is the couple stress fluid parameter indicating the ratio of the channel width (which is constant) to the material characteristic length (since1/2(η/ )μ, has the dimension of length), φ is the amplitude ratio andTrepresents Taylor’s number.

    Using the dimensionless variables and parameters given by Eq. (8), together with the stream function ψ(x,z) (such thatu= ψz,w=-δψx), the continuity Eq. (3) is identically satisfied and Eqs.(4)-(6) become:

    We define the instantaneous volume flow rate in the fixed frame as follows

    whereH′ is function ofX′,t′.

    The rate of volume flow in the wave frame is given by

    whereh′ is function ofx′ alone. Hence, the two rates of volume flow are related through

    The time mean flow over a period τ at a fixed positionxis defined as

    substituting (14) into (15), and integrating, we get

    We define the dimensionless time-mean flows θ andFin the fixed and wave frame as:

    one finds that (16) may be written as

    where

    Under lubrication approach (negligible inertiaRe→ 0 and long wavelength δ?1), the Eqs. (9)-(11) reduce to

    The corresponding boundary conditions will be

    2. Solution methodology

    Equation (22) shows that the pressurepis not a function ofz. Further,py=0 because the secondary flow is caused by the rotation only. Differentiating Eq. (20) with respect tozand taking into account the above note, one finds that

    and Eq. (21) will be in the form

    To solve Eqs. (24), (25) with the corresponding boundary conditions (23), we are going to use the powerful homotopy perturbation method. The homotopy equation for the given problem is defined as:

    whereq∈ [0,1] is the embedded parameter, and L1and L2are the linear operators that are assumed to be L1=?6/?z6and L2=?4/?z4. We define the initial guess as:

    where

    Now we describe Substituting the above equation into Eqs. (26),(27) and then taking the terms of order zero, one, and two, we obtain the following models along with the corresponding boundary conditions:

    Zeroth-order

    with the corresponding boundary conditions

    The solution of the zeroth order system can be obtained by using Eqs. (28), (29) and is directly written as

    First-order

    with the corresponding boundary conditions

    The solutions of the above linear ordinary differential equations are found as

    Second-order

    with the corresponding boundary conditions

    The solutions of this order is very large so we omit it from the text. We substitute the values of0ψ,1ψ and2ψ andv0,v1andv2in Eqs. (30), (31),respectively. Now forq→1, we approach the final solutions.

    The secondary flow is an indication for the rotating frame in most cases. The physical quantities of interest, such as the dimensionless flow rateF2,due to secondary velocity and the pressure rise Δpare defined, respectively, as:

    The shear stress at the wallwτ, after implementing the long wavelength approximation and taking into consideration that the couple stress value vanishes at the wall, will be in the form

    3. Quantitative investigation

    In this section, theoretical estimates of different physical quantities that are of relevance to the fluid problem have been obtained on the basis of the present study. We investigate novelties brought about by the introduction of Taylor’s numberT, which is due to rotation of channel about thez-axis, and couple stress parameter γ into the model. Particularly, we discuss their effects on the longitudinal velocity distributionu, pressure gradient dp/dx,pressure rise per wavelength Δp, and on the dimensionless flow rate due to secondary velocityF2. The formation of a bolus of fluid which is presented by a snapshot of flow field characteristic streamlines enclosing the pattern is also investigated. For this purpose, the following data that are valid in the physiological range[1,3,7,24]have been used: γ=0.01-3.00,T=0-7, θ= -1 .5-1.5 and φ=0.4-0.6.

    3.1 Distribution of velocity

    The variations ofTand γ on the longitudinal velocity distributionuhave been portrayed and investigated in this subsection. Figures 2, 3 are constructed to serve this purpose. As shown in Fig.2,the couple stress parameter γ enhances the longitudinal flow velocity and is almost constant within the range 0≤z≤0.2, after which it has a decreasing effect onu. It is obvious that forz≥0.2,udecreases with the variation ofzfor a fixed value of γ. For large values of γ (i.e., move to Newtonian fluid), the longitudinal velocityuincreases in the center region of the fluid layer and decreases near to the wavy walls. Figure 3 elucidates thatuincreases with an increase inTuntil it reaches the center of the channel where the trend is reversed. It is also concluded thatuhas smaller values in the absence of the inertial forces due to rotation till it reaches the center of the channel, where the trend is reversed.Generally, it is obvious thatuattains its maximum value and stays constant over a certain range ofz(0 ≤z≤ 0.2) after which it begins to decrease rapidly.Thus, this considerable increase inu, due to rotation,near the lower wall supports the motion at that zone.Finally, the longitudinal velocity for the rotating fluid is higher than that for non rotating one (T=0). The curves that describe the variation ofufor various values of γ are qualitatively similar to those of Fig.2.

    Fig.2 The longitudinal velocity distribution u,across the channel with different values of T at x=0.2, θ=1.5, γ=3.0 and φ=0.4

    3.2 Pumping behaviour

    Fig.3 The longitudinal velocity distribution u,across the channel with different values of γ at x=0.2,θ=1.5, T=4 and φ=0.4

    Fig.4 Variation of pressure gradient versus x with different values of T for fixed φ=0.4, θ=-1.5 and γ=2.0

    The pumping characteristics can be determined through the variation of time averaged flux with difference in pressure across one wave length. It is known that if the flow is steady in the wave frame, the instantaneous pressure difference between two stations one wave length apart is a constant. Since the pressure gradient is a periodic function of (Z-t), pressure rise per wave length Δpis equal to λ times the time-averaged pressure gradient. The graph is sectored so that the region in which the pressure difference vanishes, Δp=0, is regarded to as the free pumping zone, while the region where Δp>0 (adverse pressure gradient) and θ>0 (positive pumping) is said to be the peristaltic pumping zone where the peristalsis of the walls overcomes the resistance of the pressure and assists the fluid of flow. When Δp>0 and θ<0, the region is known as retrograde or backward pumping where the flux of fluid is opposite to the wave propagation. The situation when Δp<0(favorable pressure gradient) and θ>0 (positive pumping) corresponds to the so-called co-pumping or augmented zone where the pressure difference amplifies the flow. Figures 4, 5 present the variations of dp/dxfor different values ofTand γ where it is noticed that the pressure gradient has a periodic nature. One may observe from Fig.4 that in the range of values of Taylor’s number examined in the present study, the pressure gradient is weakly affected byTin the narrow region of the channel, nevertheless, it has a decreasing effect on the wider region where, it over the ranges of 0 ≤x≤ 0.35 and 0.6≤x≤1,approximately. Generally, the pressure gradient attains its maximum value at the narrow region of the channel from where it decreases rapidly as we go to the wider parts. Figure 5 elucidates that dp/dxis strongly affected by γ which has a decreasing effect on it. It is noticed that the maxima of pressure gradient curve decreases rapidly with an increase in γ. The variations of Δpwith θ for various values ofTand γ are presented in Fig.6. It is seen from the graph that Δpand θ are inversely proportional to each other. Further, Fig.6 shows that upon increasingTand γ, Δpdecreases in the retrograde pumping till a certain value in the peristaltic pumping region after which the pumping rate will increase by increasingTand γ in both, the peristaltic and co-pumping regions. It is observed that the pumping region (Δp>0) decreases with an increase inTfor fixed values of γ. It is also observed that the maximum pressure against which peristalsis works as a positive displacement pump (that is, Δpfor θ=0) decreases for large value ofT(=5). It appears that for the case γ =2, free pumping is independent ofT, but this is not true as seen from the enlargement ofTshown in figure. In contrast, if one keeps increasingT, Δpbecomes negative for most of the positive values of θ. Thus, forT=5, the free pumping is not independent ofT. Hence, for a fluid in a frame rotating with large angular speed, pressure does not rise against the direction of the peristaltic wave. It implies that the pressure assists the flow in such a case.In fact, the rotation of the channel produces a negative secondary component of the velocity which, in turn, is responsible for Coriolis force acting on the fluid in the positivey-direction. This force pulls the fluid outwards and thus, reduces the pressure rise. It is interesting to note that the lines for different values ofTintersect in the region Δp>0. On the other hands,it is noticed from Fig.6 that the pumping region decreases with increasing the values of γ for fixed values ofT. It is also observed that the maximum pressure against which peristalsis works as a positive displacement pump decreases with increasing γ. It appears that free pumping is not independent of γ.Also, if one keeps increasing γ , Δpbecome negative for most of the positive values of θ and the pressure assists the flow. It is interesting to note that the lines for different values of γ intersect in the region Δp<0.

    Fig.5 Variation of pressure gradients versus x with different values of γ for fixed φ=0.4, θ=-1.5 and T=0

    Fig.6 Variation of pressure rises over the length versus θ with different values of couples tress parameter γ and Taylor’s number T at φ=0.4

    Fig.7 The dimensionless flow rates due to secondary velocity F2 for different values of T with φ=0.6, γ=1.0 and θ=-0.2

    3.3 Dimensionless flow rate due to secondary velocity

    Figures 7, 8 are plotted so as to study the behavior of dimensionless flow rate due to secondary velocity withxfor various values of the concerned parameters. The caseT=0 corresponds to flow rate in the absence of centrifugal forces i.e., the inertial forces due to rotation of channel about thez-axis. It is evident thatF2vanishes when the rotation of channel disappears. For θ=-0.2, it is noticed thatF2is positive in the narrow part of the channel,otherwise, it is negative. It is observed thatThas an increasing effect onF2except over the ranges 0.2≤x≤0.8 and 1.2≤x≤1.8 where the behavior is reversed. Moreover, as the value ofTincreases,F2becomes positive over the whole wavelength of the channel. Figure 8 depicts the influence of couple stress parameter γ onF2for θ=-0.2. It is revealed thatF2is positive over the whole wavelength of the channel for all values of γ. Yet, γ has an increasing effect onF2except for the ranges ofxthat are between 0.2 to 0.8 and 1.2 to 1.8 where the trend reverses.

    Fig.8 The dimensionless flow rates due to secondary velocity F2 for different values of γ with φ=0.6, T=2 and θ=-0.2

    3.4 Streamlines and trapping

    Trapping is an important aspect of peristaltic motion. It occurs when streamlines on the central line are split to enclose a bolus of fluid particles circulating along closed streamlines in the wave frame of reference. Then the fluid particles contained in the bolus move at a mean speed of advance equal to the wave propagation speed, whereas the remaining fluid has a smaller mean speed of advance. Under the purview of the present study, Figs. 9, 10 give an insight into the changes in the patterns of streamlines and trapping that occur due to changes in the values of different parameters governing the flow in the wave frame of reference. Figure 9 illustrates the influence of the rotation of channel on the trapping phenomenon.The caseT=0 corresponds to trapping in the absence of rotation. Here, we observe that the trapped bolus exists about the center streamline. However, the number of closed streamlines circulating the bolus gets raised as we move towards higher values of flow field rotation parameter (increase the values ofT=0,2,5). It is also noticed that the effect ofTis to enhance the area (size) of the trapped bolus with a tendency to move towards the boundary asTincreases. Yet, for small values ofT(=2), there is not much difference in the area trapped bolus compared with that of the absence of rotation case. This phenomenon is useful in understanding the movement of the food bolus in the gastrointestinal tract and the formation of thrombus in blood. Streamlines for various values of the of couple stress parameter γ are depicted in Fig.10. This figure indicates that the occurrence of trapping is strongly influenced by the value of γ. With an increase in γ (move to Newtonian fluid), the bolus is found to appear in a distinct manner and it is observed that the number of closed streamlines circulating the bolus increases.

    Fig.9 Streamlines for different values of Taylor’s number T,with fixed values of θ=-1.0, φ=0.4 and γ=2.0

    3.5 Distribution of wall shear stress

    Fig.10 Streamlines for different values of couple stress parameter γ, respectively, with fixed values of θ=1.0,φ= 0.4 and T=0

    It is very interesting to note that for fluids in microcontinuum (couple stress fluids, micropolar fluids,dipolar fluids, etc.), stress tensor is not symmetric. It is known that the stress tensor for a couple stress fluid contains a symmetric and asymmetric parts. And since there are vanishing components of the couple stress tensor at the channel walls, the stress tensor at the wall will have the symmetric part only. Figures 11, 12 display the variation of the symmetric part of the wall shear stress with thex-axis for different values of the couple stress parameter γ and the rotation parameterT. The figures show that the wall shear stress behave just as the wall sinusoidal wave. Further,there exists two peaks in the shear stress distribution,over the rangex=0-2, with a gradual ramp in between. However, the negative peak of the wall shear stress τminis not as large as the maximum wall shear stress, τmax. The transition from τminto τmaxof the wall shear stress takes place in some zone between the minimum and maximum width of the channel.Moreover, an increase in the couple stress parameter γ (i.e., moves towards a Newtonian fluid) and in the rotation parameterTleads to a slight variation in the wall shear stress and this variation is obvious in the bottom area of the wall shear stress wave. However,this variation increases as the rotation parameter increases and is reduced by moving towards a Newtonian fluid (γ take large values ).

    Fig.12 Wall shear stress wτ versus x with different values of γ at T=0, φ=0.4 and θ=0.5

    4. Concluding remarks

    In this study, we investigate the peristaltic flow of a non-Newtonian couple stress fluid in a rotating frame of reference under the long wavelength assumption. The resulting equations are solved, using the powerful HPM, for exact solutions to the longitudinal velocity distribution, pressure gradient, flow rate due to secondary velocity, and pressure rise per wavelength. The main findings can be summarized as follows:

    (1) Taylor’s number and the couple stress parameter have an increasing effect onutill half of the channel from where the behavior is reversed.

    Fig.11 Wall shear stress wτ versus x with different values of T at γ=2.0 , φ=0.4 and θ=0.2

    (2) The pressure gradient, dp/dx, has a periodic nature under the influence of both,Tand γ.

    (3) The couple stress parameter strongly affects dp/dxcausing it to decrease, unlikeTwhich weakly affects it.

    (4) The pressure rise, Δp, decreases in the retrograde pumping till a certain value in the peristaltic pumping region after which the pumping rate will increase by increasingTand γ in the peristaltic and co-pumping regions.

    (5) Free pumping is dependent on high values ofTand on γ in which the pressure does not rise against the direction of the peristaltic wave and hence,assists the flow.

    (6) BothTand γ have an increasing effect on the flow rate due to secondary velocity,F2, over certain range ofx.

    (7) AsTand γ increase, number of closed streamlines circulating the bolus increases.

    (8) The results for the Newtonian incompressible fluid in a rotating frame can be recovered for large values of γ[24].

    (9) The shear stress profiles is not significantly disturbed by the numerical value of γ orTin the narrow parts in the channel.

    (10) In the absence ofT, our results perfectly match with the results computed on the basis of our study of peristaltic flow of couple stress fluid in the absence of heat transfer in a fixed frame[23].

    [1] Stokes V. K. Couple stress fluid [J].Physics of Fluids,1966, 9(9): 1709-1715.

    [2] Latham T. W. Fluid motion in a peristaltic pump [D].Master Thesis, Massachusetts, USA: Massachusetts Institute of Technology, 1966.

    [3] Noreen S. A., Wahid B. A. Physiological transportation of casson fluid in a plumb duct [J].Communications in Theoretical Physics, 2015, 63(3): 347-352.

    [4] Abd elmaboud Y. Thermomicropolar fluid flow in a porous channel with peristalsis [J].Journal of Porous Media, 2011, 14(11): 1033-1045.

    [5] Abd elmaboud Y., Mekheimer Kh. S. Non-linear peristaltic transport of a second-order fluid through a porous medium [J].Applied Mathematical Modelling, 2011, 35(6):2695-2710.

    [6] Noreen S. A., Wahid B. A. Heat transfer analysis for the peristaltic flow of herschel-bulkley fluid in a nonuniform inclined channel [J].Zeitschrift Für Naturforschung A,2015, 70(1): 23-32.

    [7] Noreen S. A. Application of Eyring-Powell fluid model in peristalsis with nano particles [J].Journal of Computational and Theoretical Nanosciences, 2015, 12(1): 94-100.

    [8] Ellahi R., Bhatti M. M., Riaz A. et al. The effects of magnetohydrodynamics on peristaltic flow of Jeffrey fluid in a rectangular duct through a porous medium [J].Journal of Porous Media, 2014, 17(2): 143-157.

    [9] Hayat T., Asfar A., Khana M. et al. Peristaltic transport of a third order fluid under the effect of a magnetic field [J].Computers and Mathematics with Applications, 2007,53(7): 1074-1087.

    [10] Mekheimer Kh. S., Husseny S. Z. A., Abd elmaboud Y.Effects of heat transfer and space porosity on peristaltic flow in a vertical asymmetric channel [J].Numerical Methods for Partial Differential Equations, 2010, 26(4):747-770.

    [11] Ellahi R., Bhatti M. M., Vafai K. Effects of heat and mass transfer on peristaltic flow in a non-uniform rectan- gular duct [J].International Journal of Heat and Mass Transfer,2014, 71(4): 706-719.

    [12] Mekheimer Kh. S., Abdel maboud Y. Peristaltic flow of a couple stress fluid in an annulus: Application of an endoscope [J].Physica A, 2008, 387(11): 2403-2415.

    [13] Hayat T., Wang Y., Siddiqui A. M. et al. Peristaltic transport of a third order fluid in a circular cylindrical tube [J].MathematicalModels and Methods in Applied Sciences,2002, 12(12): 1691-1706.

    [14] Hayat T., Wang Y., Siddiqui A. M. et al. Peristaltic transport of an Oldroyd-B fluid in a planar channel [J].Mathematical Problems in Engineering, 2004, 2004(4):347-376.

    [15] Nadeem S., Riaz A., Ellahi R. et al. Heat and mass transfer analysis of peristaltic flow of nanofluid in a vertical rectangular duct by using the optimized series solution and genetic algorithm [J].Computational and Theoretical Nanoscience, 2014, 11(4): 1133-1149.

    [16] Nadeem S., Riaz A., Ellahi R. Peristaltic flow of viscous fluid in a rectangular duct with compliant walls [J].Computational Mathematics and Modeling, 2014, 25(3):404-415.

    [17] Liao S. General boundary element method for non-linear heat transfer problems governed by hyperbolic heat conduction equation [J].Computational Mechanics, 1997,20(5): 397-406.

    [18] Liao S. Numerically solving nonlinear problems by the homotopy analysis method [J].Computational Mechanics,1997, 20(6): 530-540.

    [19] Ellahi R., Riaz A., Nadeem S. et al. Peristaltic flow of Carreau fluid in a rectangular duct through a porous medium [J].Mathematical Problems in Engineering, 2012,Article ID 329639.

    [20] Abd Elmaboud Y., Mekheimer Kh. S., Mohamed M. S.Series solution of a natural convection flow for a Carreau fluid in a vertical channel with peristalsis [J].Journal of Hydrodynamics, 2015, 27(6): 969-979.

    [21] Saadatmandi A., Dehghan M., Eftekhari A. Application of He’s homotopy perturbation method for non-linear system of second-order boundary value problems [J].Nonlinear Analysis: Real World Applications, 2009, 10(3):1912-1922.

    [22] Mekheimer Kh. S., Abdelmaboud Y., Abdellateef A. I.Particulate suspension flow induced by sinusoidal peristaltic waves through eccentric cylinders: Thread annular[J].International Journal of Biomathematics, 2013, 6(4):1350026.

    [23] Abd elmaboud Y., Mekheimer Kh. S., Abdellateef A. I.Thermal properties of couple-stress fluid flow in an asymmetric channel with peristalsis [J].Journal of Heat Transfer, 2013, 135(4): 044502-1.

    [24] Ali N., Sajid M., Javed T. et al. Peristalsis in a rotating fluid [J].Scientific Research and Essays, 2012, 7(32):2891-2897.

    国产深夜福利视频在线观看| 亚洲av国产av综合av卡| 国产一卡二卡三卡精品| 丁香欧美五月| 国产亚洲一区二区精品| 国产成人免费观看mmmm| 丝袜美腿诱惑在线| 亚洲精品美女久久av网站| 80岁老熟妇乱子伦牲交| 国产高清视频在线播放一区| 国产老妇伦熟女老妇高清| 日日夜夜操网爽| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲一区二区精品| 在线观看免费高清a一片| svipshipincom国产片| 热99re8久久精品国产| 麻豆av在线久日| 精品免费久久久久久久清纯 | 丝袜在线中文字幕| 午夜激情av网站| 窝窝影院91人妻| 91大片在线观看| √禁漫天堂资源中文www| 日韩大片免费观看网站| 日本一区二区免费在线视频| 两性夫妻黄色片| 在线看a的网站| 丝袜美腿诱惑在线| 精品少妇黑人巨大在线播放| 亚洲专区国产一区二区| 欧美久久黑人一区二区| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区精品| 老鸭窝网址在线观看| cao死你这个sao货| 捣出白浆h1v1| 久久久久久久国产电影| 一本综合久久免费| 少妇猛男粗大的猛烈进出视频| 欧美国产精品一级二级三级| 国产极品粉嫩免费观看在线| 国产黄色免费在线视频| 99国产综合亚洲精品| 99精品欧美一区二区三区四区| av欧美777| 不卡一级毛片| 欧美国产精品va在线观看不卡| 两性午夜刺激爽爽歪歪视频在线观看 | videosex国产| 国产三级黄色录像| 在线天堂中文资源库| 国产淫语在线视频| 国产亚洲精品第一综合不卡| 午夜精品国产一区二区电影| 女人被躁到高潮嗷嗷叫费观| 久热爱精品视频在线9| 一本久久精品| 亚洲欧美一区二区三区久久| 亚洲中文日韩欧美视频| 人人妻人人添人人爽欧美一区卜| www.熟女人妻精品国产| 成人影院久久| 国产aⅴ精品一区二区三区波| 国产精品久久电影中文字幕 | 国产一区二区激情短视频| 一本一本久久a久久精品综合妖精| 久久久欧美国产精品| 岛国毛片在线播放| 国产一卡二卡三卡精品| 国产精品九九99| 国产一区二区激情短视频| 69av精品久久久久久 | 午夜日韩欧美国产| 老司机福利观看| 亚洲成国产人片在线观看| 我的亚洲天堂| 九色亚洲精品在线播放| 黄色视频在线播放观看不卡| 97人妻天天添夜夜摸| 成人国产一区最新在线观看| 精品视频人人做人人爽| 91精品三级在线观看| 日韩欧美三级三区| 99在线人妻在线中文字幕 | 亚洲成av片中文字幕在线观看| 亚洲人成77777在线视频| 亚洲人成电影观看| www.精华液| 国产av国产精品国产| 国产日韩欧美视频二区| 亚洲午夜精品一区,二区,三区| 国产在线一区二区三区精| 18禁国产床啪视频网站| 国产精品一区二区在线观看99| av超薄肉色丝袜交足视频| 高清毛片免费观看视频网站 | 国产深夜福利视频在线观看| 80岁老熟妇乱子伦牲交| 午夜精品国产一区二区电影| 午夜福利欧美成人| 国产三级黄色录像| 露出奶头的视频| 国产黄频视频在线观看| svipshipincom国产片| 老司机深夜福利视频在线观看| 亚洲精品国产区一区二| 大型黄色视频在线免费观看| 国产精品影院久久| avwww免费| 国产精品国产av在线观看| 日本黄色日本黄色录像| 中文字幕人妻丝袜制服| 丝袜人妻中文字幕| 亚洲人成电影免费在线| 丰满人妻熟妇乱又伦精品不卡| 午夜91福利影院| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 欧美黄色片欧美黄色片| 国产成人精品在线电影| 狠狠狠狠99中文字幕| 国产熟女午夜一区二区三区| 亚洲国产欧美在线一区| 色视频在线一区二区三区| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 久久久精品免费免费高清| av有码第一页| 免费观看av网站的网址| 一级,二级,三级黄色视频| 亚洲国产av新网站| 两个人看的免费小视频| 男男h啪啪无遮挡| 欧美精品亚洲一区二区| 丰满饥渴人妻一区二区三| 波多野结衣av一区二区av| 欧美黄色片欧美黄色片| 亚洲av第一区精品v没综合| 亚洲人成电影免费在线| 美女扒开内裤让男人捅视频| 亚洲欧美日韩高清在线视频 | 欧美激情极品国产一区二区三区| 99国产精品一区二区蜜桃av | 一区在线观看完整版| 久久午夜亚洲精品久久| 欧美精品人与动牲交sv欧美| 嫁个100分男人电影在线观看| 精品熟女少妇八av免费久了| 18禁裸乳无遮挡动漫免费视频| 久久人妻av系列| 九色亚洲精品在线播放| www.自偷自拍.com| 久久久精品免费免费高清| 国产成人精品久久二区二区91| 在线观看免费午夜福利视频| 久久影院123| 超碰成人久久| 午夜视频精品福利| 久久亚洲精品不卡| 亚洲精品粉嫩美女一区| 免费观看人在逋| 久久亚洲真实| 最黄视频免费看| www.精华液| 美女福利国产在线| 国产精品1区2区在线观看. | 精品卡一卡二卡四卡免费| 九色亚洲精品在线播放| tube8黄色片| 大香蕉久久网| 色综合欧美亚洲国产小说| 亚洲三区欧美一区| 狠狠婷婷综合久久久久久88av| 男女高潮啪啪啪动态图| 男人舔女人的私密视频| 男女边摸边吃奶| 黄色a级毛片大全视频| 免费看a级黄色片| a级毛片在线看网站| 9色porny在线观看| 亚洲少妇的诱惑av| 亚洲精品自拍成人| 免费在线观看视频国产中文字幕亚洲| 亚洲成av片中文字幕在线观看| 性少妇av在线| 老司机在亚洲福利影院| 十八禁网站网址无遮挡| 精品欧美一区二区三区在线| 蜜桃国产av成人99| 天堂动漫精品| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 国产精品久久久久久精品古装| 99在线人妻在线中文字幕 | 视频区图区小说| 两性午夜刺激爽爽歪歪视频在线观看 | 不卡av一区二区三区| 在线永久观看黄色视频| 成人国产av品久久久| 满18在线观看网站| 国产一区二区 视频在线| 精品亚洲乱码少妇综合久久| 日韩欧美免费精品| 精品欧美一区二区三区在线| 女性被躁到高潮视频| 国产精品麻豆人妻色哟哟久久| 欧美日韩亚洲综合一区二区三区_| 一区二区av电影网| 窝窝影院91人妻| 纯流量卡能插随身wifi吗| 在线看a的网站| 免费在线观看日本一区| 欧美黑人精品巨大| av片东京热男人的天堂| 国产片内射在线| 亚洲国产欧美日韩在线播放| 美女高潮到喷水免费观看| 成年人黄色毛片网站| 淫妇啪啪啪对白视频| 久久人人97超碰香蕉20202| 啪啪无遮挡十八禁网站| 99九九在线精品视频| 少妇被粗大的猛进出69影院| 老司机午夜福利在线观看视频 | 亚洲七黄色美女视频| 怎么达到女性高潮| 99re在线观看精品视频| 别揉我奶头~嗯~啊~动态视频| 久久久久网色| 久久中文字幕人妻熟女| 日日爽夜夜爽网站| 欧美激情 高清一区二区三区| aaaaa片日本免费| 一级a爱视频在线免费观看| 成人亚洲精品一区在线观看| 久久人妻av系列| tube8黄色片| 免费观看a级毛片全部| 不卡av一区二区三区| 99在线人妻在线中文字幕 | 国产精品免费视频内射| 国产伦人伦偷精品视频| 色播在线永久视频| 亚洲精品粉嫩美女一区| 国产在线精品亚洲第一网站| 国产日韩欧美在线精品| 日韩有码中文字幕| 丰满饥渴人妻一区二区三| 18禁美女被吸乳视频| 50天的宝宝边吃奶边哭怎么回事| 午夜福利一区二区在线看| 国产一区二区在线观看av| 欧美成人午夜精品| 51午夜福利影视在线观看| 脱女人内裤的视频| 久久av网站| 人妻久久中文字幕网| 成人av一区二区三区在线看| 一区二区三区精品91| 中文字幕高清在线视频| 极品少妇高潮喷水抽搐| 免费在线观看完整版高清| 露出奶头的视频| 香蕉国产在线看| 黄色怎么调成土黄色| 91成年电影在线观看| 女性生殖器流出的白浆| 精品久久久久久久毛片微露脸| 人人妻人人澡人人看| 不卡av一区二区三区| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 国产国语露脸激情在线看| 国产精品免费大片| 欧美日韩av久久| 在线观看免费视频网站a站| 十八禁人妻一区二区| 午夜成年电影在线免费观看| 国产高清视频在线播放一区| 中文字幕人妻丝袜制服| 久久ye,这里只有精品| 中文字幕制服av| 成在线人永久免费视频| 91麻豆av在线| 中文亚洲av片在线观看爽 | 久久国产精品男人的天堂亚洲| videosex国产| 首页视频小说图片口味搜索| 九色亚洲精品在线播放| www.999成人在线观看| e午夜精品久久久久久久| 女性被躁到高潮视频| 国产精品免费一区二区三区在线 | 黄频高清免费视频| 首页视频小说图片口味搜索| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区| 操出白浆在线播放| 岛国在线观看网站| 80岁老熟妇乱子伦牲交| 久久香蕉激情| 亚洲自偷自拍图片 自拍| 久久久欧美国产精品| 国产在线免费精品| 日本wwww免费看| 男男h啪啪无遮挡| 一个人免费看片子| 久久精品亚洲av国产电影网| 啦啦啦视频在线资源免费观看| 亚洲 国产 在线| 亚洲精品一二三| 一边摸一边抽搐一进一小说 | 极品人妻少妇av视频| 精品国内亚洲2022精品成人 | 国产成+人综合+亚洲专区| 久久久久久人人人人人| 亚洲av日韩精品久久久久久密| 十八禁人妻一区二区| 一级毛片女人18水好多| 97在线人人人人妻| 99精国产麻豆久久婷婷| 成人三级做爰电影| 一级黄色大片毛片| 亚洲成av片中文字幕在线观看| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 国产欧美日韩一区二区三| 日韩有码中文字幕| 免费日韩欧美在线观看| 老熟妇乱子伦视频在线观看| 亚洲精品在线美女| 久久精品人人爽人人爽视色| 丰满人妻熟妇乱又伦精品不卡| 不卡一级毛片| 满18在线观看网站| 国产1区2区3区精品| 久久久久久免费高清国产稀缺| 大香蕉久久网| 日本撒尿小便嘘嘘汇集6| 成年人午夜在线观看视频| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 精品国产亚洲在线| 极品教师在线免费播放| 国产精品久久电影中文字幕 | 国产av又大| av电影中文网址| 欧美激情 高清一区二区三区| 国产精品偷伦视频观看了| 久久 成人 亚洲| 天天躁夜夜躁狠狠躁躁| 精品国产乱码久久久久久男人| 桃花免费在线播放| 日韩免费高清中文字幕av| 他把我摸到了高潮在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 久久久精品免费免费高清| 久久久久国内视频| 窝窝影院91人妻| 亚洲成人免费av在线播放| 天堂中文最新版在线下载| 少妇的丰满在线观看| 老司机在亚洲福利影院| 国产一区二区三区综合在线观看| 操出白浆在线播放| 欧美乱码精品一区二区三区| 少妇精品久久久久久久| 男女下面插进去视频免费观看| 国产高清国产精品国产三级| 成人av一区二区三区在线看| 成在线人永久免费视频| 色尼玛亚洲综合影院| 韩国精品一区二区三区| a在线观看视频网站| 黄色视频在线播放观看不卡| 国产伦人伦偷精品视频| 亚洲 欧美一区二区三区| 国产av一区二区精品久久| 如日韩欧美国产精品一区二区三区| 青青草视频在线视频观看| 精品国产亚洲在线| 国产成人精品在线电影| 亚洲人成电影观看| 丁香六月欧美| 亚洲第一av免费看| 国产精品偷伦视频观看了| 精品国产乱子伦一区二区三区| 中文字幕制服av| 久久天躁狠狠躁夜夜2o2o| 啦啦啦中文免费视频观看日本| 韩国精品一区二区三区| 久久人妻熟女aⅴ| 91麻豆av在线| 在线亚洲精品国产二区图片欧美| 亚洲一码二码三码区别大吗| 丝袜美足系列| 19禁男女啪啪无遮挡网站| 伦理电影免费视频| 啦啦啦免费观看视频1| 桃红色精品国产亚洲av| 免费在线观看视频国产中文字幕亚洲| 亚洲第一青青草原| 免费不卡黄色视频| 超碰成人久久| 女人久久www免费人成看片| 亚洲精品国产一区二区精华液| 精品国产亚洲在线| 18禁国产床啪视频网站| 国产精品美女特级片免费视频播放器 | 99re6热这里在线精品视频| 欧美黄色淫秽网站| 亚洲熟女毛片儿| 国产精品免费一区二区三区在线 | 国产男女超爽视频在线观看| 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲 | 亚洲欧美色中文字幕在线| 国产成人欧美在线观看 | 狠狠婷婷综合久久久久久88av| 国产精品熟女久久久久浪| 亚洲黑人精品在线| 国产亚洲av高清不卡| 国产色视频综合| 欧美 日韩 精品 国产| 99久久国产精品久久久| 欧美av亚洲av综合av国产av| 国产亚洲欧美精品永久| 国产精品免费一区二区三区在线 | 一本综合久久免费| cao死你这个sao货| 激情视频va一区二区三区| 欧美日韩视频精品一区| 成人国产一区最新在线观看| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 久久ye,这里只有精品| 天堂动漫精品| 黑人操中国人逼视频| 亚洲av第一区精品v没综合| 午夜激情av网站| 高清毛片免费观看视频网站 | 国产99久久九九免费精品| 国产三级黄色录像| 亚洲自偷自拍图片 自拍| 欧美精品一区二区大全| 动漫黄色视频在线观看| 精品国产一区二区久久| 久久国产精品男人的天堂亚洲| 色尼玛亚洲综合影院| 日本精品一区二区三区蜜桃| 亚洲成人手机| 亚洲欧美一区二区三区黑人| 变态另类成人亚洲欧美熟女 | 亚洲天堂av无毛| 手机成人av网站| 香蕉丝袜av| 黄色毛片三级朝国网站| 热99久久久久精品小说推荐| 高清av免费在线| 日本一区二区免费在线视频| 在线观看www视频免费| 视频在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| 免费高清在线观看日韩| 国产精品自产拍在线观看55亚洲 | 国产高清国产精品国产三级| 成年人免费黄色播放视频| 男男h啪啪无遮挡| 天堂中文最新版在线下载| 亚洲专区国产一区二区| 99精品久久久久人妻精品| 男女午夜视频在线观看| 免费久久久久久久精品成人欧美视频| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 一级,二级,三级黄色视频| 国产成人欧美| 欧美黄色淫秽网站| 一进一出好大好爽视频| 脱女人内裤的视频| 国产亚洲精品久久久久5区| 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 一个人免费看片子| 757午夜福利合集在线观看| 性色av乱码一区二区三区2| 久久人人爽av亚洲精品天堂| 欧美人与性动交α欧美软件| 亚洲人成77777在线视频| 亚洲av成人一区二区三| 少妇裸体淫交视频免费看高清 | 黄色片一级片一级黄色片| 中文字幕制服av| 最黄视频免费看| 好男人电影高清在线观看| 成年人黄色毛片网站| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 亚洲成人免费电影在线观看| 欧美亚洲 丝袜 人妻 在线| 999久久久精品免费观看国产| 久久午夜亚洲精品久久| 亚洲全国av大片| 国产区一区二久久| 老熟女久久久| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 老司机午夜十八禁免费视频| 狠狠精品人妻久久久久久综合| 日本一区二区免费在线视频| 久久久久久人人人人人| 亚洲一卡2卡3卡4卡5卡精品中文| 一级黄色大片毛片| cao死你这个sao货| 热99国产精品久久久久久7| 精品免费久久久久久久清纯 | 在线 av 中文字幕| 亚洲国产精品一区二区三区在线| 欧美性长视频在线观看| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 亚洲一码二码三码区别大吗| 国产老妇伦熟女老妇高清| 纵有疾风起免费观看全集完整版| 国产精品熟女久久久久浪| 大型av网站在线播放| 亚洲一区中文字幕在线| 人成视频在线观看免费观看| 黄色视频在线播放观看不卡| 国产精品 国内视频| 在线观看66精品国产| 99riav亚洲国产免费| 女同久久另类99精品国产91| 国产精品偷伦视频观看了| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 亚洲美女黄片视频| 天堂8中文在线网| 99精国产麻豆久久婷婷| 日韩中文字幕欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 久久中文看片网| 一区二区三区乱码不卡18| 亚洲人成电影观看| 在线观看人妻少妇| 91老司机精品| 亚洲欧美一区二区三区黑人| 飞空精品影院首页| 91麻豆av在线| 亚洲精品粉嫩美女一区| 777久久人妻少妇嫩草av网站| 99香蕉大伊视频| 精品一品国产午夜福利视频| 亚洲中文日韩欧美视频| 丝袜人妻中文字幕| 亚洲成人免费av在线播放| 两个人看的免费小视频| 一夜夜www| 精品国产亚洲在线| 日韩中文字幕视频在线看片| 十八禁网站网址无遮挡| 欧美精品av麻豆av| 亚洲精品美女久久av网站| 亚洲午夜精品一区,二区,三区| 精品国产乱码久久久久久小说| 欧美黑人精品巨大| 9191精品国产免费久久| 在线观看免费日韩欧美大片| 丁香欧美五月| 中文字幕av电影在线播放| a级毛片在线看网站| 亚洲伊人色综图| 国产aⅴ精品一区二区三区波| 中文字幕另类日韩欧美亚洲嫩草| 亚洲中文字幕日韩| 亚洲国产欧美在线一区| 美女高潮到喷水免费观看| 黄色成人免费大全| 亚洲免费av在线视频| 中文字幕人妻丝袜一区二区| 色老头精品视频在线观看| 精品国产乱码久久久久久小说| 考比视频在线观看| 天天躁日日躁夜夜躁夜夜| 成年人黄色毛片网站| 久久狼人影院| 丝袜美足系列| 91国产中文字幕| 午夜福利欧美成人| 丝袜美足系列| 国产精品成人在线| 久久狼人影院| 99久久99久久久精品蜜桃| 亚洲人成电影观看| 巨乳人妻的诱惑在线观看| 少妇猛男粗大的猛烈进出视频| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 久久青草综合色| 亚洲精品自拍成人| 亚洲欧美色中文字幕在线| 丁香六月欧美| 日韩大码丰满熟妇| 少妇精品久久久久久久| 丁香六月欧美| 欧美亚洲 丝袜 人妻 在线| 亚洲第一av免费看| 热re99久久国产66热| 亚洲人成电影观看| 精品国产一区二区三区四区第35| 91精品国产国语对白视频| 免费人妻精品一区二区三区视频| 啦啦啦免费观看视频1|