• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of single film bubble and numerical study of the plateau structure in foam system *

    2018-04-13 12:23:57ZhongguoSun孫中國NiNi倪妮YijieSun孫一頡GuangXi席光
    水動力學研究與進展 B輯 2018年1期
    關(guān)鍵詞:倪妮

    Zhong-guo Sun (孫中國), Ni Ni (倪妮) , Yi-jie Sun (孫一頡) , Guang Xi (席光)

    ?

    Modeling of single film bubble and numerical study of the plateau structure in foam system*

    Zhong-guo Sun (孫中國), Ni Ni (倪妮) , Yi-jie Sun (孫一頡) , Guang Xi (席光)

    The single-film bubble has a special geometry with a certain amount of gas shrouded by a thin layer of liquid film under the surface tension force both on the inside and outside surfaces of the bubble. Based on the mesh-less moving particle semi-implicit (MPS) method, a single-film double-gas-liquid-interface surface tension (SDST) model is established for the single-film bubble, which characteristically has totally two gas-liquid interfaces on both sides of the film. Within this framework, the conventional surface free energy surface tension model is improved by using a higher order potential energy equation between particles, and the modification results in higher accuracy and better symmetry properties. The complex interface movement in the oscillation process of the single-film bubble is numerically captured, as well as typical flow phenomena and deformation characteristics of the liquid film. In addition, the basic behaviors of the coalescence and connection process between two and even three single-film bubbles are studied, and the cases with bubbles of different sizes are also included. Furthermore, the classic plateau structure in the foam system is reproduced and numerically proved to be in the steady state for multi-bubble connections.

    Single film bubble, mesh-less moving particle semi-implicit (MPS), modeling, plateau structure

    Introduction

    The single film bubble is the basic unit of a foam, and it has a special structure and mechanical character- istics that a bulk of gas is enfolded by a very thin liquid film, withthe surface tension force both on the inside and the outside of the liquid film. It is quite common that one single bubble of this kind will stay in a sphere shape because of the pressure difference between the two sides and also the shrinking tendency from the surface tension force. In the case of two single film bubbles acting with each other, the coa- lescence or the connection would happen, respectively, under different conditions. When the coalescence happens, a new larger bubble would be generated, and the volume of the gas inside the new bubble is the summation of those in the two original bubbles. When the connection happens, a stable new interface between the two connected bubbles is generated, and the two original bubbles remain their presences with some deformation.

    The gas-liquid interface and the action of the surface tension on the free surface have attracted many studies. In the theoretical analysis aspect, Chan et al.[1]proposed a two-stage model for bubble genera- tion. Yang et al.[2]analyzed the volume of the bubbles in the liquid based on the two-phase fluid dynamics theory, with an equation to calculate the bubble volume and estimate the size of the bubble.

    In the experimental aspect, Zhang et al.[3]used the high speed camera to investigate the bubble move- ment in the water. Chan reviewed the studies of the film drainage process of the droplet and the bubble by using the atomic force microscope, the optical inter- ference stripe image and the coalescence timing. Gu et al.[4]used the double parallel probe and the camera to study the single bubble flow inside a horizontal straight tube.

    In the numerical simulation aspect, the conven- tional CFD methods involve the Front-tracking[5], the VOF[6], the Level-set[7]and the LBM[8]and others. Chen et al.[9]employed the VOF method to investigate the influence of the surface tension coefficient and the viscosity coefficient on the rising bubble movement. Zhang and Wu.[10]used the interface reproducing technology in the VOF to discuss the interaction between the bubbles with different position settings in the liquid. Sussman combined the VOF and Level-set methods and simulated the bubble rising without viscosity and the sphere bubble breaking near the wall[11]. The LBM method[12, 13]was also applied in the researches concerning the deformation of a single bubble or several bubbles.

    However, most studies focused on the bubble’s shape and deformations in the liquid or the tube based on the single-gas-liquid-interface surface tension model. The behavior of a single film bubble in the air, with double-gas-liquid-interfaces was not well studied, because high demands on the interface tracking and the computational stability in the numerical method are involved due to the double-interface structure and the very thin liquid film, and also due to the fact that the coalescence and connection process is always accompanied with a large deformation and a complex interface change.

    The moving particle semi-implicit (MPS)[14]is employed in this study due to the advantage in dealing with the large deformation. So far, the MPS method was successfully used in engineering and science, such as the bubble rising and the deforming process in water[15], the free surface movement driven by the surface tension force[16-19]. This paper will study the coalescence and connection process for a single film bubble, and simulate the plateau structure by using improved models of the meshless MPS method.

    1. Numerical method

    The MPS method is a meshless method and is based on the same theory as the ISPH method but with a different equation solving process. In the MPS, the pressure field is calculated implicitly by solving a pressure Poisson equation. The skeleton of the method is as follows:

    (1) Governing equations

    The governing equations of the fluid mechanics include the conservation equations of the mass and the momentum. For an incompressible flow, they can be written in a Lagrangian form as:

    1.1 Kernel function

    In the MPS method, the kernel function is used to form the particle action model to discretize the control equations:

    1.2 Gradient operator and laplacian operator

    The gradient operator and the Laplacian operator in the control equation can be discretized based on the kernel function:

    In the MPS method, these discretization operators are based on the kernel function as the model of interaction between particles.

    2. Surface tension model

    2.1 Basic thoery for single film bubbe

    2.2 Surface tension model for single film bubble

    Based on this theory, a single-film double-gas- liquid-interface surface tension model (SDST) for simulatingasinglefilmbubbleisproposed asshown in Fig. 2. Within the framework of the MPS method, the surface tension forces on the two interfaces willbe calculated integrally using the surface free energy surface tension model, which will be discussed later on.

    Fig. 1(Color online) The structure of single film bubble

    The influence of the outside gas on the bubble will be totally ignored except as the atmosphere pressure, because the flow of the liquid film and the deformation of the bubble all happen in a very low Reynolds Number with a very small velocity. In the algorithm of the MPS, there will be no fluid particles in the gas phase outside the bubble, and on the outside free surface open in the air we have zero pressure constantly.

    On the other hand, the gas inside the bubble is considered as incompressible with density and pressure. The incompressible viscosity fluid particles are assigned with physical parameters of a gas, and the pressure of these particles on the inside interface is set the same as that of the gas inside the bubble.

    In order to accurately calculate the surface tension force on both sides, an interlayer of viscous fluid particles is employed to represent the liquid between the two interfaces, and their flow parameters such as the velocity, the position and the pressure are all as calculated.

    2.3 Surface tension force calculation

    The force between the particles can be calculated by different formulas[21]. When the distance between the particles is less than the critical value, it is a repulsion between them; when the distance is greater than the critical value, it is attractive, a balance is achieved when it takes the critical value. For the particles with particles of uniform and symmetrical distribution around, the resultant force on them is 0, when the particles are on or adjacent to the free surface, the resultant force is not 0, that is the surface tension.

    For the force between particles, their different densities (liquid and gas particles) are considered but not shown in this basic SFE model study. Therefore, the formula for calculating the potential energy between particles is:

    Fig. 2 Surface tension model for single film bubble

    From Eq. (6), the surface tension calculation can be obtained as:

    2.4 Improvement of SFE surface tension model

    In this paper, in order to increase the accuracy of the SFE surface tension model to meet the high demand in a complex calculation, we improve the equation of the potential energy between particles from 1storder derivative to 2ndorder derivative. This modification would make the surface tension force more reasonable, and Eq. (7) is rewritten as:

    where

    Fig. 3Comparison between the original and modified surface tension models

    2.5 Oscillation of square single film bubble

    The square single film bubble oscillation process is calculated with the modified SDST model as a classic validation case. The results are shown in Fig. 5. The single film is composed of three layers of particles including the outside layer, the inside layer and the inter layer between them. The gas outside the bubble is ignored, and the gas inside the bubble is incompressible and uniform which is not shown in these figures.

    The pressure on the bubble film and the gas inside is shown in Fig. 6. It is shown that the pressure on the outside liquid film (the line with down triangles) is zero due to its opening in the atmosphere. On the inside layer of the liquid film (the line with up triangles) acts the same pressure as that of the gas inside (the line with squares) because they are open to each other. And the pressure is about 13 Pa, slightly higher than the pressure of the atmosphere outside.

    Fig. 6Pressure on the film and that of the gas inside the bubble

    The pressure on the inter layer of the liquid film is higher than those on the other parts, because the composite force of the local surface tension forces points to the inner layer, which means that the inner layer liquid is squeezed by the two layers of the interfaces films.

    3. Numerical simulation and discussions

    3.1 Coalescence of single film bubbles

    3.2 Connection of single film bubbles

    The connection process of two single film bub- blesofdifferentsizesiscalculatedandtheresultsare shown in Fig. 8. In this simulation, the viscosity coefficient is set a larger value and the surface tension coefficient is set a smaller value than those in the last numerical cases shown in Fig. 7. The adjustment of these two parameters is in order to keep the connected film stable.

    As shown in Fig. 8, the length of the connected film between the two bubbles grows with time, and reaches its largest value, when the connecting bubble system reaches its stable state.

    The two connected bubbles are all in the scallop shape, and the connecting film is not straight because the pressures of the inside gas for two bubbles are different. Obviously, the gas inside the small bubble has a larger pressure and the connected film is curved and projects to the side of the large bubble.

    It is notable that two single film bubbles con- nected with each other do not assume a new single round shape as the droplet, but in a parallel connection style that the whole outline of the assembly is decided by the local distribution of the surface tension force. The surface area of the connected bubbles can be estimated to be the smallest according to the inter- action between the gas pressure and the surface tension force.

    3.3 Plateau structure in foam systems

    When the connection process happens between three or more single film bubbles, a basic foam system is established, and the case of three bubbles of the same size is shown in Fig. 9. Three single film bubbles are located in three vertexes of an equilateral triangle, and a slightly adjustment is made to let two of them be connected first before the third one.

    Fig. 10Pattern of three connected single film bubbles

    The juncture area of the three bubbles is in a liquid trident shape, in other words, the liquid fully fills the gaps between the bubbles, and these liquid bridges or the tunnels are called in plateau structures, and they are the most common structures in a foam system.

    The calculation results of the tri-bubble connec- tion and the plateau structure are compared qualitati- vely with the experimental results in Fig. 10. The angle between the branches of the plateau structure of the calculation agrees well with that of experiment.

    However, the sides, the corners and their transi- tions between the plateau structure branches in the experiment are apparently clearer than those of the numerical results. That is because when the bubbles are connected to each other, the surface area is decrea- sed significantly, and also owing to the sharing of the film boundaries the liquid becomes more than needed. Therefore, a liquor drainage process would happen in the reality, however, this is not considered in the simulations of this study. In the authors’ opinion, the liquor drainage process is one of the important factors which would influence the detailed shape of the foam system.

    4. Conclusions

    Within the framework of the meshless moving particle semi-implicit method, a single-film double- gas-liquid-interface surface tension model (SDST) is proposed for simulating a single film bubble, which is the basic unit of the foam system. In view of the fact that the special structure of a single thin film wraps an amount of gas inside, the assumptions as the gas outside is ignored, the gas inside is incompressible, as well as even some physical characteristics are pro- posed. The surface tension force on the two sides of the film is calculated integrally using an improved surface free energy surface tension model, which is more accurate and stable.

    Typical behaviors as the coalescence and the connection, and the feature structure as the plateau structure of the single film bubbles are simulated and reproduced, as well as the unsteady process under the surface tension, and the characteristics and the defor- mation details of a single film bubble. The numerical results of basic interactions between two or three bubbles provide some fundamental insight for related studies, and the SDST model prompts an efficient method to study the performance of the complex foam system.

    [1] Chan D. Y. C., Klaseber E., Manica R. Film drainage and coalescence between deformable drops and bubbles [J]., 2011, 7(6): 2235-2264,.

    [2] Yang L. T., Lv J. Q., Sun Y. H. et al. Theoretical analysis of leakage during the bubble size [J]., 2010, 39 (3): 78-79 (in Chinese).

    [3] Zhang J. S., LV Q., Sun C. D. et al. High speed photo- graphy to motion of bubbles in water [J]., 2000, 29(10): 952-955(in Chinese).

    [4] Gu H. Y., Guo L.J., Zhang X. M. et al. Single bubbles in gas-liquid two-phase flow in a horizontal tube shape characteristics [J]., 2006, 27(3): 433-436(in Chinese).

    [5] Lu H., Shen Z., Ding J. et al. Numerical simulation of bubble and particles motions in a bubbling fluidized bed using direct simulation Monte-Carlo method [J]., 2006, 169(3): 159-171.

    [6] Olmos E., Gentric C., Vial C. et al. Numerical simulation of multiphase flow in bubble column reactors Influence of bubble coalescence and break-up [J]., 2001, 56(21-22): 6359-6365.

    [7] Liu H., Xie M. Z., Li K. et al. Liquid metal bath numerical simulation of bubble-liquid two-phase turbulent flow into metal melt [J]., 2007, 24(5): 669-673(in Chinese).

    [8] Sungkorn R., Derksen J. J., Khinast J. G. Modeling of turbulent gas-liquid bubbly flows using stochastic Lagrangian model and lattice-Boltzmann scheme [J]., 2011, 66(12): 2745-2757.

    [9] Chen L., Garimella S. V., Reizes J. A. et al. The develop- ment of a bubble rising in a viscous liquid [J]., 1999, 387: 61-96.

    [10] Zhang S. J., Wu C. J. Numerical simulation of the inter- action between two three dimensional deformable bubbles [J].2008, 23(6): 681-686(in Chinese).

    [11] Sussman M., Almgren A., Bell J. et al. An adaptive level set approach for incompressible two-phase flows [J].1997, 148(1): 81-124.

    [12] Amaya-Bower L., Lee T. Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method [J]., 2010, 39(7): 1191-1207.

    [13] Yu Z., Yang H., Fan L. S. Numerical simulation of bubble interactions using an adaptive lattice Boltzmann method [J]., 2011, 66(14): 3441-3451.

    [14] Koshizuka S. Oka Y. Moving-particle semi-implicit me- thod for fragmentation of incompressible fluid [J]., 1996, 123(3): 421-434.

    [15] Sun Z. G., Xi G., Xiang L. F. Simulation on rising bubble in water with meshfree method [J]., 2007, 28(5): 771-774.

    [16]Sun Z. G., Xi G., Chen X. A numerical study of stir mixing of liquids with particle method [J]., 2009, 64(2): 341-350.

    [17] Sun Z., Xi G., Chen X. Mechanism study of deformation and mass transfer for binary droplet collisions with particle method [J]., 2009, 21(3): 032106.

    [18]Chen X., Xi G., Sun Z.Improving stability of MPS method by a computational scheme based on conceptual particles [J]., 2014, 278(7): 254-271.

    [19] Chen X., Sun Z. G., XI G. Improvement of the surface free energy model and numerical study on the infiltration of droplets [J]., 2012, 46(7): 115-121(in Chinese).

    [20] Zhang S., Morita K., Fukuda K. et al. A new algorithm for surface tension model in moving particle methods [J]., 2010, 55(3): 225-240.

    [21] Kondo M., Koshizuka S., Suzuki K. et al. Surface tension model using inter-particle force in particle method [C]., San Diego, California, USA, 2007.

    (October 31, 2017, Accepted November 3, 2017)

    ?China Ship Scientific Research Center 2018

    * Project supported by the National Natural Science Foundation of China (Grant No. 51576154).

    Zhong-guo Sun (1981-), Male, Ph. D.,

    E-mail: sun.zg@xjtu.edu.cn

    Guang Xi,

    E-mail:xiguang@xjtu.edu.cn

    猜你喜歡
    倪妮
    倪妮遲來的怒放,值得等待
    東方電影(2019年4期)2019-04-16 02:28:36
    倪妮:愛情的美好不是結(jié)局而是過程
    倪妮分享古言背詞訣竅 對古裝首秀示滿意
    倪妮的美麗秘籍:甩掉包袱才能放飛自我
    井柏然倪妮
    《28歲未成年》首映禮改檔1209 霍建華憶十年演藝路
    倪妮不用養(yǎng)生堂教你護好肝膚色才透亮
    致命心機
    伴侶(2014年4期)2014-09-10 07:22:44
    馮紹峰追愛倪妮,三次見面情定終身
    知音海外版(2013年1期)2013-04-18 04:59:06
    倪妮:“謀女郎”現(xiàn)形記
    東方女性(2012年3期)2012-06-24 12:17:06
    午夜免费鲁丝| 免费人成在线观看视频色| 熟女人妻精品中文字幕| 日韩欧美精品免费久久| 99久久中文字幕三级久久日本| 日韩中字成人| 尤物成人国产欧美一区二区三区| 欧美xxxx黑人xx丫x性爽| 日日摸夜夜添夜夜爱| 麻豆国产97在线/欧美| 精品久久久久久久久亚洲| 国产精品国产三级专区第一集| 欧美三级亚洲精品| 一个人看的www免费观看视频| 亚洲久久久国产精品| 在线观看一区二区三区激情| 极品教师在线视频| 最近的中文字幕免费完整| 中文乱码字字幕精品一区二区三区| av国产久精品久网站免费入址| 亚洲色图综合在线观看| 99九九线精品视频在线观看视频| 九九久久精品国产亚洲av麻豆| 欧美日韩视频精品一区| 午夜福利在线在线| 国产精品一区二区性色av| 国产高清不卡午夜福利| 大香蕉久久网| 麻豆成人av视频| 赤兔流量卡办理| 成年女人在线观看亚洲视频| 老女人水多毛片| 午夜精品国产一区二区电影| 91精品国产九色| 一级黄片播放器| 欧美精品亚洲一区二区| 婷婷色综合www| 一区二区三区乱码不卡18| 欧美zozozo另类| 在线观看美女被高潮喷水网站| 久久久久人妻精品一区果冻| 丰满迷人的少妇在线观看| 亚洲国产欧美人成| 九色成人免费人妻av| 2018国产大陆天天弄谢| 中国三级夫妇交换| 国产精品一及| 亚洲国产av新网站| 国产精品无大码| 欧美日韩视频精品一区| 在线观看免费日韩欧美大片 | 色视频在线一区二区三区| 舔av片在线| 中国国产av一级| a级毛片免费高清观看在线播放| 多毛熟女@视频| 午夜激情久久久久久久| 在线观看三级黄色| 成人国产av品久久久| 国产精品久久久久久久久免| 久久精品国产亚洲网站| 午夜老司机福利剧场| 日韩欧美精品免费久久| 日韩免费高清中文字幕av| av不卡在线播放| 高清欧美精品videossex| 插阴视频在线观看视频| 亚洲欧美清纯卡通| 午夜福利影视在线免费观看| 一区二区三区免费毛片| 丰满少妇做爰视频| 高清欧美精品videossex| 日韩亚洲欧美综合| 国产淫片久久久久久久久| 国产精品久久久久成人av| 亚洲欧美清纯卡通| 中文乱码字字幕精品一区二区三区| 简卡轻食公司| 最近2019中文字幕mv第一页| a 毛片基地| 韩国av在线不卡| 建设人人有责人人尽责人人享有的 | 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美中文字幕日韩二区| 久久久久精品性色| 人妻系列 视频| 啦啦啦啦在线视频资源| 婷婷色av中文字幕| 美女视频免费永久观看网站| 久久精品国产亚洲网站| 亚洲精品456在线播放app| 久久久久久人妻| 亚洲国产精品国产精品| 国产成人a区在线观看| 精品视频人人做人人爽| 国产又色又爽无遮挡免| 免费人成在线观看视频色| 久热久热在线精品观看| 熟妇人妻不卡中文字幕| 极品少妇高潮喷水抽搐| 久久久久久久久久久丰满| 99久久人妻综合| tube8黄色片| 亚洲三级黄色毛片| 18+在线观看网站| 午夜视频国产福利| 人妻一区二区av| 久久久久国产网址| 国产精品一区二区在线观看99| 成人亚洲欧美一区二区av| 国产av精品麻豆| 国产免费福利视频在线观看| 久久精品人妻少妇| 国产黄频视频在线观看| 精华霜和精华液先用哪个| 我的女老师完整版在线观看| 一级片'在线观看视频| 精品一区在线观看国产| 激情 狠狠 欧美| 毛片一级片免费看久久久久| 欧美日韩国产mv在线观看视频 | 欧美最新免费一区二区三区| 国产高潮美女av| 亚洲精品久久久久久婷婷小说| 少妇人妻一区二区三区视频| 国产一区二区在线观看日韩| 大码成人一级视频| 久久ye,这里只有精品| 超碰av人人做人人爽久久| av卡一久久| 2021少妇久久久久久久久久久| av女优亚洲男人天堂| 国产无遮挡羞羞视频在线观看| 99热这里只有精品一区| 少妇精品久久久久久久| 国产淫语在线视频| 国产伦理片在线播放av一区| 亚洲欧美日韩东京热| 波野结衣二区三区在线| 亚洲av欧美aⅴ国产| 深夜a级毛片| av又黄又爽大尺度在线免费看| 色哟哟·www| 免费观看性生交大片5| 性色avwww在线观看| 人妻少妇偷人精品九色| 51国产日韩欧美| 极品教师在线视频| tube8黄色片| 免费看不卡的av| 女人久久www免费人成看片| 亚洲av日韩在线播放| 91aial.com中文字幕在线观看| 久久久久久伊人网av| 成人特级av手机在线观看| 国产黄片视频在线免费观看| 夜夜骑夜夜射夜夜干| 国产中年淑女户外野战色| 亚洲av不卡在线观看| 免费黄频网站在线观看国产| 久久久欧美国产精品| 黄色一级大片看看| 大话2 男鬼变身卡| 国产 一区精品| 大码成人一级视频| 久久综合国产亚洲精品| 亚洲欧美清纯卡通| 啦啦啦啦在线视频资源| 国产亚洲av片在线观看秒播厂| 欧美97在线视频| 亚洲在久久综合| 永久网站在线| av免费观看日本| 少妇人妻久久综合中文| 少妇的逼好多水| 超碰av人人做人人爽久久| 亚洲av免费高清在线观看| 亚洲成人一二三区av| tube8黄色片| 国产欧美亚洲国产| 国产永久视频网站| 99久久精品热视频| 成人18禁高潮啪啪吃奶动态图 | 丝袜喷水一区| 国产毛片在线视频| 精品国产露脸久久av麻豆| 久久99精品国语久久久| 99热网站在线观看| 国国产精品蜜臀av免费| 插阴视频在线观看视频| 免费看日本二区| 久久国产精品男人的天堂亚洲 | 日本黄色日本黄色录像| 亚洲av日韩在线播放| 五月伊人婷婷丁香| 91久久精品国产一区二区三区| 性色avwww在线观看| 欧美丝袜亚洲另类| 国产大屁股一区二区在线视频| 久久毛片免费看一区二区三区| 欧美+日韩+精品| 我的老师免费观看完整版| 大香蕉97超碰在线| 国产精品国产三级国产专区5o| 亚洲不卡免费看| 国产又色又爽无遮挡免| 99视频精品全部免费 在线| 欧美精品一区二区免费开放| 亚洲自偷自拍三级| 久久青草综合色| 久久久久国产精品人妻一区二区| 欧美成人午夜免费资源| 日韩电影二区| 久久久久久久久久久免费av| 男人舔奶头视频| 日本vs欧美在线观看视频 | 色哟哟·www| 国产免费一区二区三区四区乱码| 国产精品国产三级国产专区5o| 精品人妻一区二区三区麻豆| 久久精品国产亚洲av涩爱| 大话2 男鬼变身卡| 少妇丰满av| 搡老乐熟女国产| 国产精品久久久久成人av| 午夜精品国产一区二区电影| 99国产精品免费福利视频| 久久人妻熟女aⅴ| 精品国产乱码久久久久久小说| 国产亚洲最大av| 插阴视频在线观看视频| 纯流量卡能插随身wifi吗| 久久久精品免费免费高清| av福利片在线观看| 久久国产乱子免费精品| 久久影院123| 久久久久精品性色| 亚洲美女搞黄在线观看| 国产在线免费精品| 日日啪夜夜撸| 777米奇影视久久| 99久久综合免费| 亚洲精品456在线播放app| 日本欧美视频一区| 精品国产一区二区三区久久久樱花 | av网站免费在线观看视频| 日韩大片免费观看网站| 91久久精品国产一区二区成人| 99热全是精品| 亚洲av中文字字幕乱码综合| 成人亚洲精品一区在线观看 | 一级毛片电影观看| 在线 av 中文字幕| 新久久久久国产一级毛片| 欧美+日韩+精品| 日韩av在线免费看完整版不卡| 国产男人的电影天堂91| 王馨瑶露胸无遮挡在线观看| 国产v大片淫在线免费观看| 欧美老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 又粗又硬又长又爽又黄的视频| 成人无遮挡网站| 中文字幕制服av| 中文字幕免费在线视频6| 男人添女人高潮全过程视频| 久久久a久久爽久久v久久| 不卡视频在线观看欧美| 亚洲精品日韩在线中文字幕| 国国产精品蜜臀av免费| 国产精品嫩草影院av在线观看| 国产久久久一区二区三区| 伦理电影大哥的女人| 街头女战士在线观看网站| 亚洲精品国产色婷婷电影| 黄色视频在线播放观看不卡| 男女无遮挡免费网站观看| 你懂的网址亚洲精品在线观看| 亚洲欧洲国产日韩| 卡戴珊不雅视频在线播放| 国产精品一二三区在线看| 国产伦精品一区二区三区四那| 三级国产精品欧美在线观看| 精品一区二区免费观看| 91精品国产国语对白视频| 亚洲成人一二三区av| 久久鲁丝午夜福利片| 久久国产乱子免费精品| 天美传媒精品一区二区| 建设人人有责人人尽责人人享有的 | 中文在线观看免费www的网站| 国产伦在线观看视频一区| 久久久午夜欧美精品| 国国产精品蜜臀av免费| 成年免费大片在线观看| 成人午夜精彩视频在线观看| 欧美xxⅹ黑人| 国产精品人妻久久久影院| 日本一二三区视频观看| 国产在线一区二区三区精| 大香蕉久久网| 国产精品av视频在线免费观看| 卡戴珊不雅视频在线播放| 久久久久久久国产电影| 亚洲色图av天堂| 男女下面进入的视频免费午夜| 91在线精品国自产拍蜜月| 晚上一个人看的免费电影| 伦精品一区二区三区| 黄片无遮挡物在线观看| 成人影院久久| 免费黄色在线免费观看| 少妇的逼水好多| freevideosex欧美| 国产精品精品国产色婷婷| 性色av一级| 久久久久久久久久成人| 少妇人妻一区二区三区视频| 亚洲高清免费不卡视频| 国产日韩欧美亚洲二区| 在线看a的网站| 亚洲精品国产成人久久av| 国产精品99久久99久久久不卡 | 人人妻人人看人人澡| 午夜日本视频在线| 亚洲欧洲日产国产| 亚洲精品第二区| 久久av网站| 亚洲成人中文字幕在线播放| 亚洲色图综合在线观看| 国产爽快片一区二区三区| www.av在线官网国产| 日本午夜av视频| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 免费av不卡在线播放| 色婷婷av一区二区三区视频| 97热精品久久久久久| av在线老鸭窝| 大话2 男鬼变身卡| 夫妻午夜视频| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 亚洲精品日韩在线中文字幕| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 草草在线视频免费看| 嫩草影院入口| 中文在线观看免费www的网站| 亚洲欧美一区二区三区黑人 | 日韩在线高清观看一区二区三区| 国产亚洲5aaaaa淫片| 久久久久久久精品精品| 免费黄网站久久成人精品| 国产精品一区二区在线观看99| 成人国产av品久久久| 高清黄色对白视频在线免费看 | 久久久国产一区二区| 少妇 在线观看| kizo精华| 国产一区二区三区av在线| 国精品久久久久久国模美| 熟妇人妻不卡中文字幕| 国产av码专区亚洲av| 自拍欧美九色日韩亚洲蝌蚪91 | 国产 精品1| 欧美变态另类bdsm刘玥| 亚洲欧美精品专区久久| 女人十人毛片免费观看3o分钟| 精品亚洲乱码少妇综合久久| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 免费看日本二区| av福利片在线观看| 高清av免费在线| 99热全是精品| 黄色一级大片看看| 亚州av有码| 久久国内精品自在自线图片| 婷婷色av中文字幕| 国产av精品麻豆| 深夜a级毛片| 成人漫画全彩无遮挡| 中文字幕制服av| 国产av码专区亚洲av| 少妇的逼好多水| 如何舔出高潮| 国产高清不卡午夜福利| 国产亚洲91精品色在线| 欧美精品亚洲一区二区| 国产伦在线观看视频一区| 成人国产麻豆网| 老司机影院成人| 99re6热这里在线精品视频| 亚洲国产av新网站| 国产精品嫩草影院av在线观看| 国产精品不卡视频一区二区| 26uuu在线亚洲综合色| 99久国产av精品国产电影| 尾随美女入室| 最新中文字幕久久久久| 女性被躁到高潮视频| 中国美白少妇内射xxxbb| 搡女人真爽免费视频火全软件| 91精品国产国语对白视频| 亚洲国产毛片av蜜桃av| 亚洲精品亚洲一区二区| 女人十人毛片免费观看3o分钟| 日韩电影二区| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 日本欧美视频一区| 国产黄频视频在线观看| 六月丁香七月| 亚洲三级黄色毛片| 国产精品国产三级专区第一集| 六月丁香七月| 成人一区二区视频在线观看| 国产亚洲5aaaaa淫片| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| 观看av在线不卡| 一本一本综合久久| 久久毛片免费看一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 一个人看的www免费观看视频| 国产亚洲午夜精品一区二区久久| 91精品国产九色| 国内少妇人妻偷人精品xxx网站| 久久6这里有精品| 精品视频人人做人人爽| 亚洲欧美精品专区久久| 99久国产av精品国产电影| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产日韩一区二区| 国产精品国产三级国产av玫瑰| 亚洲人与动物交配视频| 人人妻人人澡人人爽人人夜夜| 国产男女内射视频| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 亚洲国产精品一区三区| tube8黄色片| av免费观看日本| 久久久色成人| 国产在线免费精品| 免费黄网站久久成人精品| 在线看a的网站| 日日摸夜夜添夜夜爱| 成人综合一区亚洲| 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 伦理电影大哥的女人| 91久久精品国产一区二区三区| 99热这里只有精品一区| 久久久亚洲精品成人影院| 91精品伊人久久大香线蕉| 国产精品国产av在线观看| 久久99热这里只有精品18| 亚洲欧美日韩另类电影网站 | 精品国产乱码久久久久久小说| 在现免费观看毛片| 大香蕉久久网| 亚洲精品国产色婷婷电影| 国产免费又黄又爽又色| 国内揄拍国产精品人妻在线| 亚洲精品日本国产第一区| 久久鲁丝午夜福利片| 亚洲国产欧美人成| 97在线人人人人妻| 中文欧美无线码| 女性被躁到高潮视频| 卡戴珊不雅视频在线播放| 国产淫片久久久久久久久| 国产av码专区亚洲av| 久久6这里有精品| 少妇的逼水好多| 丰满人妻一区二区三区视频av| 99热这里只有是精品在线观看| 欧美激情极品国产一区二区三区 | 国产成人精品婷婷| 亚洲国产成人一精品久久久| 亚洲精品久久久久久婷婷小说| 简卡轻食公司| 黑丝袜美女国产一区| 久久人人爽av亚洲精品天堂 | 日韩制服骚丝袜av| 免费在线观看成人毛片| 亚洲第一区二区三区不卡| 久久 成人 亚洲| 色5月婷婷丁香| 精品午夜福利在线看| 国产久久久一区二区三区| 国产极品天堂在线| 久久久久网色| 夫妻性生交免费视频一级片| 欧美日韩视频高清一区二区三区二| 涩涩av久久男人的天堂| 26uuu在线亚洲综合色| 超碰97精品在线观看| 男的添女的下面高潮视频| videossex国产| 久久女婷五月综合色啪小说| 久久 成人 亚洲| 国产伦理片在线播放av一区| 高清av免费在线| 涩涩av久久男人的天堂| av免费观看日本| 欧美丝袜亚洲另类| 交换朋友夫妻互换小说| 色婷婷久久久亚洲欧美| 免费av不卡在线播放| 久久精品久久精品一区二区三区| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看| 国产乱人偷精品视频| 日韩伦理黄色片| 美女高潮的动态| 亚洲精品自拍成人| a 毛片基地| 久久人妻熟女aⅴ| 欧美xxxx黑人xx丫x性爽| 国产探花极品一区二区| 久久影院123| 在线观看免费视频网站a站| 99热网站在线观看| 中文字幕制服av| av播播在线观看一区| 免费在线观看成人毛片| 男女啪啪激烈高潮av片| 大香蕉97超碰在线| 久久女婷五月综合色啪小说| 91精品国产国语对白视频| 麻豆成人av视频| 成人18禁高潮啪啪吃奶动态图 | 永久免费av网站大全| 一本一本综合久久| 人体艺术视频欧美日本| 国精品久久久久久国模美| 久久精品国产亚洲av涩爱| 噜噜噜噜噜久久久久久91| 免费少妇av软件| 自拍欧美九色日韩亚洲蝌蚪91 | 内地一区二区视频在线| 最黄视频免费看| 国产欧美日韩一区二区三区在线 | 99热这里只有是精品在线观看| freevideosex欧美| 国产精品99久久99久久久不卡 | 国产黄色免费在线视频| 日韩 亚洲 欧美在线| 亚洲欧美精品自产自拍| 国产精品久久久久成人av| av.在线天堂| 插阴视频在线观看视频| .国产精品久久| 少妇猛男粗大的猛烈进出视频| 精品酒店卫生间| 校园人妻丝袜中文字幕| 熟女av电影| 久久影院123| 免费看不卡的av| 成人影院久久| 久久亚洲国产成人精品v| 久久影院123| 中国美白少妇内射xxxbb| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 亚洲国产欧美人成| 国产在线男女| 91久久精品国产一区二区三区| 赤兔流量卡办理| 亚洲精品国产色婷婷电影| 国产精品人妻久久久久久| 夫妻午夜视频| 久热这里只有精品99| 一级a做视频免费观看| 人妻 亚洲 视频| av一本久久久久| 日韩在线高清观看一区二区三区| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| 伦理电影免费视频| 欧美变态另类bdsm刘玥| a级毛片免费高清观看在线播放| 国产精品人妻久久久久久| 一级毛片电影观看| 久久久欧美国产精品| 成人漫画全彩无遮挡| av国产免费在线观看| 欧美成人精品欧美一级黄| 男女下面进入的视频免费午夜| 国产深夜福利视频在线观看| 国内揄拍国产精品人妻在线| 亚洲成人一二三区av| 亚洲天堂av无毛| 内地一区二区视频在线| 亚洲美女视频黄频| 国产爽快片一区二区三区| 国产精品av视频在线免费观看| 精品亚洲乱码少妇综合久久| 日韩大片免费观看网站| 欧美97在线视频| 黑人猛操日本美女一级片| kizo精华| 精品少妇久久久久久888优播| 国产在线免费精品| 18禁在线无遮挡免费观看视频| 九九在线视频观看精品| 国产精品熟女久久久久浪| 国产精品一区二区性色av| 少妇人妻精品综合一区二区| 欧美亚洲 丝袜 人妻 在线|