• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis *

    2018-04-13 12:23:48HuaiyuCheng程懷玉XinpingLong龍新平BinJi季斌QiLiu劉琦XiaoruiBai白曉蕊
    關(guān)鍵詞:劉琦新平

    Huai-yu Cheng(程懷玉), Xin-ping Long(龍新平),Bin Ji(季斌) ,Qi Liu(劉琦) ,Xiao-rui Bai(白曉蕊)

    ?

    3-D Lagrangian-based investigations of the time-dependent cloud cavitating flows around a Clark-Y hydrofoil with special emphasis on shedding process analysis*

    Huai-yu Cheng1, 2(程懷玉), Xin-ping Long1, 2(龍新平),Bin Ji1(季斌) ,Qi Liu3(劉琦) ,Xiao-rui Bai1, 2(白曉蕊)

    1.2.3.

    In the present paper, the unsteady cavitating flow around a 3-D Clark-Y hydrofoil is numerically investigated with the filter-based density correction model (FBDCM), a turbulence model and the Zwart-Gerber-Belamri (ZGB) cavitation model. A reasonable agreement is obtained between the numerical and experimental results. To study the complex flow structures more straightforwardly, a 3-D Lagrangian technology is developed, which can provide the particle tracks and the 3-D Lagrangian coherent structures (LCSs). Combined with the traditional methods based on the Eulerian viewpoint, this technology is used to analyze the attached cavity evolution and the re-entrant jet behavior in detail. At stageI, the collapse of the previous shedding cavity and the growth of a new attached cavity, the significant influence of the collapse both on the suction and pressure sides are captured quite well by the 3-D LCSs, which is underestimated by the traditional methods like the iso-surface of Q-criteria. As a kind of special LCSs, the arching LCSs are observed in the wake, induced by the counter-rotating vortexes. At stage II, with the development of the re-entrant jet, the influence of the cavitation on the pressure side is still not negligible. And with this 3-D Lagrangian technology, the tracks of the re-entrant jet are visualized clearly, moving from the trailing edge to the leading edge. Finally, at stage Ⅲ, the re-entrant jet collides with the mainstream and finally induces the shedding. The cavitation evolution and the re-entrant jet movement in the whole cycle are well visualized with the 3-D Lagrangian technology. Moreover, the comparison between the LCSs obtained with 2-D and 3-D Lagrangian technologies indicates the advantages of the latter. It is demonstrated that the 3-D Lagrangian technology is a promising tool in the investigation of complex cavitating flows.

    Cavitation, CFD, Lagrangian coherent structures (LCSs), Clark-Y hydrofoil, vortical flow

    Introduction

    The cavitation is a special physical phenomenon in hydrodynamics[1-3], often associated with some un- desired consequences, such as vibration, erosion and performance reduction. Many studies were devoted to this complex flow in the past decades, which have significantly improved our understanding of the cavitation[4].

    The cavitation occurs when the local pressure drops below the saturation vapor pressure[5]. The intense phase change processes between the liquid and the vapor involving the evaporation and the conden- sation significantly influence the local flow patterns[6]. Quite a number of investigations were conducted to reveal the cavitation-turbulence interaction[7, 8]. Accor- ding to the studies of Iyer and Ceccio[9], the growth and the collapse of cavitation bubbles will modify the shear layer downstream if the void fractions of the cavitating shear layers are up to 1.5%. Gopalan and Katz[10]suggested that the cavitation promotes the Reynolds shear stresses, whose magnitudes could reach up to 40% of the normal stresses. Their experi- mental data indicated that the turbulence level and the momentum deficit in the boundary layer downstream are strongly impacted even with a slight decrease of the cavitation number. Aeschlimann et al.[11]conduc- ted a detailed measurement on the velocity field in a cavitating shear layer flow with the PIV-LIF, and they pointed out that the successive vaporization and collapsing of bubbles induce noticeable fluctuations. The mass transfer during the phase change processes can also induce a substantial vorticity production and much more complex vortex structures[12]. A conside- rable increase of the baroclinic torque was captured in the regions where frequent collapses occur[13], which should be zero in non-cavitating flows due to the alignment of density and pressure gradients. Dittakavi et al.[14]suggested that the collapse of vapor structures plays an important role in the formation of hair-pin vortices. Moreover, the inherent unsteadiness of the cavitation will cause significant oscillations and flu- ctuations in the whole flow field[15, 16], which means that the flow pattern of the cavitating flow is very unsteady and complex. The situation becomes worse when the compressibility of the cavitating flow is taken into account[17].

    Therefore, a 3-D Lagrangian technology was developed based on the original 2-D one[29]. Compared with a 2-D cavitation simulation, the node number in a 3-D numerical study increases signifi- cantly. It means a much higher requirement for the computational resource to obtain the 3-D LCSs, which generally makes it unaffordable. In this paper much effort is made to significantly enhance the efficiency, making it possible to obtain the LCSs in a three dimensional cavitating flow with an acceptable computational resource. With this improved 3-D Lagrangian technology, the complex flow patterns and the typical particle behaviors around a 3-D Clark-Y hydrofoil are discussed in detail. The LCSs obtained with the 2-D and 3-D Lagrangian technologies are compared.

    1.Approach for 3-D Lagrangian coherent struc- tures

    The finite-time Lyapunov exponent (FTLE) is defined as[30]

    2.Mathematical formulations and numerical method

    2.1 Turbulence model

    The homogeneous model is adopted, in which the slip velocity between the liquid and vapor phases is not considered. Then, the governing equations for the mixture flow can be written as:

    2.2 Cavitation model

    The default mass transfer model in the CFX, ZGB cavitation models[32]is adopted, in which the mass transfer rates per unit volume during the evapo- ration and condensation processes are defined as:

    2.3 Simulation strategy

    Fig. 1Computational domain and boundary conditions

    Fig. 2Three meshes around the 3-D hydrofoil surface

    Table1Results of the mesh independence study

    2.4 Experimental validation

    To validate the numerical results used in the present paper, we compare the time-averaged norma- lizedvelocity profiles at the mid-span of the foil obtained by the numerical results and the experimental data[31]as shown in Fig. 3. A good agreement is shown between the predicted and measured results. Figure 4 compares the predicted and measured dimen- sionless total vapor volume in two typical cycles. It is noted that the overall evolution of the cavity volume agrees well with the experimental data, except for some difference in the area of the minimum cavity volume. The evolution of the cavitation is also well reproduced in the numerical simulation, which will be discussed later in detail. Satisfactory agreements between the numerical and experimental data suggest that the simulation is sufficiently accurate. It should be noted that the comparisons between the numerical and experimental data only provide a qualitative analysis of the mesh resolution. Recently, for a quantitative analysis, Long et al.[33]conducted a series of investigations focusing on the verification and the validation of the unsteady cavitating flow and indicates that a mesh of about 2′106nodes is sufficient for the cavitating flow around a Clark-Y hydrofoil. In the current paper, the same topology is used and the node number is over 2′106with Meshes 2 and 3. It is further indicated that the mesh resolution of Mesh 2 is sufficient for our simulation.

    3. Results and discussions

    It is well known that the attached cavitating flow behaviors see a distinct quasi-periodicity, including the attached cavity growth, the re-entrant jet develop- ment, the shedding of the attached cavity and the collapse of the shedding cavity. It should be noted that the growth of a new attached cavity and the collapse of the shedding cavity induced in the previous cycle generally occur simultaneously. For the convenience of the following discussion, a typical evolution cycle of the cavitating flow around the Clark-Y hydrofoil is divided into three stages: (1) the collapse of the previous shedding cavity and the growth of a new cavity, (2) the development of the re-entrant jet and (3) the shedding of the attached cavity.

    Fig.4The time-depended experimental[31]and numerical di- mensionless total vapor volumes

    3.1 The collapse of the previous shedding cavity and the growth of a new cavity

    3.2 The development of the re-entrant jet

    Fig.9(Color online) Comparison of experimental and numeri- cal data at Stage II (Left: Pictures by high speed photo- graphy[31], Middle: Contours of with , Right:Iso-surfacesof coloredby velocity)

    3.3 The shedding of attached cavity

    3.4Comparisons between LCSs obtained with 2-D and 3-D Lagrangian technologies

    According to the above discussions, a conclusion can be drawn that the 3-D Lagrangian technology is a very useful tool for the analysis of the cavitating flow. The 3-D LCSs and the particle tracks obtained with this technology provide us a more visualized approach to study the flow patterns and the behaviors of the particles. To further demonstrate the superiorities of the 3-D Lagrangian technology over the original 2-D one, the LCSs obtained with these two technologies are compared. As shown in Fig. 15, much more details of the LCSs are captured with the 3-D Lagrangian technology. As mentioned above, the collapse of the shedding cavity at Stage Ⅰ modifies the flow patterns on the pressure side significantly, which leads to complex LCSs locally. But almost no LCSs are obtained on the pressure side with the original 2-D technology as shown in Fig. 15(a). The 3-D Lagrangian technology also enjoys a better perfor- mance in reflecting the vortex structures in the wake. The arching LCSs induced by counter-rotating vortexes with the 2-D technology are not very distinct. Even the flow separation on the suction side is underestimated with the 2-D Lagrangian technology. The main reason for the unsatisfactory performance of the original technology is the high 3-D nature of the cavitating flow. A 2-D Lagrangian analysis cannot capture the 3-D evolutions of the cavitating flow, as the 3-D Lagrangian technology developed in the present paper.

    Fig.15(Color online) LCSs on middle plane obtained with 3-D (left) and 2-D (right) Lagrangian technologies at diffe- rent stages

    4. Conclusions

    In the present paper, the unsteady cavitating flow around a Clark-Y hydrofoil is simulated using the FBDCM turbulence model combined with the ZGB cavitation model. A reasonable agreement between the numerical and experimental data is obtained. To study the features of the cavitating flow, a 3-D Lagrangian technology is developed, to obtain 3-D LCSs and particle tracks in the flow field and to make it possible to analyze the flow patterns from the Lagrangian viewpoint. Combined with the traditional analysis method based on the Eulerian viewpoint, the 3-D Lagrangian technology is used to investigate the flow characteristicsofthecavitationatdifferentstagesin detail, such as the collapse of the previous shedding cavity and the growth of a new cavity, the develop- ment of the re-entrant jet and the shedding of the attached cavity. And at last, the LCSs obtained with the 3-D Lagrangian technology and the original 2-D one are compared. The main conclusions are drawn as follows:

    (1)The simulations conducted in the present paper with the FBDCM turbulence model and the ZGB cavitation model show a good agreement with the experimental data. Moreover, the numerical results reproduce the evolution of the cavitating flow around a Clark-Y hydrofoil well.

    (2)At Stage I,the collapse of the previous shedding cavity and the growth of a new cavity are captured numerically. Compared with the traditional methods based on the Eulerian viewpoint, the 3-D LCSs provided by the 3-D Lagrangian technology give a better picture of the flow patterns on the pressure side. It indicates that the movement of the particles on the pressure side may be completely different even from that at the neighboring initial locations due to the influence of the collapse on the suction side. Very complex LCSs, such as the arching LCSs, are induced in the wake, which can be attributed to the vortexes caused by the collapse of the previous shedding cavity. The evolution of the vortexes also has an important impact on the particle tracks.

    (3)At Stage II, with the particle tracks provided by the 3-D Lagrangian technology, the development of the re-entrant jet can be visualized clearly. The particles near the trailing edge are trapped due to the anti-clockwise cavitation vortex and then are advected upstream along the foil surface, forming a re-entrant jet. During the development of the re-entrant jet, the shape of the cavity is significantly disturbed. It clearly demonstrates the value of the 3-D Lagrangian tech- nology for the analysis of the cavitating flow.

    (4)At Stage Ⅲ, the attached cavity is cut off by the re-entrant jet finally, which is well captured by the numerical results. With the help of the tracks obtained with the 3-D Lagrangian technology, the whole evolution of the re-entrant jet is visualized clearly. The particles near the foil surface move upstream due to the influence of the re-entrant jet and collide with the mainstream, leading to the shedding of the attached cavity. And then the flow direction of these particles is reversed and advected downstream.

    (5)The comparison of the LCSs obtained with the newly developed 3-D Lagrangian technology and the original 2-D one indicates that much more LCSs can be provided with the 3-D Lagrangian technology. The 2-D Lagrangian analysis suppresses the 3-D characteristics of the cavitating flow and fails to describe the evolution of the cavitation.

    [1] Wang Y., Wu X., Huang C. et al. Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile [J]., 2016, 85: 48-56.

    [2] Arndt R. E. A. Cavitation in vortical flows [J]., 2002, 34: 143-175.

    [3] Arndt R. E. A., Arakeri V. H., Higuchi H. Some observa- tions of tip-vortex cavitation [J]., 1991, 229: 269-289.

    [4] Wang Y., Xu C., Wu X. et al. Ventilated cloud cavitating flow around a blunt body close to the free surface [J]., 2017, 2(8): 084303.

    [5] Arndt R. E. A. Cavitation in fluid machinery and hydrau- lic structures [J]., 1981, 13: 273-328.

    [6] Stutz B., Reboud J. L. Experiments on unsteady cavitation [J]., 1997, 22(3): 191-198.

    [7] Coutier-Delgosha O., Devillers J. F., Pichon T. et al. Internal structure and dynamics of sheet cavitation [J]., 2006, 18(1): 017103.

    [8] Makiharju S. A., Gabillet C., Paik B. G. et al. Time- resolved two-dimensional X-ray densitometry of a two- phase flow downstream of a ventilated cavity [J]., 2013, 54(7): 1561.

    [9] Iyer C. O., Ceccio S. L. The influence of developed cavitation on the flow of a turbulent shear layer [J]., 2002, 14(10): 3414-3431.

    [10] Gopalan S., Katz J. Flow structure and modeling issues in the closure region of attached cavitation [J]., 2000, 12(4): 895-911.

    [11]Aeschlimann V., Barre S., Djeridi H. Velocity field analysis in an experimental cavitating mixing layer [J]., 2011, 23(5): 055105.

    [12] Ji B., Luo X., Arndt R. E. A. et al. Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction [J]., 2014, 87: 64-77.

    [13] Long X., Cheng H., Ji B. et al. Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method [J]., 2017, 137: 247-261.

    [14] Dittakavi N., Chunekar A., Frankel S. Large eddy simu- lation of turbulent-cavitation interactions in a venturi nozzle [J]., 2010, 132(12): 121301.

    [15] Callenaere M., Franc J. P., Michel J. M. et al. The cavita- tion instability induced by the development of a re-entrant jet [J]., 2001, 444: 223-256.

    [16] Peng X. X., Ji B., Cao Y. T. et al. Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils [J]., 2016, 79: 10-22.

    [17] Akhatov I., Lindau O., Topolnikov A. et al. Collapse and rebound of a laser-induced cavitation bubble [J]., 2001, 13(10): 2805-2819.

    [18]Kolá? V. Vortex identification: New requirements and limitations [J]., 2007, 28(4): 638-652.

    [19] Huang B., Zhao Y., Wang G. Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/ cloud cavitating flows [J]., 2014, 92: 113-124.

    [20] Ji B., Luo X., Wu Y. et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horseshoe vortex structure around a twisted hydrofoil [J]., 2013, 51(5): 33-43.

    [21] Kubota A., Kato H., Yamaguchi H. A new modeling of cavitating flows-a numerical study of unsteady cavitation on a hydrofoil section [J]., 1992, 240: 59-96.

    [22]Haller G. Lagrangian coherent structures [J]., 2015, 47: 137-162.

    [23]Green M. A., Rowley C. W., Haller G. Detection of Lagrangian coherent structures in three-dimensional turbulence [J]., 2007, 572: 111-120.

    [24] Hu C., Wang G., Chen G. et al. Three-dimensional unsteady cavitating flows around an axisymmetric body with a blunt headform [J]., 2015, 29(3): 1093-1101.

    [25] Tseng C. C., Liu P. B. Dynamic behaviors of the turbulent cavitating flows based on the Eulerian and Lagtangian viewpoints [J]., 2016, 102: 479-500.

    [26] Cheng H. Y., Long X. P., Ji B. et al. Numerical investiga- tion of unsteady cavitating turbulent flows around twisted hydrofoil from the Lagrangian viewpoint [J]., 2016, 28(4): 709-712.

    [27]Tang W., Chan P. W., Haller G. Lagrangian coherent structure analysis of terminal winds detected by lidar. Part I: Turbulence structures [J]., 2011, 50(2): 325-338.

    [28] Dular M., Bachert R., Schaad C. Investigation of a re- entrant jet reflection at an inclined cavity closure line [J]., 2007, 26(5): 688-705.

    [29] Zhao Y., Wang G., Huang B. et al. Lagrangian inves- tigations of vortex dynamics in time-dependent cloud cavitating flows [J]., 2016, 93: 167-174.

    [30] Haller G. Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence [J]., 2001, 13(11): 3365-3385.

    [31]Huang B., Wang G. Y., Zhao Y. Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model [J]., 2014, 26(1): 26-36.

    [32] Zwart P. J., Gerber A. G., Belamri T. A two phase flow model for predicting cavitation dynamics [C]., Yokohama, Japan, 2004.

    [33] Long Y., Long X. P., Ji B. et al. Verification and valida- tion of URANS simulations of the turbulent cavitating flow around the hydrofoil [J]., 2017, 29(4): 610-620.

    (October 10, 2017, Accepted November 30, 2017)

    ?China Ship Scientific Research Center 2018

    * Project supported by the National Natural Science Foundation of China (Project Nos. 11772239, 51576143 and 91752105), the Outstanding Youth Foundation of Natural Scie- nce Foundation ofHubei Province (Grant No. 2017CFA048).

    Huai-yu Cheng (1993-), Male, Ph. D. Candidate,

    E-mail: chengiu@whu.edu.cn

    Bin Ji,

    E-mail:jibin@whu.edu.cn

    猜你喜歡
    劉琦新平
    咕咕叫的肚皮
    初心引航,構(gòu)建“雙減”新樣態(tài)
    大戰(zhàn)章魚博士
    幼兒園里歡樂多
    幼兒園(2021年18期)2021-12-06 02:45:42
    小螞蟻去游玩
    幼兒園(2021年16期)2021-12-06 01:06:48
    老腔唱新歌
    金秋(2021年22期)2021-03-10 07:59:16
    讓蘑菇
    幼兒園(2020年3期)2020-03-27 07:00:07
    劉新平 油畫作品
    GLOBAL EXISTENCE OF CLASSICAL SOLUTIONS TO THE HYPERBOLIC GEOMETRY FLOW WITH TIME-DEPENDENT DISSIPATION?
    你總是給我力量
    精品一区在线观看国产| 少妇的逼好多水| 亚洲国产欧美人成| 亚洲国产色片| h视频一区二区三区| 亚洲av二区三区四区| 亚洲av国产av综合av卡| 三级经典国产精品| 2022亚洲国产成人精品| 国产成人a区在线观看| 最近的中文字幕免费完整| 人人妻人人添人人爽欧美一区卜 | 在线观看免费日韩欧美大片 | 色视频在线一区二区三区| 亚洲一级一片aⅴ在线观看| 午夜福利在线在线| 肉色欧美久久久久久久蜜桃| 久热这里只有精品99| 国产精品久久久久久久久免| 国产黄色视频一区二区在线观看| 国产高清有码在线观看视频| 一级a做视频免费观看| 亚洲美女视频黄频| 久久99蜜桃精品久久| av在线蜜桃| 免费av不卡在线播放| 久久精品国产a三级三级三级| 日本一二三区视频观看| 18禁在线无遮挡免费观看视频| 97超视频在线观看视频| 精品午夜福利在线看| 日韩强制内射视频| 一二三四中文在线观看免费高清| 国产精品久久久久成人av| 秋霞在线观看毛片| 国产视频内射| 欧美高清性xxxxhd video| 一级爰片在线观看| 91精品一卡2卡3卡4卡| 老司机影院毛片| 亚洲av中文av极速乱| 九九久久精品国产亚洲av麻豆| 亚洲精品国产成人久久av| 下体分泌物呈黄色| 欧美高清成人免费视频www| 精品人妻偷拍中文字幕| 欧美性感艳星| 欧美极品一区二区三区四区| 99精国产麻豆久久婷婷| 欧美精品国产亚洲| 国产精品一区www在线观看| 青春草视频在线免费观看| 国产免费福利视频在线观看| 黑人猛操日本美女一级片| 乱系列少妇在线播放| 国产淫语在线视频| 欧美亚洲 丝袜 人妻 在线| 激情五月婷婷亚洲| 亚洲欧美日韩另类电影网站 | 久久久久精品久久久久真实原创| 成人无遮挡网站| 亚洲国产精品国产精品| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 99久国产av精品国产电影| 国产高清三级在线| 日韩人妻高清精品专区| 国产亚洲午夜精品一区二区久久| 国产黄色视频一区二区在线观看| 一个人看视频在线观看www免费| 哪个播放器可以免费观看大片| 日本av手机在线免费观看| 一级av片app| 在线精品无人区一区二区三 | 观看免费一级毛片| 成人毛片a级毛片在线播放| 国产男女内射视频| 91在线精品国自产拍蜜月| 一二三四中文在线观看免费高清| 久久ye,这里只有精品| 国产欧美另类精品又又久久亚洲欧美| 成人国产av品久久久| 人妻系列 视频| 女的被弄到高潮叫床怎么办| 国产免费又黄又爽又色| 国产探花极品一区二区| 亚洲电影在线观看av| 国产一区二区三区av在线| 我的女老师完整版在线观看| 久久精品久久精品一区二区三区| 少妇人妻精品综合一区二区| 国产 一区 欧美 日韩| 黑丝袜美女国产一区| 国产精品一及| 少妇人妻精品综合一区二区| 中国美白少妇内射xxxbb| 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 女性生殖器流出的白浆| 中文精品一卡2卡3卡4更新| 精品人妻熟女av久视频| 成人高潮视频无遮挡免费网站| 在线观看一区二区三区| 亚洲国产色片| 人妻制服诱惑在线中文字幕| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品,欧美精品| 国产精品成人在线| 精华霜和精华液先用哪个| 久久精品夜色国产| 欧美成人a在线观看| 午夜福利视频精品| 精品久久久久久久末码| 插阴视频在线观看视频| 日韩免费高清中文字幕av| 春色校园在线视频观看| 日本欧美国产在线视频| 亚洲精品日本国产第一区| 亚洲va在线va天堂va国产| 天天躁日日操中文字幕| 国产免费一区二区三区四区乱码| 一区二区三区免费毛片| 高清欧美精品videossex| 中文乱码字字幕精品一区二区三区| 女性被躁到高潮视频| 久久久久精品性色| 狂野欧美白嫩少妇大欣赏| 日韩一区二区三区影片| 免费看av在线观看网站| 久久久色成人| 亚洲国产精品一区三区| 亚洲欧美成人综合另类久久久| 3wmmmm亚洲av在线观看| 亚洲国产精品专区欧美| 日韩中文字幕视频在线看片 | 男人爽女人下面视频在线观看| 国产精品久久久久久精品电影小说 | 精品久久久久久久久av| 激情五月婷婷亚洲| 日本av手机在线免费观看| 精品久久久久久久末码| 中文乱码字字幕精品一区二区三区| 日日摸夜夜添夜夜爱| av卡一久久| 日韩亚洲欧美综合| 欧美成人午夜免费资源| 人人妻人人爽人人添夜夜欢视频 | 午夜视频国产福利| 一个人看视频在线观看www免费| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 超碰av人人做人人爽久久| 麻豆成人午夜福利视频| 亚洲国产精品国产精品| 亚洲久久久国产精品| 亚洲欧美精品自产自拍| 精品国产三级普通话版| 在线免费十八禁| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| 亚洲精品日本国产第一区| 亚洲无线观看免费| 自拍欧美九色日韩亚洲蝌蚪91 | 日本爱情动作片www.在线观看| 免费高清在线观看视频在线观看| 各种免费的搞黄视频| 国产精品久久久久久av不卡| 国产中年淑女户外野战色| 又黄又爽又刺激的免费视频.| 免费观看av网站的网址| 一级毛片 在线播放| 精品少妇久久久久久888优播| 亚洲人与动物交配视频| 免费少妇av软件| 插逼视频在线观看| 日本vs欧美在线观看视频 | 97超视频在线观看视频| 视频中文字幕在线观看| 色视频www国产| 少妇的逼水好多| 国产白丝娇喘喷水9色精品| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 日韩 亚洲 欧美在线| 国产成人精品一,二区| 国产成人精品久久久久久| 日本午夜av视频| 欧美日韩视频高清一区二区三区二| 国产高清有码在线观看视频| 狂野欧美白嫩少妇大欣赏| 极品少妇高潮喷水抽搐| 久久国产精品大桥未久av | 国产免费福利视频在线观看| 又爽又黄a免费视频| 成人综合一区亚洲| 国产成人午夜福利电影在线观看| 亚洲,欧美,日韩| 最近中文字幕2019免费版| 黄片无遮挡物在线观看| 高清av免费在线| 久久 成人 亚洲| 高清日韩中文字幕在线| 久久久国产一区二区| 国产乱来视频区| 国产日韩欧美亚洲二区| 久久女婷五月综合色啪小说| 免费人妻精品一区二区三区视频| 国产精品女同一区二区软件| 欧美精品亚洲一区二区| 免费观看在线日韩| 观看免费一级毛片| 欧美三级亚洲精品| 菩萨蛮人人尽说江南好唐韦庄| 美女内射精品一级片tv| 麻豆乱淫一区二区| 国产成人a区在线观看| 性高湖久久久久久久久免费观看| av免费在线看不卡| 亚洲国产最新在线播放| 老熟女久久久| 不卡视频在线观看欧美| 2022亚洲国产成人精品| 2018国产大陆天天弄谢| 嫩草影院新地址| 高清日韩中文字幕在线| 婷婷色av中文字幕| 国产精品99久久久久久久久| 国产极品天堂在线| 综合色丁香网| 80岁老熟妇乱子伦牲交| 亚洲怡红院男人天堂| 午夜激情福利司机影院| 精品熟女少妇av免费看| 午夜福利视频精品| 久久av网站| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 亚洲精品乱码久久久久久按摩| videossex国产| 熟女av电影| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 中文字幕av成人在线电影| 男女国产视频网站| a 毛片基地| 欧美97在线视频| 久久热精品热| 亚洲av福利一区| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 日韩欧美 国产精品| 十分钟在线观看高清视频www | 国产精品一区二区性色av| 精品久久久久久电影网| 免费观看无遮挡的男女| 久久久久久久久久久丰满| 免费av不卡在线播放| 我的女老师完整版在线观看| 亚洲综合精品二区| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 2018国产大陆天天弄谢| 简卡轻食公司| av视频免费观看在线观看| 午夜福利高清视频| 青春草亚洲视频在线观看| 妹子高潮喷水视频| 国产欧美亚洲国产| 日韩不卡一区二区三区视频在线| 王馨瑶露胸无遮挡在线观看| 欧美97在线视频| 街头女战士在线观看网站| 午夜老司机福利剧场| 成年女人在线观看亚洲视频| 日韩人妻高清精品专区| 亚洲国产精品一区三区| 欧美极品一区二区三区四区| 人人妻人人爽人人添夜夜欢视频 | 最近中文字幕2019免费版| 成人国产av品久久久| 插阴视频在线观看视频| 国产精品.久久久| 久久ye,这里只有精品| 国产精品麻豆人妻色哟哟久久| 黄片wwwwww| 在线免费观看不下载黄p国产| 99视频精品全部免费 在线| 日韩成人av中文字幕在线观看| 午夜免费观看性视频| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 国产精品偷伦视频观看了| 亚洲国产色片| 在线看a的网站| 毛片一级片免费看久久久久| 欧美日韩在线观看h| 久久6这里有精品| 中文资源天堂在线| 狂野欧美激情性xxxx在线观看| 欧美一级a爱片免费观看看| 久久久成人免费电影| 国产精品蜜桃在线观看| 久久热精品热| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| 亚洲国产色片| 亚洲av欧美aⅴ国产| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区三区四区免费观看| 亚洲,一卡二卡三卡| 亚洲精品一二三| 国产精品三级大全| 久久久精品免费免费高清| 国产亚洲91精品色在线| 大又大粗又爽又黄少妇毛片口| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 精品人妻视频免费看| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 亚洲欧美日韩另类电影网站 | 欧美成人一区二区免费高清观看| 人人妻人人澡人人爽人人夜夜| 黄色怎么调成土黄色| 中文资源天堂在线| 超碰av人人做人人爽久久| 国产成人午夜福利电影在线观看| 色哟哟·www| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 高清av免费在线| 国产v大片淫在线免费观看| av福利片在线观看| 一边亲一边摸免费视频| 国产精品国产三级国产专区5o| 精品少妇黑人巨大在线播放| 日韩精品有码人妻一区| av国产精品久久久久影院| 国产乱人偷精品视频| 久久久午夜欧美精品| 女人十人毛片免费观看3o分钟| 国产一区有黄有色的免费视频| 亚洲av欧美aⅴ国产| 丰满迷人的少妇在线观看| 亚洲不卡免费看| 交换朋友夫妻互换小说| 午夜福利视频精品| 网址你懂的国产日韩在线| 亚洲欧美日韩卡通动漫| 国产白丝娇喘喷水9色精品| 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 大片免费播放器 马上看| 三级经典国产精品| 性色avwww在线观看| 亚洲成人av在线免费| 国产免费一区二区三区四区乱码| 国产熟女欧美一区二区| 在现免费观看毛片| 22中文网久久字幕| 麻豆乱淫一区二区| 亚洲精品日韩av片在线观看| 18禁动态无遮挡网站| 久久精品国产自在天天线| 纯流量卡能插随身wifi吗| 成人黄色视频免费在线看| 性色av一级| 欧美精品一区二区免费开放| 在线亚洲精品国产二区图片欧美 | 欧美精品人与动牲交sv欧美| 狂野欧美白嫩少妇大欣赏| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 国产精品偷伦视频观看了| 久久精品久久久久久久性| 欧美精品一区二区免费开放| 欧美极品一区二区三区四区| 日本vs欧美在线观看视频 | 亚洲第一区二区三区不卡| 能在线免费看毛片的网站| 国产av精品麻豆| 91精品国产国语对白视频| 人人妻人人澡人人爽人人夜夜| 王馨瑶露胸无遮挡在线观看| 成年美女黄网站色视频大全免费 | 18禁在线无遮挡免费观看视频| av天堂中文字幕网| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 成年人午夜在线观看视频| 两个人的视频大全免费| 韩国av在线不卡| 国产精品成人在线| 91精品国产九色| 少妇丰满av| 久久久久久久久久久丰满| 国产伦精品一区二区三区视频9| 新久久久久国产一级毛片| 亚州av有码| 精品久久久噜噜| 一级a做视频免费观看| 另类亚洲欧美激情| 午夜免费鲁丝| 久久久久久久久久久免费av| 国产亚洲精品久久久com| 1000部很黄的大片| 国产中年淑女户外野战色| av播播在线观看一区| 亚洲精品中文字幕在线视频 | 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 亚洲色图av天堂| 黑人猛操日本美女一级片| 精品99又大又爽又粗少妇毛片| 欧美区成人在线视频| 久久亚洲国产成人精品v| 大话2 男鬼变身卡| 天堂8中文在线网| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 在现免费观看毛片| 国产黄片美女视频| 久久青草综合色| 色5月婷婷丁香| 日韩强制内射视频| 中文字幕久久专区| 亚洲av男天堂| 少妇 在线观看| 夜夜看夜夜爽夜夜摸| 国模一区二区三区四区视频| 五月开心婷婷网| 日本av手机在线免费观看| 亚洲久久久国产精品| 国产精品爽爽va在线观看网站| 涩涩av久久男人的天堂| 亚洲真实伦在线观看| 欧美精品亚洲一区二区| 亚洲欧美一区二区三区黑人 | 国产高清不卡午夜福利| 女人久久www免费人成看片| 一级毛片电影观看| 亚洲丝袜综合中文字幕| 一级片'在线观看视频| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 99热这里只有是精品在线观看| 制服丝袜香蕉在线| av国产精品久久久久影院| 熟女av电影| 精品久久国产蜜桃| 国产大屁股一区二区在线视频| 日本午夜av视频| 美女视频免费永久观看网站| 只有这里有精品99| 久久精品夜色国产| 午夜福利高清视频| 毛片女人毛片| 美女脱内裤让男人舔精品视频| 天美传媒精品一区二区| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 99热这里只有是精品50| 在线观看一区二区三区| 麻豆乱淫一区二区| 永久免费av网站大全| 夜夜骑夜夜射夜夜干| 国产黄片美女视频| 免费观看性生交大片5| 欧美日本视频| 一级毛片电影观看| 午夜免费观看性视频| 一级片'在线观看视频| 国产高清三级在线| 七月丁香在线播放| 久久精品国产a三级三级三级| 最黄视频免费看| 国产一级毛片在线| 深夜a级毛片| 久久精品久久久久久久性| 自拍偷自拍亚洲精品老妇| 秋霞在线观看毛片| 午夜福利在线在线| 国产精品国产三级国产专区5o| av网站免费在线观看视频| 狂野欧美激情性bbbbbb| 久久精品久久久久久噜噜老黄| 国产成人精品一,二区| 在线观看国产h片| 五月开心婷婷网| 日韩亚洲欧美综合| 国产一区二区三区av在线| 国产日韩欧美亚洲二区| 成人影院久久| 黄色日韩在线| 国产 精品1| 婷婷色综合大香蕉| 欧美97在线视频| 亚洲精品国产成人久久av| 女性生殖器流出的白浆| 精品人妻熟女av久视频| 男女下面进入的视频免费午夜| 亚洲av成人精品一区久久| 丰满迷人的少妇在线观看| 老司机影院毛片| 最近的中文字幕免费完整| 久久久久精品久久久久真实原创| 成年女人在线观看亚洲视频| 高清不卡的av网站| 高清黄色对白视频在线免费看 | 在线观看人妻少妇| 国产精品精品国产色婷婷| 久久国产精品大桥未久av | 国产精品国产av在线观看| 午夜福利视频精品| 久久久亚洲精品成人影院| 国产精品蜜桃在线观看| 大片电影免费在线观看免费| 国产欧美亚洲国产| av女优亚洲男人天堂| 精品久久久久久久久亚洲| 欧美97在线视频| 精品少妇久久久久久888优播| 久久人妻熟女aⅴ| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 人妻一区二区av| 卡戴珊不雅视频在线播放| 国产男女超爽视频在线观看| 91久久精品国产一区二区成人| 国产成人aa在线观看| 日韩成人伦理影院| 久久 成人 亚洲| 成年美女黄网站色视频大全免费 | 国产免费一级a男人的天堂| 亚洲精品第二区| 久久国产乱子免费精品| 如何舔出高潮| 少妇人妻 视频| 伊人久久国产一区二区| 精品久久久久久电影网| 亚洲精品一区蜜桃| 97超视频在线观看视频| 亚洲国产毛片av蜜桃av| 日韩三级伦理在线观看| 国产精品麻豆人妻色哟哟久久| 777米奇影视久久| 人妻 亚洲 视频| 久久久久人妻精品一区果冻| 亚洲久久久国产精品| 久久国产亚洲av麻豆专区| 久久国产精品大桥未久av | 最近的中文字幕免费完整| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| 在线观看一区二区三区| 精品亚洲成a人片在线观看 | 亚洲三级黄色毛片| 国产精品爽爽va在线观看网站| 国产精品99久久久久久久久| 日日摸夜夜添夜夜爱| 色网站视频免费| 国产老妇伦熟女老妇高清| 亚洲精品日韩在线中文字幕| 国产乱来视频区| 18禁裸乳无遮挡动漫免费视频| 99国产精品免费福利视频| 精品一区二区三区视频在线| 久久精品久久久久久噜噜老黄| 小蜜桃在线观看免费完整版高清| 欧美成人一区二区免费高清观看| 黄片无遮挡物在线观看| 男人添女人高潮全过程视频| 国产成人免费无遮挡视频| 亚洲精品自拍成人| 久久久a久久爽久久v久久| 少妇裸体淫交视频免费看高清| 国产免费一级a男人的天堂| 欧美高清性xxxxhd video| 国产高清国产精品国产三级 | 久久99热6这里只有精品| 爱豆传媒免费全集在线观看| www.av在线官网国产| 亚洲欧美一区二区三区国产| 高清日韩中文字幕在线| 不卡视频在线观看欧美| 欧美精品亚洲一区二区| 国产精品一及| 日韩,欧美,国产一区二区三区| 欧美精品亚洲一区二区| 一级毛片 在线播放| 免费看光身美女| 日韩 亚洲 欧美在线| 最近最新中文字幕免费大全7| 一个人看视频在线观看www免费| 人妻少妇偷人精品九色| 亚洲综合色惰| 国产成人freesex在线| 狂野欧美白嫩少妇大欣赏| 国产精品国产三级国产av玫瑰| 免费看光身美女| 午夜激情福利司机影院| 亚洲精品色激情综合| 黄色一级大片看看| 国产精品国产三级国产专区5o| 国产亚洲91精品色在线| 久久国产精品大桥未久av | 少妇高潮的动态图| 麻豆精品久久久久久蜜桃| 亚洲自偷自拍三级| 人人妻人人澡人人爽人人夜夜|