李晨旭, 章培軍, 馬國英, 劉 穎, 郭敏芳
(大同大學腦科學研究所、醫(yī)學院生理教研室,山西 大同 037009)
?
損傷性C類初級感覺神經(jīng)元膜上唾液酸對其興奮性的影響*
李晨旭△,章培軍,馬國英,劉穎,郭敏芳
(大同大學腦科學研究所、醫(yī)學院生理教研室,山西 大同 037009)
[摘要]目的: 研究坐骨神經(jīng)損傷后,大鼠背根神經(jīng)節(jié)(dorsal root ganglion,DRG)C類初級感覺神經(jīng)元膜表面唾液酸含量變化對其電生理特性的影響。方法: 制作大鼠慢性壓迫性神經(jīng)損傷(chronic constriction injury,CCI)痛覺模型,以正常大鼠為對照,采用胞內(nèi)電生理記錄法檢測損傷及正常C類神經(jīng)元的電生理特性,隨后用Ca2+去中和損傷及正常C類神經(jīng)元膜表面唾液酸所帶負電荷或用唾液酸酶(neuraminidase,NA)分解膜表面唾液酸,觀察電生理特性的變化。結(jié)果: 損傷性C類神經(jīng)元的靜息電位(rest potential,RP)較正常C類神經(jīng)元移向去極化方向,誘發(fā)動作電位(action potential,AP)發(fā)生率增加,所需閾強度減小,興奮性增加;使用Ca2+和唾液酸酶使損傷性C類神經(jīng)元膜電位向超極化方向移動,誘發(fā)AP所需閾強度增加,興奮性降低。而Ca2+和唾液酸酶對正常C類神經(jīng)元的電生理特性及興奮性無影響。結(jié)論: 損傷C類神經(jīng)元膜表面唾液酸含量增加,導致其RP 去極化且興奮性增加。
[關(guān)鍵詞]慢性壓迫性神經(jīng)損傷; C類初級感覺神經(jīng)元; 唾液酸; 唾液酸酶
大鼠坐骨神經(jīng)干壓迫性損傷可造成其軸突損傷位點或脊髓腰段相應L4~L6背根神經(jīng)節(jié)初級感覺神經(jīng)元胞體產(chǎn)生異位自發(fā)電活動并導致慢性神經(jīng)病理性疼痛[1-2]。研究證明神經(jīng)損傷后所致慢性神經(jīng)病理性疼痛與背根神經(jīng)節(jié)(dorsal root ganglion,DRG)初級感覺神經(jīng)元膜上Na+、K+、Ca2+通道等功能蛋白的表達增加并異位堆積在胞體或軸突損傷位點而引起膜重塑密切相關(guān)[3-4]。
感覺神經(jīng)元上的Na+、K+、Ca2+等通道蛋白及其它功能膜蛋白在其膜外域存在糖基化,大部分糖基是以帶負電荷唾液酸殘基的形式存在,唾液酸以N-或O-連接鍵結(jié)合于膜蛋白外域的末端,構(gòu)成糖蛋白[5-6]。我們前期實驗表明,神經(jīng)損傷后可使DRG神經(jīng)元胞體或軸突損傷位點處局部膜產(chǎn)生去極化,初級感覺神經(jīng)元胞體唾液酸含量增加[7-9]。慢痛在生理狀態(tài)下是由C類初級感覺神經(jīng)元所傳導,但唾液酸對C類神經(jīng)元的影響并不清楚。因此,本實驗利用慢性壓迫性神經(jīng)損傷(chronic constriction injury,CCI)的大鼠痛覺模型,以在體胞內(nèi)電生理實驗方法, 用Ca2+去中和損傷及正常C類神經(jīng)元膜表面唾液酸所帶負電荷或用唾液酸酶(neuraminidase,NA)分解膜表面唾液酸,觀察處理前后C類神經(jīng)元電生理特性的變化,了解C類神經(jīng)元膜表面唾液酸與其電生理特性的關(guān)系,進一步分析唾液酸在C類神經(jīng)元敏感化和痛覺過敏形成中所發(fā)揮的作用。
材料和方法
1慢性痛動物模型的建立
20只雄性Sprague-Dawley(SD)大鼠,體重180~250 g,由中國醫(yī)學科學院動物研究所提供,許可證號為SCXK(京)2013-0009。將大鼠隨機分為對照組和CCI組,每組10只。CCI組用1%戊巴比妥鈉(40 mg/kg) 經(jīng)腹腔注射麻醉,依據(jù)文獻[1]CCI模型的制作方法進行坐骨神經(jīng)損傷術(shù)[1]。對照組施行假手術(shù),術(shù)后給予青霉素預防感染。
2熱痛敏行為學測試
術(shù)后3~20 d,將大鼠放在熱痛刺激儀的玻璃-鋁合金架上,用同一強度的傷害性熱源分別聚焦刺激大鼠的左右兩側(cè)足后跟,記錄其熱痛縮腿回避潛伏期。正常鼠的縮腿反應潛伏期通過調(diào)節(jié)熱源強度控制在12 s左右。實驗時每側(cè)重復3次,間隔10~15 min,取平均值。間隔1 d重復測試。選擇痛覺過敏大鼠進行胞內(nèi)電生理記錄。
3胞內(nèi)電生理記錄
在術(shù)后5~21 d內(nèi)進行大鼠在體DRG C-神經(jīng)元胞內(nèi)電生理記錄。大鼠腹腔麻醉后,手術(shù)暴露L4或 L5神經(jīng)節(jié)。用脊髓鉗把大鼠脊髓固定于定位儀上,在解剖顯微鏡下用鐘表鑷除掉已暴露神經(jīng)節(jié)的神經(jīng)外膜及神經(jīng)束膜,神經(jīng)節(jié)用37 ℃的生理鹽水(NS)浸潤。拉制玻璃微電極電阻在20 MΩ左右, 內(nèi)充3 mol/L的 KCl溶液, 由推進器以2 μm脈動向前移動插入神經(jīng)元內(nèi),電極銀絲 (包括記錄電極和參考電極) 預先經(jīng)AgCl泛極化處理。膜電位信號經(jīng)微電極放大器(MEZ -8201, Nihon Kohden corporation)輸入BL-420生物信號處理系統(tǒng), 記錄結(jié)果儲存于計算機。
微電極插入神經(jīng)元后,觀察神經(jīng)元是否有自發(fā)動作電位(action potential,AP)。對于靜默神經(jīng)元2 min后進行胞內(nèi)遞增式去極化電流刺激,電流強度0.1~5 nA,波寬200 ms,頻率0.1 Hz,找出誘發(fā)AP的閾強度(閾強度指誘發(fā)AP所需的最小刺激強度),并觀察強度-反應關(guān)系。之后,將唾液酸酶(2×103U/L)或Ca2+(10 mmol/L)施加于已暴露神經(jīng)節(jié)表面,重復進行以上觀察與記錄。
4統(tǒng)計學處理
實驗結(jié)束后對所記錄的DRG神經(jīng)元進行分析,測量神經(jīng)元的靜息電位(resting potential,RP)、閾強度、AP幅度和AP持續(xù)時間。 本文所選用C類神經(jīng)元RP 在 -40 mV以下,AP幅度大于50 mV,AP持續(xù)時間大于3 ms,AP降支中有一“駝峰”。 統(tǒng)計分析用SPSS 11.0軟件。所有實驗數(shù)據(jù)以均數(shù)±標準差(mean±SD)來表示。用Student’s 雙尾t檢驗和2檢驗進行統(tǒng)計分析。以P<0.05為差異有統(tǒng)計學意義。
結(jié)果
1CCI大鼠出現(xiàn)熱痛過敏行為
圖1示CCI和正常對照大鼠左、右兩腿熱痛回避反應潛伏期差值隨時間的變化情況。CCI大鼠損傷側(cè)肢體的回避反應潛伏期較對側(cè)縮短(P<0.05)。有時損傷側(cè)肢體出現(xiàn)快速的自發(fā)激惹性抬腿動作,表明CCI大鼠處于自發(fā)性疼痛即典型的痛覺過敏狀態(tài)中。其中測得第7天的痛敏狀態(tài)最為明顯,即損傷側(cè)縮腿反應潛伏期最短。對照組大鼠左、右兩腿的熱痛回避反應潛伏期差值在X 軸上下波動,整個測試期間無差異。
Figure 1.The difference core of time (second) in response to heat stimulation-arised pain between the right and left paws in CCI and control rats on various days after CCI operation. Mean±SD.n=10.*P<0.05 vs control.
圖1CCI和對照鼠左、右兩腿的熱痛回避反應潛伏期差值隨時間變化
2CCI大鼠C類神經(jīng)元興奮性增加
電生理實驗中,記錄觀察到72個C類神經(jīng)元。將正常對照C類神經(jīng)元與CCI大鼠損傷性C類神經(jīng)元相比較,22個正常對照C類神經(jīng)元中, 有4個C類神經(jīng)元插入電極2 min后產(chǎn)生誘發(fā)性AP,發(fā)生率為18.2%;35個CCI大鼠的C類損傷神經(jīng)元中有18個產(chǎn)生誘發(fā)性AP,發(fā)生率為51.4%, CCI組高于對照組,2檢驗差異具有統(tǒng)計學顯著性(P<0.05)。
表1為不同處理因素作用下2組大鼠C類神經(jīng)元電學參數(shù)測試結(jié)果。CCI大鼠的C類神經(jīng)元的RP較正常對照減小,提示損傷C類神經(jīng)元RP移向去極化方向,且誘發(fā)AP所需閾強度小于對照大鼠(P<0.01)。以上結(jié)果表明CCI組C類神經(jīng)元興奮性增加。
3Ca2+抑制損傷性C類神經(jīng)元興奮性
將Ca2+(10 mmol/L)加在損傷C類神經(jīng)元膜上,由于Ca2+可中和唾液酸所帶負電,使RP 移向超級化方向,且引發(fā)AP所需閾強度增大,與未加Ca2+的損傷C類神經(jīng)元相比,差異有統(tǒng)計學顯著性(P<0.01),見圖2、表1。可見在損傷性C類神經(jīng)元上用Ca2+中和唾液酸所帶負電可抑制損傷性C類神經(jīng)元興奮性,將Ca2+用生理鹽水沖洗后,對C類神經(jīng)元興奮性的抑制作用消除,損傷性C類神經(jīng)元又重新處于強的興奮狀態(tài)。而Ca2+對正常C類神經(jīng)元的RP和閾強度無明顯影響。
表1不同處理因素作用下C類神經(jīng)元電生理特征變化
Table 1. The changes of electrophysiological property of C-type neurons in various ingredients (Mean±SD. n=12)
TreatmentControlC-typeneuronCCIC-typeneuronRP(mV)Rheobase(nA)RP(mV)Rheobase(nA)NS-52.1±7.114.11±2.08-46.3±8.701.37±1.62##Ca2+-53.2±6.124.26±1.78-54.3±11.22.87±2.19★★NA-53.7±5.514.28±2.24-56.7±9.433.32±2.21★★
##P<0.01 vs control C-type neuron;★★P<0.01 vs NS.
Figure 2. Ca2+influenced electrophysiology property of CCI injured C-neuron. After Ca2+applied for 5 min, the rheobase evoked AP on injured C-neuron increased from 0.9 nA to 1.7 nA, and in 10 min, no AP was evoked by 4.5 nA strong stimulation. The RP of injured C-neuron gradually moved from -50 mV to -65 mV.
圖2Ca2+對CCI損傷性C-神經(jīng)元電生理特性的影響
4NA抑制損傷性C類神經(jīng)元興奮性
將2×103U/L唾液酸酶加在CCI大鼠DRG上,唾液酸酶可分解膜表面唾液酸,也使損傷C類神經(jīng)元RP 移向超級化方向,且誘發(fā)AP所需閾強度增大(P<0.01),見圖3、表1??梢娪猛僖核崦溉コけ砻嫱僖核峥梢种茡p傷性C類神經(jīng)元興奮性,提示損傷性C類神經(jīng)元膜去極化和興奮性增加是由唾液酸含量增加所致。我們對C類神經(jīng)元進行細胞電泳實驗,也發(fā)現(xiàn)損傷性C類神經(jīng)元由于其膜表面帶負電的唾液酸含量增加,其向陽極的泳動速率快于正常C類神經(jīng)元[8]。用唾液酸酶分解去除膜表面唾液酸則減慢其電泳速率。唾液酸酶對正常C類神經(jīng)元的RP和閾強度及電泳速率無明顯影響,提示正常C類神經(jīng)元處于低唾液酸水平。
討論
本實驗表明CCI大鼠損傷性C類神經(jīng)元膜上強負電性的唾液酸增加,加重的糖基化使其RP減小,興奮性增加。實驗提供有利證據(jù)說明損傷性C類神經(jīng)元興奮性變化與膜上唾液酸含量密切相關(guān):(1)用Ca2+去中和損傷C類神經(jīng)元膜表面唾液酸所帶負電,結(jié)果使RP 移向超級化方向,且引發(fā)AP所需閾強度增大,神經(jīng)元興奮性受到抑制; (2)用唾液酸酶特異性地分解去除損傷C類神經(jīng)元膜表面唾液酸,也使其興奮性減小。由于唾液酸帶負電,我們在細胞電泳實驗中也看到損傷C類神經(jīng)元向正極的泳動速率快于正常神經(jīng)元[8]。有實驗報道DRG感覺神經(jīng)元膜表面唾液酸含量越高,對胞外Ca2+離子濃度的變化越敏感,低唾液酸化的感覺神經(jīng)元對Ca2+的敏感性降低[9]。本實驗中正常C類神經(jīng)元含唾液酸較少,也觀察到對Ca2+不敏感。
在坐骨神經(jīng)損傷術(shù)后,攜帶大量唾液酸殘基的功能糖蛋白異位堆積在DRG神經(jīng)元損傷區(qū)和胞體膜上,致使這些位點的膜表面負電荷增加,跨膜電位減小,興奮性增大,異位起搏點形成,行為上表現(xiàn)為痛覺過敏和痛覺超敏。在損傷C類神經(jīng)元胞體我們記錄到自發(fā)性和誘發(fā)性異位傳入電活動增加,其異位傳入電活動的形成是膜上鈉通道、鈣通道及受體蛋白等,特別是鈉通道蛋白在膜上的表達發(fā)生異常所導致[10-11]。鈉通道含有大量糖基,糖基的重量占總重的15%~40%,其中糖基重量的40%~45%是唾液酸,唾液酸殘基帶有很強的負電性[2,5, 12-13]。鈉通道NaV1.4上含有大量唾液酸,將其分別在唾液酸合成缺陷的 Lec2細胞系和正常的 Pro5細胞系中表達,通道的門控特性在2種細胞系中差別很大,在Lec2細胞系中,NaV1.4激活速度明顯減慢,興奮性降低[5,13]。這一結(jié)果與本實驗結(jié)論一致,提示減少或中和膜表面唾液酸的化合物可抑制細胞的興奮性,具鎮(zhèn)痛作用。
Figure 3. Neuraminidase (NA) influenced the electrophysiological property of CCI injured C-type neuron. After NA applied for 15 min, the rheobase to evoke AP on injured C-type neuron increased from 0.6 nA to 3.6 nA, and the RP gradually moved from -52 mV to -60 mV, shifting to hyperpolarization.
圖3唾液酸酶對CCI損傷性C類神經(jīng)元電生理特性的影響
[參考文獻]
[1]Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man[J]. Pain, 1988, 33(1):87-107.
[2]Peng XQ, Zhang XL, Fang Y, et al. Sialic acid contributes to hyperexcitability of dorsal root ganglion neurons in rats with peripheral nerve injury[J]. Brain Res, 2004,1026(2):185-193.
[3]Laedermann CJ, Pertin M, Suter MR, et al. Voltage-gated sodium channel expression in mouse DRG after SNI leads to re-evaluation of projections of injured fibers[J]. Mol Pain, 2014, 10:19.
[4]Casals-Díaz L, Casas C, Navarro X. Changes of voltage-gated sodium channels in sensory nerve regeneration and neuropathic pain models[J]. Restor Neurol Neurosci, 2015, 33(3):321-334.
[5]Wan D, Liu WN, Tian RP. Chang of serum sialic acid in adrimycin nephropathy rats and acute serum sickness nephritis rabbits[J]. Chinese J Pathophysiology, 1997, 13(4):404-407.
[6]Ednie AR, Harper JM, Bennett ES. Sialic acids attached to N- and O-glycans within the Nav1.4 D1S5-S6 linker contribute to channel gating[J]. Biochim Biophys Acta, 2015, 1850(2):307-317.
[7]Li CX, Jing YL, Xie YK. Glycosylation-induced depolarization facilitates subthreshold membrane oscillation in injured primary sensory neurons[J]. Brain Res, 2007, 1139:201-209.
[8]Li CX, Ma GY, Guo MF, et al. Sialic acid accelerated the electrophoresis velocity of primary sensory neurons in rats with peripheral nerve injury[J]. Neural Regen Res, 2015, 6(10):972-975.
[9]Zhang XL, Peng XQ, Jing YL, et al. Sialic acid contributes to generation of ectopic spontaneous discharges in rats with neuropathic pain[J]. Neurosci Lett, 2003, 346(1-2):65-68.
[10]Wood JN, Boorman JP, Okuse K, et al. Voltage-gated sodium channels and pain pathways[J]. J Neurobiol, 2004, 61(1):55-71.
[11]Drummond PD, Drummond ES, Dawson LF, et al. Upregulation of α1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II[J]. Pain, 2014, 155(3):606-616.
[12]Baycin-Hizal D, Gottschalk A, Jacobson E, et al. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function[J]. Biochem Biophys Res Commun, 2014, 453(2):243-253.
[13]Bennett ES. Isoform-specific effect of sialic acid on vol-tage-dependent Na+channel gating: functional sialic acids are localized to the S5-S6 loop of domain I [J]. J Physiol, 2002, 358(Pt 3):675-690.
(責任編輯: 盧萍, 羅森)
Sialic acid in external membrane of C-type primary sensory neurons with peripheral nerve injury increases excitability of the neurons
LI Chen-xu, ZHANG Pei-jun, MA Guo-ying, LIU Ying, GUO Min-fang
(Institute of Brain Sciences, Department of Physiology, Medical College, Datong University, Datong 037009, China. E-mail: lichenxv20021208@aliyun.com)
[ABSTRACT]AIM: To study the change of electrophysiological property of dorsal root ganglion (DRG) C-type primary sensory neurons with sialic acid on the membrane surface after rat sciatic nerve injury. METHODS: The operation to induce chronic constriction nerve injury (CCI) for establishing CCI pain model was performed in the rats, and normal rats served as controls. The thermal hyperalgesia behavior was observed to select CCI pain rats, and electrophysiological property of injured and normal C-type neurons was studied by intracellular recording. Ca2+and neuraminidase (NA) were topically added on the extracellular membrane of C-type neurons to counteract or selectively remove the negatively charged sialic acid residues, and at the same time the change of electrophysiological property was observed. RESULTS: The rest potential (RP) of injured C-type neurons shifted to depolarizing direction. The incidence of evoked action potential (AP) was higher, and the rheobase to evoke AP was lower than the control. After topical application of Ca2+and NA on injured C-type neurons, hyperpolarized RP and increased rheobase to evoke AP were observed, indicating the excitability of injured C-type neurons diminished. However, these treatments to normal neurons had no effect on electrophysiological property. CONCLUSION: Increased negative charge on the injured C-type neuron surface, carried by the sialic acid residues, contributes to the change of electrophysiological property.
[KEY WORDS]Chronic constriction injury; C-type primary sensory neurons; Sialic acid; Neuraminidase
[文章編號]1000- 4718(2016)05- 0943- 04
[收稿日期]2015- 11- 27[修回日期] 2016- 03- 25
*[基金項目]山西省自然科學基金資助項目(No. 2012011042-3)
通訊作者△Tel: 0352-7158963; E-mail: lichenxv20021208@aliyun.com
[中圖分類號]R74; R363
[文獻標志碼]A
doi:10.3969/j.issn.1000- 4718.2016.05.030
雜志網(wǎng)址: http://www.cjpp.net