• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MnO2的晶相結(jié)構(gòu)和表面性質(zhì)對低溫NH3-SCR反應(yīng)的影響

    2012-11-30 10:57:08李俊華唐幸福
    物理化學(xué)學(xué)報 2012年7期
    關(guān)鍵詞:晶相晶面性質(zhì)

    戴 韻 李俊華,* 彭 悅 唐幸福

    (1清華大學(xué)環(huán)境學(xué)院,環(huán)境模擬與污染控制國家重點聯(lián)合實驗室,北京100084;2復(fù)旦大學(xué)環(huán)境科學(xué)與工程系,上海200433)

    MnO2的晶相結(jié)構(gòu)和表面性質(zhì)對低溫NH3-SCR反應(yīng)的影響

    戴 韻1李俊華1,*彭 悅1唐幸福2,*

    (1清華大學(xué)環(huán)境學(xué)院,環(huán)境模擬與污染控制國家重點聯(lián)合實驗室,北京100084;2復(fù)旦大學(xué)環(huán)境科學(xué)與工程系,上海200433)

    采用水熱法合成了兩種具有相同形貌但是不同物相結(jié)構(gòu)的MnO2納米棒,分別為隧道狀和層狀結(jié)構(gòu),考察其低溫NH3選擇性催化還原NOx(NH3-SCR)的性能.結(jié)果表明MnO2納米棒的比表面積不是影響活性的主要因素,催化劑的晶相結(jié)構(gòu)和表面性質(zhì)對催化活性有很大影響,隧道狀α-MnO2納米棒的低溫NH3-SCR活性明顯高于層狀δ-MnO2納米棒.結(jié)構(gòu)分析和NH3程序升溫脫附(NH3-TPD)實驗表明,α-MnO2納米棒的暴露晶面(110)面存在大量的配位不飽和Mn離子,形成較多的Lewis酸性位點,而且α-MnO2較弱的Mn―O鍵和隧道結(jié)構(gòu)都有利于NH3的吸附;而δ-MnO2納米棒的暴露晶面(001)面上的Mn離子已達到配位飽和,所以其表面Lewis酸性位點較少.X射線光電子能譜(XPS)和熱重(TG)分析表明α-MnO2納米棒的表面更有利于NH3和NOx的活化.具有有利于吸附NH3和活化NH3和NOx的表面性質(zhì)和晶型結(jié)構(gòu),是α-MnO2納米棒活性高的主要原因.

    α-MnO2;δ-MnO2;低溫;NH3-選擇性催化還原NOx;晶相結(jié)構(gòu);表面性質(zhì).

    1 Introduction

    Nitrogen oxides(NOx)emitted from stationary and mobile sources are major air pollutants,contributing to acid rain,photochemical smog,ozone depletion,and fine particle pollution.1Over the past years,many methods have been used to abate NOx,and selective catalytic reduction of NOxwith NH3(NH3-SCR)has been approved to be the most efficient one.2,3The commercial catalyst for NH3-SCR is V2O5-WO3(MoO3)/ TiO2.3The catalyst has to be located upstream the electric precipitator and desulfurizing unit to meet the optimum operating temperature of 350-400°C.2,4Thus the catalyst is subjected to be blocked and poisoned by the particles and sulfates(resulting from SO2)in the flue gas.A better alternative is locating the catalysts downstream the electric precipitator and desulfurizing unit,where the temperature of the flue gas is lower than 200°C.4Therefore,it is significant to develop the low-temperature catalysts that are active below 200°C.

    Various transition metal oxides have been studied as the catalysts for low-temperature NH3-SCR,and Mn-based catalysts are considered to be the most active ones.3,5Supported MnOxcatalysts such as MnOx/Al2O36and MnOx/TiO27,8and unsupported MnOxcatalysts such as MnOx-CeO24have attracted much interest due to their high SCR activities.Kapteijn et al.9studied the NH3-SCR activities over pure manganese oxides of different valences and concluded that MnO2(Mn4+)had the best activity for its highest valence.In the recent studies,Tian et al.10prepared MnO2with different morphologies and found out that the activities decreased in the order:nanorod>nanoparticle>nanotube.Wang et al.11analyzed the NH3-SCR activities over α-MnO2and β-MnO2with tunnel structures,and deduced that α-MnO2showed higher activity than β-MnO2because α-MnO2had semitunnel structured external surface and more surface lattice oxygen.

    MnO2exists with various structures,and among them,the tunnel and layer structures have been paid considerable attention for their applications on electrochemical and catalytic fields.12,13However,few investigations have been done on lowtemperature NH3-SCR over MnO2with different structures. Therefore,in the present study,tunneled α-MnO2nanorods and layered δ-MnO2nanorods were prepared and investigated for low-temperature NH3-SCR.Analysis on the exposed crystal planes and characterizations,such as X-ray diffraction(XRD), temperature-programmed desorption of NH3(NH3-TPD),X-ray photoelectron spectroscopy(XPS),and thermal gravimetric (TG)analysis,were carried out to investigate the relationship between surface structure and catalytic activity.

    2 Experimental

    2.1 Catalyst synthesis

    α-and δ-MnO2were synthesized by hydrothermal methods.14For the preparation of α-MnO2,KMnO4(2.5 g,AR)and MnSO4·H2O(1.05 g,AR)were mixed in distilled water and then hydrothermally treated in a Teflon-lined autoclave at 160°C for 12 h.δ-MnO2was obtained by hydrothermally heating the mixture of KMnO4(6.0 g,AR)and MnSO4·H2O(1.1 g,AR)at 240°C for 24 h.Before used,α-and δ-MnO2were calcinated at 400 and 350°C for 4 h,respectively.

    2.2 Catalytic performance

    The activity measurements were carried out in a fixed-bed quartz reactor(inner diameter 9 mm)using 0.4 g catalyst (40-60 mesh).The feed gas mixture contained 0.1%(volume fraction,φ)NO,0.1%(φ)NH3,2%(φ)O2and N2as the balance gas.The total flow rate of the feed gas was 200 mL· min-1,corresponding to a space velocity of about 38000 h-1. The concentrations of NO,NO2,and NH3in the inlet and outlet gases were measured by Fourier transform infrared(FT-IR) spectroscopy gas analyzer Gasmet Dx-4000(Gasmet Technologies,Finland).

    2.3 Catalyst characterization

    X-ray diffraction measurements were performed on a D/ MAX-RB system with Cu Kαradiation(PIGAKV,Japan). Brunauer-Emmett-Teller(BET)surface areas were measured by nitrogen adsorption at liquid nitrogen temperature(77 K)on a Micromeritics ASAP 2010 micropore size analyzer(Quantachrome,America).JSM 7401 scanning electron microscope (SEM)instrument(JEOL,Japan)was used to characterize the morphology and the particle size of the catalysts.X-ray photoelectron spectroscopy data were obtained with an ESCAL-ab220i-XL electron spectrometer using 300 W Mg Kαradiations(VG scientific,England).The binding energies(EB)were referenced to the C 1s line at 284.8 eV from adventitious carbon.Thermal gravimetric analyses were performed on a Perkin-Elmer Pyric Diamond TG Analyzer(Perkin-Elmer,America)at a heating rate of 10°C·min-1.Temperature programmed desorption(TPD)experiments of NH3were carried out in a fixed-bed quartz reactor.The experiments consisted of four stages:(1)purge the sample in N2at 300°C for 1 h,(2)adsorb 0.1%(φ)NH3at 100°C for 1 h,(3)isothermal desorption in N2at room temperature until no NOxor NH3was detected,and(4) temperature-programmed desorption in N2(TPD stage)at a rate of 10°C·min-1up to 800°C.

    3 Results and discussion

    3.1 SCR catalytic activity

    Fig.1 NOxconversion(a)and NH3conversion(b)over α-and δ-MnO2for low-temperature NH3-SCR

    Thelow-temperatureNH3-SCR activitiesoverα-and δ-MnO2catalysts are shown in Fig.1.α-MnO2with a tunnel structure showed much higher activity than δ-MnO2with a layer structure.As shown in Fig.1a,the NOxconversion for α-MnO2was higher than 90%during the temperature range of 120-200°C,while that for δ-MnO2was less than 40%.The activities reached to maximum at 150°C.Fig.1b shows that the NH3conversion increases as the temperature rises.Comparing the NOxconversion in Fig.1a with the NH3conversion in Fig.1b,it could be inferred that the SCR reaction carried out between NH3and NO at a ratio of 1:1,and the NH3oxidation reaction occurred above 150°C.The BET surface areas of αand δ-MnO2were 28.0 and 40.5 m2·g-1,respectively.In general,the catalytic activity is greatly influenced by the surface area.However,δ-MnO2nanorods with a larger surface area showed much lower activity than α-MnO2nanorods.Consequently,the catalytic activities of the MnO2catalyst were not predominately controlled by the surface area.

    3.2 Structure analysis

    Fig.2a shows the XRD patterns of the two synthetic manganese oxides.The manganese oxide prepared at 160°C was attributed to a cryptomelane-type α-MnO2(JCPDS 44-0141,tetragonal,I4/m,a=b=0.978 nm,c=0.286 nm).14The pattern of MnO2prepared at 240°C showed planes(001),(002),(111)at 2θ=12.3°,24.9°,36.9°,indexed to δ-MnO2(JCPDS 80-1098, monoclinic,C2/m,a=0.515 nm,b=0.284 nm,c=0.717 nm).14,15

    Fig.2 XRD patterns(a),schematic structures(b,b?), model structures of the exposed planes(c,c?),andSEM images(d,d?)of α-and δ-MnO2

    α-MnO2and δ-MnO2are both constructed by chains of MnO6octahedra linking in different ways.Fig.2(b,b?)shows the schematic structures of the α-MnO2and δ-MnO2.The structure of α-MnO2consists of double chains of edge-sharing MnO6octahedra to form[2×2]tunnels of ca 0.46 nm×0.46 nm.16The morphology of α-MnO2was nanorod-shaped as shown in Fig.2d.Wang et al.11proposed that α-MnO2nanorods grew along a(001)axis direction and exposed the most stable (110)crystal planes(Fig.2(c,c?)).The crystal structure of δ-MnO2is built up from layers of edge-sharing MnO6octahedra with a certain number of water molecules and foreign cations between them.The spacing between the two layers is about 0.713 nm,16larger than the tunnel size of α-MnO2,so δ-MnO2needs more H2O or other foreign cations to stabilize the structure.According to Bragg?s equation,the interplanar spacing for(001)plane of δ-MnO2was calculated to be 0.719 nm,close to the interlayer spacing of 0.713 nm,which was in agreement with the schematic structures of δ-MnO2(Fig.2b?). Fig.2d?shows that the δ-MnO2prepared also had nanorod morphology.On the basis of the XRD pattern,the(001)plane(parallel to(002)plane)of δ-MnO2had much higher diffraction in-tensities than(111)plane,indicating that δ-MnO2might expose the(001)plane as shown in Fig.2c?,and the conclusion was proved by Xiao et al.15.

    3.3 Acidity

    NH3-TPD experiments were taken to demonstrate the acidities of the two MnO2nanorods and the results are shown in Fig.3 and Table 1.NH3,together with N2O and NO were desorbed as the temperature increased.The NH3desorption temperature for α-MnO2was higher than that for δ-MnO2,revealing the higher acidity of α-MnO2.The total NH3adsorption amounts(NH3+2N2O+NO)for α-MnO2were much higher than that for δ-MnO2as shown in Table 1.Therefore,α-MnO2nanorods had much more acid sites than δ-MnO2nanorods on the surface.NH3was adsorbed on the catalyst as the form of NH4+ions(Br?nsted acid sites)or coordinated NH3(Lewis acid sites).Since the surface hydroxyl groups can act as Br?nsted acid sites,17,18NH3adsorption as the form of NH4+on δ-MnO2nanorods was greatly enhanced by the large number of H2O between the layers.In spite of many Br?nsted acid sites,δ-MnO2nanorods exhibited less acidity than α-MnO2,probably because of few Lewis acid sites existed on the exposed plane.The Lewis acid sites on the surface of MnO2nanorods should be octahedral Mn sites in coordinatively unsaturated environment.11As seen in Fig.2c?,all of the Mn cations on the exposed(001) plane of δ-MnO2are at the center of oxygenic octahedra,6 fold coordinated to oxygen in a coordinatively saturated environment.The octahedral coordination model for δ-MnO2is considerably stable,19indicative of few Lewis acid sites on the plane. For α-MnO2,the Mn cations on the exposed(110)plane are 3 or 5 fold coordinated to oxygen in coordinately unsaturated environment,which indicates that α-MnO2nanorods possesses many Lewis acid sites.11The average Mn―O bond lengths of α-and δ-MnO2are 0.198 and 0.194 nm,respectively.16It suggests that the Mn cations of α-MnO2are more active than those of δ-MnO2,beneficial to the NH3adsorption on Mn sites.Furthermore,α-MnO2owns the[2×2]tunnels as shown in Fig.2b, of which the effective pore opening for gas adsorption is close to 0.265 nm,so that NH3and H2O molecules with diameters below 0.265 nm can be inserted into the tunnels.20,21Therefore, α-MnO2has much higher NH3adsorption than δ-MnO2,due to more Lewis acid sites on the surface,weaker Mn―O bonds, and effective[2×2]tunnels.Remarkably,α-MnO2had a N2O desorption peak centered at ca 280°C,while δ-MnO2had a high-temperature NO desorption peak but no low-temperature one.It could be seen that the adsorbed NH4+ions between the layers of δ-MnO2were easy to desorb as the form of NH3and difficult to be oxidized at low temperature.

    Fig.3 NH3-TPD profiles of α-and δ-MnO2nanorods

    Table 1 NH3,N2O,and NO desorption amounts(unit in μmol·g-1) of α-and δ-MnO2nanorods during the NH3-TPD experiments

    3.4 Redox property

    Fig.4 Mn 2p(a)and O 1s(b)XPS spectra of α-and δ-MnO2nanorods

    Fig.5 TG curves of α-and δ-MnO2nanorods

    In general,for low-temperature NH3-SCR over Mn-based catalysts,the surface redox property is more important than the bulk redox property.XPS experiments were done to present the surface electronic state of the catalysts,and the results are shown in Fig.4.As seen in Fig.4a,two main peaks corresponding to Mn 2p1/2and Mn 2p3/2were observed for Mn 2p XPS spectra.The Mn 2p3/2peaks for the two MnO2nanorods were both located at 642.4 eV,indicating that the surfaces were presented dominantly as Mn4+.22Fig.4b shows the O 1s XPS spectra.The O 1s peak is generally composed of two surface oxygen species.The binding energy range of 531.0-532.0 eV is assigned to surface chemisorbed oxygen such as defect oxides or oxygen ions with low coordination(donated as Oα),and the binding energy range of 529.5-530.0 eV is characteristic of lattice oxygen(donated as Oβ).23Oαwas reported to be highly active in the oxidation reaction due to its higher mobility than lattice oxygen Oβ.24Therefore,Oαcould promote the oxidation of NO to NO2and H-abstraction of the adsorbed NH3,which were both supposed to be very important in low-temperature NH3-SCR.17,25The corresponding concentrations of Oαwere calculated from the relative areas of the sub-peaks and the results were 37.1%and 24.9%for α-and δ-MnO2,respectively.It indicated that α-MnO2nanorods had a higher capability to activate NH3and NO,which were also proved by NH3-TPD and NO-TPD (Fig.S1(see Supporting Information))results.The results of H2-TPR are shown in Fig.S2(see Supporting Information). δ-MnO2nanorods exhibited slightly higher bulk reducibility than α-MnO2nanorods,which implied that the bulk reducibility was not the main factor to affect the activity in the present study.

    The profiles of TG are shown in Fig.5.The initial mass loss below 250°C is generally attributed to the loss of physically and chemically adsorbed water,including the loosely bound and tightly bound(interlayer)H2O molecules;26,27the mass loss in the temperature range of 250-540°C is believed to be the loss of chemical oxygen,which was considered to be highly active in the oxidation reactions;11the following evident mass losses are due to the transformation of MnO2to Mn2O3,then to Mn3O4.18The water losses for α-and δ-MnO2were 2.0%and 8.2%,respectively.The water losses of δ-MnO2were much larger than that of α-MnO2,in accordance with the existence of abundant water molecules between the layers even after calcination.The chemical oxygen losses for α-and δ-MnO2were 1.0%and 0.7%,respectively.α-MnO2had more chemical oxygen loss than δ-MnO2,which probably promoted the activation of NO and NH3,consistent with the XPS results.

    4 Conclusions

    α-MnO2nanorods with a[2×2]tunnel structure obtained much better low-temperature NH3-SCR performance than δ-MnO2nanorods with a layer structure.The BET surface area is not the main factor to affect the catalytic activity.The SCR activity over the MnO2nanorods is structure sensitive.The exposed(110)plane of α-MnO2possesses many manganese cations in coordinatively unsaturated environment while all the manganese cations on the exposed(001)plane of δ-MnO2are in coordinatively saturated environment,which suggests that α-MnO2has more Lewis acid sites.With more Lewis acid sites,weaker Mn―O bonds,efficient tunnel structure,and higher capacity to activate NO and NH3,α-MnO2catalyst is more adaptable for low-temperature NH3-SCR.

    Supporting Information: available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schneider,H.;Tschudin,S.;Schneider,M.;Wokaun,A.;Baiker, A.J.Catal.1994,147,5.doi:10.1006/jcat.1994.1109

    (2) Busca,G.;Lietti,L.;Ramis,G.;Berti,F.Appl.Catal.B: Environ.1998,18,1.doi:10.1016/S0926-3373(98)00040-X

    (3) Marban,G.;Valdes-Solis,T.;Fuertes,A.B.J.Catal.2004,226, 138.doi:10.1016/j.jcat.2004.05.022

    (4) Qi,G.S.;Yang,R.T.J.Catal.2003,217,434.

    (5) Tang,X.F.;Li,J.H.;Sun,L.;Hao,J.M.Appl.Catal.B: Environ.2010,99,156.doi:10.1016/j.apcatb.2010.06.012

    (6) Kijlstra,W.S.;Brands,D.S.;Smit,H.I.;Poels,E.K.;Bliek,A. J.Catal.1997,171,219.doi:10.1006/jcat.1997.1789

    (7) Li,J.H.;Chen,J.J.;Ke,R.;Luo,C.K.;Hao,J.M.Catal. Commun.2007,8,1896.doi:10.1016/j.catcom.2007.03.007

    (8) Lin,T.;Zhang,Q.L.;Li,W.;Gong,M.C.;Xing,Y.X.;Chen, Y.Q.Acta Phys.-Chim.Sin.2008,24,1127.[林 濤,張秋林,李 偉,龔茂初,幸怡汛,陳耀強.物理化學(xué)學(xué)報,2008,24, 1127.]doi:10.1016/S1872-1508(08)60046-7

    (9) Kapteijn,F.;Singoredjo,L.;Andreini,A.;Moulijn,J.A.Appl. Catal.B:Environ.1994,3,173.doi:10.1016/0926-3373(93) E0034-9

    (10)Tian,W.;Yang,H.S.;Fan,X.Y.;Zhang,X.B.J.Hazard. Mater.2011,188,105.doi:10.1016/j.jhazmat.2011.01.078

    (11)Wang,C.;Sun,L.;Cao,Q.Q.;Hu,B.B.;Huang,Z.W.;Tang, X.F.Appl.Catal.B:Environ.2011,101,598.doi:10.1016/j. apcatb.2010.10.034

    (12) Brock,S.L.;Duan,N.G.;Tian,Z.R.;Giraldo,O.;Zhou,H.; Suib,S.L.Chem.Mater.1998,10,2619.doi:10.1021/ cm980227h

    (13) Suib,S.L.Accounts Chem.Res.2008,41,479.doi:10.1021/ ar7001667

    (14) Liang,S.H.;Teng,F.;Bulgan,G.;Zong,R.L.;Zhu,Y.F. J.Phys.Chem.C 2008,112,5307.doi:10.1021/jp0774995

    (15)Xiao,W.;Wang,D.L.;Lou,X.W.J.Phys.Chem.C 2010,114, 1694.doi:10.1021/jp909386d

    (16) Albering,J.H.Structural Chemistry of Manganese Dioxide and Related Compounds.In Handbook of Battery Materials;Daniel, C.,Besenhard,J.O.Eds.;McGraw-Hill:New York,1997;pp 85-107.

    (17) Liu,F.D.;He,H.;Ding,Y.;Zhang,C.B.Appl.Catal.B: Environ.2009,93,194.doi:10.1016/j.apcatb.2009.09.029

    (18) Wang,Z.M.;Kanoh,H.Thermochim.Acta 2001,379,7.doi: 10.1016/S0040-6031(01)00596-2

    (19) Chen,S.H.;Niu,J.Z.;Liu,J.X.;Li,S.B.Chin.J.Chem.Phys. 1999,12,176.[陳善宏,牛建中,劉新建,李樹本.化學(xué)物理學(xué)報,1999,12,176.]

    (20)Wang,Z.M.;Tezuka,S.;Kanoh,H.Chem.Mater.2001,13, 530.doi:10.1021/cm0007609

    (21) Wang,Z.M.;Tezuka,S.;Kanoh,H.Chem.Lett.2000,29,560.

    (22) Lee,S.J.;Gavriilidis,A.;Pankhurst,Q.A.;Kyek,A.;Wagner, F.E.;Wong,P.C.L.;Yeung,K.L.J.Catal.2001,200,298.doi: 10.1006/jcat.2001.3209

    (23) Larachi,F.;Pierre,J.;Adnot,A.;Bernis,A.Appl.Surf.Sci. 2002,195,236.doi:10.1016/S0169-4332(02)00559-7

    (24)Wu,Z.B.;Jin,R.B.;Liu,Y.;Wang,H.Q.Catal.Commun. 2008,9,2217.doi:10.1016/j.catcom.2008.05.001

    (25) Kang,M.;Park,E.D.;Kim,J.M.;Yie,J.E.Appl.Catal.A: Gen.2007,327,261.doi:10.1016/j.apcata.2007.05.024

    (26) Giovanoli,R.Thermochim.Acta 1994,234,303.doi:10.1016/ 0040-6031(94)85154-9

    (27) Lemus,M.A.;Lopez,T.;Recillas,S.;Frias,D.M.;Montes,M.; Delgado,J.J.;Centeno,M.A.;Odriozola,J.A.J.Mol.Catal. A:Chem.2008,281,107.doi:10.1016/j.molcata.2007.10.037

    March 6,2012;Revised:April 17,2012;Published on Web:April 17,2012.

    Effects of MnO2Crystal Structure and Surface Property on the NH3-SCR Reaction at Low Temperature

    DAI Yun1LI Jun-Hua1,*PENG Yue1TANG Xing-Fu2,*
    (1State Key Joint Laboratory of Environment Simulation and Pollution Control,School of Environment,Tsinghua University,Beijing 100084,P.R.China;2Department of Environmental Science and Engineering,Fudan University,Shanghai 200433,P.R.China)

    Two manganese oxides with the same nanorod-shaped morphology but different crystal structures,tunnel and layer structures,were synthesized and investigated for selective catalytic reduction of NOxwith NH3(NH3-SCR)at low temperature.Tunneled α-MnO2had much higher catalytic activity than layered δ-MnO2under the same reaction conditions.Experiment results revealed that the surface area was not the main factor to affect the NH3-SCR activities over the MnO2nanorods and that the activities were structure sensitive.Structure analysis and temperature-programmed desorption experiments of NH3(NH3-TPD)suggested that the exposed(110)plane of α-MnO2had many Mn cations in coordinatively unsaturated environment,while all of the Mn cations on the exposed(001)plane of δ-MnO2were in coordinatively saturated environment.Thus,α-MnO2possessed many more Lewis acid sites.Furthermore, α-MnO2has weaker Mn―O bonds and an efficient tunnel structure,which are favorable characteristics for NH3adsorption.Moreover,X-ray photoelectron spectroscopy(XPS)and thermal gravimetric(TG)analysis indicated that α-MnO2obtained a higher capability for NH3and NOxactivation than δ-MnO2.The crystal structure and surface properties of α-MnO2are more suitable to the adsorption of NH3and activation of NH3and NOx,which accounts for the higher catalytic activity of the α-MnO2nanorods.

    α-MnO2;δ-MnO2;Low-temperature;Selective catalytic reduction of NOxwith NH3; Crystal structure; Surface property

    10.3866/PKU.WHXB201204175

    O643

    ?Corresponding authors.LI Jun-Hua,Email:lijunhua@tsinghua.edu.cn;Tel:+86-10-62771093.TANG Xing-Fu,Email:tangxf@fudan.edu.cn; Tel:+86-21-55664880.

    The project was supported by the National Natural Science Fundation of China(51078203)and National High-Tech Research and Development Program of China(863)(2010AA065002,2009AA06Z301).

    國家自然科學(xué)基金(51078203)及國家高技術(shù)研究發(fā)展計劃項目(863)(2010AA065002,2009AA06Z301)資助

    猜你喜歡
    晶相晶面性質(zhì)
    專利名稱:一種銪摻雜含鉬酸鋅晶相透明玻璃陶瓷及其制備方法
    乙酸乙酯與ε-CL-20不同晶面的微觀作用機制
    鋰電池正極材料燒成用匣缽物相的半定量分析
    隨機變量的分布列性質(zhì)的應(yīng)用
    完全平方數(shù)的性質(zhì)及其應(yīng)用
    九點圓的性質(zhì)和應(yīng)用
    NaCl單晶非切割面晶面的X射線衍射
    物理實驗(2019年7期)2019-08-06 05:35:56
    (100)/(111)面金剛石膜抗氧等離子刻蝕能力
    不同硅晶面指數(shù)上的類倒金字塔結(jié)構(gòu)研究與分析?
    厲害了,我的性質(zhì)
    狂野欧美白嫩少妇大欣赏| 精品国产三级普通话版| 校园人妻丝袜中文字幕| 国产视频内射| 精品视频人人做人人爽| 亚洲经典国产精华液单| 免费播放大片免费观看视频在线观看| 久久韩国三级中文字幕| 日本黄色片子视频| 尾随美女入室| 日韩欧美 国产精品| av在线观看视频网站免费| 亚洲国产欧美人成| 午夜激情福利司机影院| 国产午夜精品一二区理论片| 亚洲精品aⅴ在线观看| 亚洲精品,欧美精品| 成人特级av手机在线观看| 国产片特级美女逼逼视频| 插阴视频在线观看视频| 国产 一区 欧美 日韩| 天天一区二区日本电影三级| 久久久久精品久久久久真实原创| 国产综合精华液| 久久精品国产亚洲网站| 麻豆成人av视频| 日日啪夜夜撸| 观看美女的网站| 国产美女午夜福利| 男女那种视频在线观看| 麻豆久久精品国产亚洲av| 一本色道久久久久久精品综合| 久久午夜福利片| 亚洲精品国产av蜜桃| 欧美人与善性xxx| 只有这里有精品99| 免费观看性生交大片5| 热re99久久精品国产66热6| 日韩一区二区视频免费看| 两个人的视频大全免费| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 在线观看一区二区三区激情| 日韩欧美 国产精品| 啦啦啦在线观看免费高清www| 欧美xxxx黑人xx丫x性爽| 欧美成人午夜免费资源| 熟女电影av网| 一级毛片 在线播放| 一级毛片我不卡| 97在线人人人人妻| av.在线天堂| 人妻系列 视频| 国产高清三级在线| 成人毛片60女人毛片免费| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 精品一区二区三卡| 精品人妻偷拍中文字幕| 国产成人福利小说| 成年免费大片在线观看| 看免费成人av毛片| 一级毛片 在线播放| 亚洲国产最新在线播放| 黄色欧美视频在线观看| 中文天堂在线官网| 我要看日韩黄色一级片| 国产乱来视频区| 免费看不卡的av| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 亚洲精品国产av蜜桃| 精品酒店卫生间| 免费看a级黄色片| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 国产一区二区三区综合在线观看 | 国产精品偷伦视频观看了| 国产精品精品国产色婷婷| 性色av一级| 一个人看视频在线观看www免费| 国产精品福利在线免费观看| 91精品伊人久久大香线蕉| 内地一区二区视频在线| av.在线天堂| 又粗又硬又长又爽又黄的视频| 麻豆成人午夜福利视频| 欧美+日韩+精品| av免费观看日本| 国产免费视频播放在线视频| 亚洲精品国产av蜜桃| 波野结衣二区三区在线| 亚洲内射少妇av| 亚洲欧美日韩另类电影网站 | 国产精品一区二区三区四区免费观看| 97超视频在线观看视频| 韩国av在线不卡| 国产毛片在线视频| 亚洲欧美成人综合另类久久久| av卡一久久| 精品人妻一区二区三区麻豆| 亚洲精品自拍成人| 丝袜美腿在线中文| 中文字幕久久专区| 黄片无遮挡物在线观看| 亚洲高清免费不卡视频| 秋霞伦理黄片| 少妇被粗大猛烈的视频| 亚洲四区av| 午夜免费观看性视频| 亚洲精品乱码久久久久久按摩| 亚洲精品国产成人久久av| 欧美3d第一页| 美女脱内裤让男人舔精品视频| 国产成年人精品一区二区| 丝袜脚勾引网站| 人人妻人人看人人澡| 国产精品无大码| 国产免费视频播放在线视频| 最近最新中文字幕大全电影3| 国产精品久久久久久久电影| 精品久久国产蜜桃| 日本黄色片子视频| 白带黄色成豆腐渣| 久久久久久久久大av| 成年人午夜在线观看视频| 免费人成在线观看视频色| av网站免费在线观看视频| 嫩草影院精品99| 嘟嘟电影网在线观看| 黄色日韩在线| 麻豆国产97在线/欧美| 99热全是精品| 久久久久久久久久人人人人人人| 啦啦啦在线观看免费高清www| 97精品久久久久久久久久精品| 人人妻人人爽人人添夜夜欢视频 | 国产欧美亚洲国产| 国产国拍精品亚洲av在线观看| 91精品伊人久久大香线蕉| 新久久久久国产一级毛片| 永久网站在线| 久久久精品欧美日韩精品| 国产69精品久久久久777片| 人人妻人人爽人人添夜夜欢视频 | 国产精品麻豆人妻色哟哟久久| 亚洲电影在线观看av| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 制服丝袜香蕉在线| 少妇裸体淫交视频免费看高清| 国产精品伦人一区二区| 99精国产麻豆久久婷婷| 日韩强制内射视频| 精品人妻一区二区三区麻豆| 交换朋友夫妻互换小说| 欧美一区二区亚洲| av在线app专区| 亚洲av日韩在线播放| 各种免费的搞黄视频| 精品一区二区三区视频在线| 久久亚洲国产成人精品v| 国产一区二区在线观看日韩| 男人和女人高潮做爰伦理| 国产欧美日韩精品一区二区| 日本午夜av视频| 国产精品久久久久久av不卡| 一级毛片aaaaaa免费看小| 国产黄色免费在线视频| 好男人视频免费观看在线| 国产色爽女视频免费观看| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 特大巨黑吊av在线直播| 在线a可以看的网站| 亚洲精品色激情综合| 国产精品一区www在线观看| 欧美激情国产日韩精品一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人亚洲精品一区在线观看 | 欧美性感艳星| 日本一本二区三区精品| eeuss影院久久| 男人和女人高潮做爰伦理| av在线亚洲专区| 国产精品久久久久久精品电影| 99热网站在线观看| 99热这里只有是精品在线观看| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 高清在线视频一区二区三区| 91久久精品电影网| 一级毛片我不卡| 午夜免费男女啪啪视频观看| 18禁裸乳无遮挡动漫免费视频 | 日韩精品有码人妻一区| 大香蕉97超碰在线| 内射极品少妇av片p| 免费电影在线观看免费观看| 99热全是精品| 人妻夜夜爽99麻豆av| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频| 国产极品天堂在线| 亚洲va在线va天堂va国产| 国产欧美日韩精品一区二区| 免费电影在线观看免费观看| 久久精品久久久久久久性| 欧美日韩综合久久久久久| 九色成人免费人妻av| 亚洲国产成人一精品久久久| 汤姆久久久久久久影院中文字幕| 久久久色成人| 成年版毛片免费区| xxx大片免费视频| 天堂俺去俺来也www色官网| 国产老妇女一区| 搡老乐熟女国产| 极品少妇高潮喷水抽搐| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 人体艺术视频欧美日本| 午夜免费鲁丝| 成人综合一区亚洲| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 91午夜精品亚洲一区二区三区| 亚洲高清免费不卡视频| 国产一区二区三区综合在线观看 | 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| av国产精品久久久久影院| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 国产一级毛片在线| 日日啪夜夜撸| 乱系列少妇在线播放| 99re6热这里在线精品视频| 亚洲国产欧美在线一区| 丝瓜视频免费看黄片| 亚洲精品乱码久久久久久按摩| 成人无遮挡网站| 色5月婷婷丁香| 黑人高潮一二区| 婷婷色av中文字幕| 亚洲av中文av极速乱| 国产在视频线精品| 免费av不卡在线播放| 一级二级三级毛片免费看| 天堂网av新在线| 精品久久久久久久久亚洲| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| 性插视频无遮挡在线免费观看| kizo精华| 有码 亚洲区| 国产久久久一区二区三区| 免费高清在线观看视频在线观看| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区| 高清av免费在线| 伊人久久国产一区二区| 成人国产麻豆网| 国产精品一二三区在线看| 99视频精品全部免费 在线| 在线观看美女被高潮喷水网站| 男人添女人高潮全过程视频| 丰满人妻一区二区三区视频av| 婷婷色av中文字幕| 久久99蜜桃精品久久| 国产片特级美女逼逼视频| 老司机影院毛片| 视频中文字幕在线观看| 国产又色又爽无遮挡免| 有码 亚洲区| 国产亚洲av片在线观看秒播厂| 91aial.com中文字幕在线观看| 在线免费十八禁| 欧美日韩综合久久久久久| 久久精品久久精品一区二区三区| 亚洲性久久影院| 国产一区亚洲一区在线观看| 久久精品国产鲁丝片午夜精品| 国产午夜精品久久久久久一区二区三区| 一本一本综合久久| 99视频精品全部免费 在线| 一区二区三区四区激情视频| 亚洲国产精品999| 九色成人免费人妻av| videos熟女内射| 在线观看一区二区三区| 亚洲精品456在线播放app| 国内少妇人妻偷人精品xxx网站| 欧美日韩国产mv在线观看视频 | 日韩中字成人| 欧美3d第一页| 深夜a级毛片| 一级黄片播放器| 三级国产精品欧美在线观看| 热99国产精品久久久久久7| 亚洲经典国产精华液单| 天天躁日日操中文字幕| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 久久久欧美国产精品| 亚洲av福利一区| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 少妇熟女欧美另类| 婷婷色麻豆天堂久久| 男人和女人高潮做爰伦理| 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 99re6热这里在线精品视频| 久久ye,这里只有精品| 成年女人在线观看亚洲视频 | 亚洲精华国产精华液的使用体验| 亚洲欧洲日产国产| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 最近最新中文字幕大全电影3| 搡女人真爽免费视频火全软件| 男人狂女人下面高潮的视频| 中文欧美无线码| 麻豆乱淫一区二区| 午夜福利在线在线| 午夜激情福利司机影院| 久久久午夜欧美精品| 乱系列少妇在线播放| 亚洲av日韩在线播放| 禁无遮挡网站| 制服丝袜香蕉在线| 久久久久网色| 22中文网久久字幕| 少妇人妻精品综合一区二区| 国产黄色免费在线视频| 麻豆精品久久久久久蜜桃| 国产乱人视频| 麻豆成人午夜福利视频| 天天躁夜夜躁狠狠久久av| 久久久久网色| 日韩人妻高清精品专区| 久久精品夜色国产| 男人舔奶头视频| 丝袜脚勾引网站| 国产免费一级a男人的天堂| 美女cb高潮喷水在线观看| 大陆偷拍与自拍| 久久99热这里只频精品6学生| 国产成人一区二区在线| 偷拍熟女少妇极品色| 人人妻人人看人人澡| 国产一区二区亚洲精品在线观看| 免费看不卡的av| 国产精品爽爽va在线观看网站| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 亚洲成色77777| 观看美女的网站| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 国产在线男女| 欧美性猛交╳xxx乱大交人| kizo精华| 欧美性猛交╳xxx乱大交人| 欧美日本视频| 天美传媒精品一区二区| 一个人看视频在线观看www免费| 视频中文字幕在线观看| 免费大片黄手机在线观看| 久久精品久久精品一区二区三区| 看十八女毛片水多多多| 久久午夜福利片| 成人亚洲欧美一区二区av| 成人无遮挡网站| 插逼视频在线观看| 2021少妇久久久久久久久久久| 永久网站在线| 狂野欧美激情性bbbbbb| 国产亚洲5aaaaa淫片| 成年免费大片在线观看| 日韩中字成人| 亚洲国产精品国产精品| 国产精品人妻久久久影院| 精品久久久噜噜| 久久久国产一区二区| 日韩一区二区视频免费看| xxx大片免费视频| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 少妇的逼水好多| av一本久久久久| 91精品一卡2卡3卡4卡| 欧美性感艳星| 少妇高潮的动态图| 最后的刺客免费高清国语| 精品熟女少妇av免费看| 精品人妻熟女av久视频| 只有这里有精品99| 国产欧美日韩一区二区三区在线 | 亚洲在线观看片| 中国三级夫妇交换| 日韩一区二区视频免费看| 精品一区在线观看国产| 欧美日本视频| 久久6这里有精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美日韩卡通动漫| 成人亚洲欧美一区二区av| 高清欧美精品videossex| av在线蜜桃| 国产 精品1| 亚洲av中文av极速乱| 美女高潮的动态| av免费观看日本| 欧美成人午夜免费资源| 亚洲自偷自拍三级| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 日韩国内少妇激情av| 卡戴珊不雅视频在线播放| 久久女婷五月综合色啪小说 | 黄色配什么色好看| 欧美xxxx黑人xx丫x性爽| 成年女人看的毛片在线观看| 97精品久久久久久久久久精品| 国产极品天堂在线| 欧美成人精品欧美一级黄| 日韩伦理黄色片| 精品人妻一区二区三区麻豆| 国产成人福利小说| 欧美+日韩+精品| 一二三四中文在线观看免费高清| 人体艺术视频欧美日本| 乱系列少妇在线播放| av在线观看视频网站免费| 欧美日韩亚洲高清精品| 丰满人妻一区二区三区视频av| 成人一区二区视频在线观看| 91久久精品国产一区二区三区| 尾随美女入室| 亚洲高清免费不卡视频| 永久免费av网站大全| 亚洲欧美日韩另类电影网站 | 精品一区二区免费观看| 老师上课跳d突然被开到最大视频| 免费不卡的大黄色大毛片视频在线观看| 联通29元200g的流量卡| 免费大片18禁| .国产精品久久| 日韩亚洲欧美综合| 2022亚洲国产成人精品| 中文字幕免费在线视频6| 亚洲av男天堂| 80岁老熟妇乱子伦牲交| 亚洲,一卡二卡三卡| 精品国产一区二区三区久久久樱花 | 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 亚洲国产精品专区欧美| 国产综合精华液| 欧美激情国产日韩精品一区| 午夜老司机福利剧场| av在线蜜桃| 国产精品一二三区在线看| 成人国产麻豆网| 免费少妇av软件| 国产高清国产精品国产三级 | 美女脱内裤让男人舔精品视频| 男人爽女人下面视频在线观看| 国产极品天堂在线| 亚洲美女搞黄在线观看| 中文精品一卡2卡3卡4更新| 亚洲精华国产精华液的使用体验| 一个人观看的视频www高清免费观看| 日本免费在线观看一区| 久久精品国产亚洲网站| 一区二区av电影网| 一级毛片aaaaaa免费看小| 少妇裸体淫交视频免费看高清| 老司机影院毛片| 人妻少妇偷人精品九色| 欧美日韩精品成人综合77777| 国产在线一区二区三区精| 亚洲内射少妇av| 内射极品少妇av片p| 一本久久精品| 中文字幕av成人在线电影| 国产精品伦人一区二区| 爱豆传媒免费全集在线观看| 国产伦理片在线播放av一区| 欧美日韩国产mv在线观看视频 | 国产高清国产精品国产三级 | 亚洲av.av天堂| 秋霞伦理黄片| 免费观看无遮挡的男女| 午夜福利网站1000一区二区三区| 一级av片app| 久久久久久伊人网av| 小蜜桃在线观看免费完整版高清| 久久韩国三级中文字幕| 久久热精品热| 免费黄网站久久成人精品| 大码成人一级视频| 亚洲,欧美,日韩| 久久久久九九精品影院| 久久久午夜欧美精品| 别揉我奶头 嗯啊视频| 高清av免费在线| 国产成人freesex在线| 婷婷色综合www| 免费看a级黄色片| 新久久久久国产一级毛片| 国产视频首页在线观看| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 国产免费又黄又爽又色| 观看美女的网站| 亚洲第一区二区三区不卡| 久久精品久久久久久久性| 国产精品一及| 国产精品人妻久久久久久| 精品久久久久久久末码| 日日啪夜夜撸| 尤物成人国产欧美一区二区三区| 久久久久久久午夜电影| .国产精品久久| 亚洲精品第二区| 久久久久精品久久久久真实原创| 日韩欧美一区视频在线观看 | 国产综合精华液| 欧美三级亚洲精品| 一级av片app| 亚洲av福利一区| 看免费成人av毛片| 午夜爱爱视频在线播放| 久久精品国产自在天天线| 欧美潮喷喷水| 欧美成人a在线观看| 男女边摸边吃奶| 国产欧美日韩一区二区三区在线 | 99久久九九国产精品国产免费| 国产精品久久久久久精品电影小说 | 七月丁香在线播放| 亚洲性久久影院| 国内精品宾馆在线| 亚洲成人中文字幕在线播放| 亚洲丝袜综合中文字幕| 亚洲欧美日韩卡通动漫| 男的添女的下面高潮视频| 熟妇人妻不卡中文字幕| 91久久精品国产一区二区三区| 在线a可以看的网站| 国产视频内射| 国产精品人妻久久久影院| 亚洲最大成人中文| 黄色视频在线播放观看不卡| 视频区图区小说| 久久久欧美国产精品| 插阴视频在线观看视频| 深夜a级毛片| 联通29元200g的流量卡| 一个人观看的视频www高清免费观看| 男女啪啪激烈高潮av片| 极品少妇高潮喷水抽搐| 观看美女的网站| 亚洲精品aⅴ在线观看| 内地一区二区视频在线| 舔av片在线| 国产午夜福利久久久久久| 18禁动态无遮挡网站| 国国产精品蜜臀av免费| 欧美区成人在线视频| 日本黄色片子视频| 国产成人精品婷婷| 成年版毛片免费区| 久久久久性生活片| xxx大片免费视频| 成人免费观看视频高清| 少妇 在线观看| 18禁裸乳无遮挡动漫免费视频 | 日本欧美国产在线视频| 久久精品国产自在天天线| 国产精品国产av在线观看| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 国产精品国产av在线观看| 男插女下体视频免费在线播放| 97人妻精品一区二区三区麻豆| 午夜免费观看性视频| 精品久久久精品久久久| 免费观看a级毛片全部| 国产伦精品一区二区三区四那| 欧美成人一区二区免费高清观看| 欧美日韩在线观看h| 国产一区有黄有色的免费视频| 日韩成人av中文字幕在线观看| 国内少妇人妻偷人精品xxx网站| av在线app专区| 久久精品久久精品一区二区三区| 亚洲精品乱码久久久久久按摩| av在线老鸭窝| 天美传媒精品一区二区| 91午夜精品亚洲一区二区三区| tube8黄色片| 在线观看免费高清a一片| av在线观看视频网站免费| 国产探花在线观看一区二区| videossex国产| av国产免费在线观看| 国产成人午夜福利电影在线观看| 亚洲av免费高清在线观看|