• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一維帶狀SnO2的電子傳輸性能

    2012-11-30 10:57:10李曉寧白守禮楊文勝陳靄璠孫麗娜張敬波
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:薄膜粒徑電池

    李曉寧 白守禮 楊文勝 陳靄璠 孫麗娜 林 原 張敬波,3,*

    (1北京化工大學(xué),化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190;3天津師范大學(xué),天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室,天津300387)

    一維帶狀SnO2的電子傳輸性能

    李曉寧1,2白守禮1,*楊文勝1陳靄璠1孫麗娜1林 原2張敬波2,3,*

    (1北京化工大學(xué),化工資源有效利用國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100029;2中國(guó)科學(xué)院化學(xué)研究所,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100190;3天津師范大學(xué),天津市功能分子結(jié)構(gòu)與性能重點(diǎn)實(shí)驗(yàn)室,天津300387)

    采用水輔助化學(xué)氣相沉積法制備了結(jié)晶性好的一維帶狀SnO2.分別以小粒徑錫粉和金修飾的小粒徑錫粉作為反應(yīng)原料制得帶寬度不同的帶狀SnO2,小粒徑錫粉作為反應(yīng)原料能提高帶狀SnO2的產(chǎn)率.將所得SnO2帶和SnO2納米顆粒按不同比例混合配制成膠體,采用刮涂法制備含不同比例納米顆粒和納米帶的復(fù)合SnO2薄膜并組裝染料敏化太陽(yáng)能電池(DSSCs)來評(píng)價(jià)帶狀SnO2的電子輸運(yùn)性能.組裝的太陽(yáng)能電池表現(xiàn)出與復(fù)合納晶薄膜中一維SnO2帶的帶寬度和所含比例密切相關(guān)的光電性能.通過強(qiáng)度調(diào)制光電流譜的測(cè)量確定復(fù)合SnO2薄膜的電子傳輸速率,并進(jìn)一步分析一維材料所具有的良好電子傳輸性能對(duì)光電流增加的貢獻(xiàn).因?yàn)橐痪SSnO2帶在復(fù)合納晶薄膜中作為電子輸運(yùn)的快速通道可以加快電子的輸運(yùn)速度,所以以適宜的比例添加具有合適寬度的一維SnO2帶可以明顯提高太陽(yáng)能電池的光電性能.

    二氧化錫一維帶狀結(jié)構(gòu);電子傳輸;復(fù)合納晶薄膜;染料敏化太陽(yáng)能電池;光電性能

    1 Introduction

    Since O?Regan and Gr?tzel1firstly reported dye-sensitized solar cell(DSSC)in 1991,it has been certificated as an efficient device for solar energy conversion.After intensive research of two decades,it still suffers from a relatively lower conversion efficiency.2-4The photogenerated electron transport processes in the semiconductor nanocrystalline thin film electrode are thought to essentially affect the conversion efficiency of DSSCs,which depends on the nature and morphology of nanocrystalline semiconductor oxides.5-9

    Recently,one-dimensional(1D)structures,such as wires, rods,belts,and tubes,have become a research focus owing to their unique applications in mesoscopic physics and fabrication of nanoscale devices.10,11It is generally accepted that 1D structure provides a good system to investigate the dependence of electrical and thermal transport or mechanical properties on the dimensionality and size reduction.121D structure has a relatively small amount of grain boundaries,especially the well-crystallized structures,can reduce the grain boundary effect and provide a fast electron transport.13-15The recombination rate in TiO2nanotubes has been found to be 10 times slower than that in nanoparticles.16In 2006,Suzuki et al.17reported that a partially nanowire-structured TiO2electrode(TiO2nanoparticle/nanowire composite electrode)promises for high-performance DSSCs,because it offers possible electron transport paths without losing high surface area.They also improved the efficiency of DSSCs using well-crystallized TiO2anatase nanowires instead of TiO2nanowires with a number of structural defects,which indicates that well-crystallized TiO2anatase nanowires have better electron transport ability.18

    Tin oxide(SnO2),a typical n-type semiconductor with a 3.6 eV band gap,is one of the most important and extensively used metal oxide materials for conducting electrodes of solar cells due to its high visible optical transparent property.And some researchers are trying to replace TiO2with SnO2nanomaterials to prepare the working electrode of DSSCs.19-21

    In this paper,we synthesized the well-crystallized 1D structural SnO2belts with different widths in high yield by the water-assisted chemical vapour deposition(CVD)method at atmospheric pressure.And we tested the conversion efficiency of DSSCs by the incorporation of 1D structural SnO2belts in different percentages to photoelectrodes.The intensity modulated photocurrent spectroscopy(IMPS)was employed to investigate the electron transport process in the composite nanocrystalline film on the mode of DSSCs.The effects of structural SnO2belts with the different widths and incorporation amounts in the composite thin film on the photovoltaic performance were also discussed.

    2 Experimental

    All chemicals are analytic grade and were used as received. The SnO2belts were in situ grown in the ceramic boat containing pure Sn powder(100 mesh,99.9%,Alfa Aesar)or Au-modified Sn powder via a simple water-assisted CVD with water vapor as the oxidizer,which was introduced to the reaction region in a level tube furnace(Tianjin Zhonghuan Experiment Electric Stove Co.,Ltd.)by N2(99.999%).In a typical waterassisted CVD process,distilled water held with a ceramic boat was placed at 39 cm away from the center of the tube furnace. The tube furnace was first heated up to the set temperature (1050°C for the pure Sn powder and 850°C for the Au-modified Sn powder)under a heating rate of 10°C·min-1and then kept at the set temperature for 1 h.The N2gas at the rate of 80 cm3·min-1for the pure Sn powder or 50 cm3·min-1for the Au-modified Sn powder was introduced into the quartz tube during the heating process.When the furnace reached the set temperature,the ceramic boat with 0.3 g Sn powder was pushed into the heat center.After the reaction,the furnace was cooled to the room temperature in the N2atmosphere.The cotton-like products were formed to be full of the ceramic boat. The morphology of 1D structural SnO2was observed on an S-4800 field emission scanning microscope(FESEM),and a Tecnai G2 F20 U-TWIN high-resolution transmission electron microscope(HRTEM).X-ray diffraction pattern(XRD)of belts was measured with Riguku D/max 2500 using Cu Kαradiation.

    SnO2electrodes were fabricated by the mixture of the 1D structural SnO2belts and commercial SnO2nanoparticles(99.99%, 20-70 nm,Aladdin Chemistry Co.,Ltd.)with mixing ratios of 20%,50%,80%,and 100%(w)(mass fractions of belts).A total of 0.2 g of mixture was ground mechanically in 0.02 mL of acethylacetone.A little surfactant(Triton X-100)was added to facilitate spreading of the paste on the substrate.The obtained colloidal paste was coated on fluorine-doped SnO2conducting glass(FTO,20 Ω·□-1,Hake New Energy Co.,Ltd.,Harbin)by the doctor-blade method.The SnO2films were sintered at 450 °C for 30 min in air,and then were soaked in 0.5 mmol·L-1ethanol solution of Ru(dcbpy)2(NCS)2(dcbpy:2,2?-bipyridine 4, 4?-dicarboxylic acid)(N3,Solaronix)for 24 h.The dye loading amount was determined by dissolving a known area of the film into a known volume of NaOH solution(0.1 mol·L-1)and measuring its absorption spectrum with UV(Labtech,UV 2000) spectrometer.The redox electrolyte for DSSCs was composed of 0.5 mol·L-1LiI(98.5%,J&K),0.05 mol·L-1I2(99.8%, J&K),and 0.5 mol·L-14-tert-butylpyridine(96%,J&K)in 3-methoxypropionitrile(98%,J&K).Pt-coated counter electrode was prepared by dropping 5 mmol·L-1H2PtCl6(37.5%) isopropanol solution on FTO and heating it up to 390°C for 20 min.Photocurrent density-voltage curves of the DSSCs were measured with Potentiostat/Galvanostat Model 273(EG&G) under the light intensity at AM1.5(Oriel 961160-1000),and the active area was 0.2 cm2.

    Intensity-modulated photocurrent spectroscopy(IMPS)was performed on the DSSCs.A light emitting diode(LED,470 nm)was used as the light source.The light intensity was modulated with a sine-shaped voltage supplied by a Solartron 1255B frequency response analyzer(FRA)between 0.1 Hz and 10 kHz.The DC light with the intensity up to 2 W·m-2generated by the LED,was used as the superimposed constant illumination in the measurements.The amplitude and phase shift of the current response with respect to the modulation of the light intensity were measured with FRA.The FRA and data acquisition were controlled by a personal computer.IMPS complex plane plots were recorded for the DSSCs under the short-circuit condition.

    3 Results and discussion

    Fig.1 SEM images of the 1D structural SnO2belts prepared by the pure Sn particles(a)and theAu-modified Sn particles(b) Inserts show the corresponding high-magnification SEM image(a)and TEM image(b).

    The water-assisted CVD has been employed to prepare well-crystalline SnO2nanowires,where Sn grains in large size were used as source materials.22Due to the large size of grains, the formed SnO2on the surface of grain will block the further transform of inner grain,thus leading to a lower yield of belts. We modified this method by replacing the big grains with small Sn particles or Au-modified small size Sn particles as source materials to successfully grow SnO2nanobelts in a transform yield of almost 100%.The Au-modified Sn powder was prepared by treating Sn powder in HAuCl4solution,and then exposing the mixture to UV light under vigorous stirring to reduce Au3+to Au on the Sn particle surface.Fig.1 shows the general morphologies of the prepared 1D structural SnO2with homogenous size in width and thickness.The geometrical shape of the two products observed by SEM is 1D well-defined belt structure.As the pure Sn particles were used as source materials,the belts can be prepared at 1050°C,and they are very long in the length direction about several millimeters,the width about 4-10 μm,and the thickness about 0.4 μm.Hereafter they are named as W-belts.But in the case of Au-modified Sn particles as the source materials,at 850°C,the belts can be grown in high yield,and the width of the prepared nanobelts shown in Fig.1b ranges from 40 to 70 nm.Hereafter they are named as N-belts.The detail growing mechanism due to the different source materials are discussed else.

    XRD patterns of the 1D structural SnO2N-belts are shown in Fig.2a.All the diffraction peaks can be perfectly indexed to the tetragonal SnO2rutile phase structure.Moreover,no other impurity phase was detected and the neatly peaks revealed that the structures are well-crystallized.Fig.2b is the selected area electron diffraction(SAED)pattern.The SAED pattern taken along[1ˉ11]zone axis shows that the axial growth plane is(01ˉ1). Both the XRD and SAED indicate that the N-belt is single crys-talline,structurally uniform and dislocation-free.

    Fig.2 XRD(a)and SAED(b)patterns of SnO2N-belts

    1D structure nanomaterials have been certificated to have improved charge transport properties,and 1D TiO2nanostructures,such as nanotube,nanowire,and nanorod,have been used in DSSCs for improving the light-to-electricity conversion efficiency.16,17,23However,nanobelts were seldom used in DSSCs,especially SnO2nanobelts have not yet used as photoelectrode materials to the best of our knowledge.Therefore, the prepared N-belts were mixed with commercial SnO2nanoparticles according to the different percentages from 20% to 100%(w)to prepare the composite thin film for fabrication of DSSCs.Table 1 summarizes the photovoltaic performance parameters of DSSCs based on the composite nanocrystalline thin films containing various amounts of SnO2N-belts.The photocurrent density and conversion efficiency vary with the mixing ratio of N-belts.The DSSC with addition of 20%(w) N-belts shows the best photovoltaic performance(short circuit photocurrent density(Jsc):4.72 mA·cm-2,open circuit photovoltage(Voc):371 mV,fill factor(FF):0.56,and conversion efficiency(η):0.98%)among all tested DSSCs in this study.N3 dye and iodide contained electrolyte used for dye sensitized TiO2nanocrystalline thin film solar cell are not suitable for SnO2nanocrystalline electrode in band structure,and we did nothing to optimize dye and electrolyte for the SnO2system, therefore,the DSSCs based on the composite SnO2thin films do not perform very good.But addition of N-belts at an optimum percentage of 20%(w)can obviously improve Jscabout 53%from 3.09 to 4.72 mA·cm-2.Over-addition of N-belts leads to a lower photocurrent due to the lower surface area of nanobelts compared to the nanoparticles.As 20%(w)W-belts were mixed in the SnO2nanocrystalline thin film,the Jscwas also increased compared with that of the pure nanocrystalline thin film without belts,but lower than the value of the one containing 20%(w)N-belts as shown in Fig.3.The lower photocurrent for W-belts is mainly due to its lower dye loading amount.

    In order to analyze the dependent reason of the photocurrent on the addition of belts at different amounts and widths,we measured IMPS of the nanocrystalline thin film and the composite thin films containing 20%(w)N-belts or W-belts to further investigate the electron transport properties for the different nanocrystalline thin films.The IMPS measurement detects a combined response from the photoelectrode,the counter electrode,and the electrolyte.These processes at differentrates can be differentiated,because IMPS records the responses under the different frequencies.Fig.4 shows the IMPS spectra for the nanocrystalline thin films without and with 20%(w)N-belts or W-belts.The typical IMPS plot displays a semicircle in the complex plane.The transport time(τd)of electron in nanocrystalline thin film can be estimated from the equation of τd=(2πfmax)-1,where fmaxis the maximum characteristic frequency of the IMPS at the imaginary coordinate.24The value of τdgives an estimate of the average time that photoelectrons transport to the back contact,which determines the photocurrent of DSSCs.And the dye loading amount also influences the photocurrent,so we summarize the data of τdand dye loading amount in Table 2.

    Table 1 Photovoltaic performance parameters of DSSCs based on the composite thin film electrode with different mixing amounts of N-belts

    Fig.3 Photocurrent density-voltage characteristics of DSSCs (a)without 1D structural SnO2,(b)20%(w)W-belts,(c)20%(w)N-belts

    Fig.4 Intensity modulated photocurrent spectroscopies of DSSCs(a)without 1D structural SnO2,(b)20%(w)W-belts,(c)20%(w)N-belts

    Table 2 Electron transport properties and dye loading amount of the composited photoelectrodes containing 20%(w)belts

    In the case of addition of 20%(w)N-belts,the dye loading amount in the composite thin film is almost the same as that in the nanocrystalline thin film.But the electron transport time in two thin films is obviously different.With the addition of the 1D structural SnO2N-belts,the electron transport time decreases from 20.1 to 1.6 ms.The scattering reflection due to 1D belts in the nanocrystalline thin film can also contribute to the photocurrent of DSSC based on the composite thin film.We measured the scattering reflection spectra of the composite film with 20%(w)N-belts and the thin film without N-belts and estimated that photocurrent enhancement of about 10%for the composite thin film with 20%(w)N-belts is due to the scattering reflection of belts,and photocurrent enhancement of 43%is attributed to the good electron transport properties of 1D belt.In the case of the wide belts,the dye loading amount in the composite thin film with 20%(w)W-belts decreases due to the lower surface area of W-belts compared to N-belts, which makes photocurrent decrease.But it is still larger than that for the nanocrystalline thin film without any belt addition. The increasing in width of belt can not increase τdfurther.It is clear that the photocurrent does not only depend on the dye loading amount.Taking into consideration of the electron transporting time,scattering reflection,and dye loading amount,we can conclude that the higher electron transport ability of 1D structure is the main reason of the photocurrent enhancement by the addition of 1D structural SnO2.It is considered that the good crystallinity and the 1D geometry could allow the structure to support radial electric fields that could keep the electrons away from the surface,thereby reducing surface electron densities and recombination.25-28The 1D structural belt is an ideal candidate to act as an electron path for the rapid electron transport and thus leading to a good photovoltaic performance.

    4 Conclusions

    The well-crystallized 1D structural SnO2belts with different widths have been prepared using a simple water-assisted CVD method.DSSCs based on the composite SnO2nanocrystalline thin films with the well-crystallized 1D structural SnO2belts at different widths and added amounts were fabricated.DSSCs with 20%(w)SnO2N-belts showed the best photovoltaic performance.The 1D structural SnO2belt has high electron transport ability,and the addition of belts in a suitable amount can improve the photovoltaic performance.Therefore,well-crystallized 1D structural belt could be used in the composite nanocrystalline thin film to accelerate electron transport and thus improving the performance of DSSCs.

    (1) O?Regan,B.;Gr?tzel,M.Nature 1991,353,737.doi:10.1038/ 353737a0

    (2) Gr?tzel,M.J.Photochem.Photobiol.2004,164,3.doi:10.1016/ j.jphotochem.2004.02.023

    (3) Nazeeruddin,M.K.;Péchy,P.;Renouard,T.;Zakeeruddin,S. M.,Humphry-Baker,R.;Comte,P.;Liska,P.;Cevey,L.;Costa, E.;Shklover,V.;Spiccia,L.;Deacon,G.B.;Bignozzi,C.A.; Gr?tzel,M.J.Am.Chem.Soc.2001,123,1613.doi:10.1021/ ja003299u

    (4) Pagliaro,M.;Palmisano,G.;Ciriminna,R.;Loddo,V.Energy Environ.Sci.2009,2,838.doi:10.1039/b903030a

    (5) Berger,T.;Lana-Villarreal,T.;Monllor-Satoca,D.;Gómez,R. J.Phys.Chem.C 2007,111,9936.doi:10.1021/jp071438p

    (6) Chen,D.H.;Huang,F.Z.;Cheng,Y.B.;Caruso,R.A.Adv. Mater.2009,21,2206.doi:10.1002/adma.200802603

    (7) Qian,J.F.;Liu,P.;Xiao,Y.;Jiang,Y.;Cao,Y.L.;Ai,X.P.; Yang,H.X.Adv.Mater.2009,21,3633.

    (8) Bierman,M.J.;Jin,S.Energy Environ.Sci.2009,2,1050.doi: 10.1039/b912095e

    (9) Xiao,Y.M.;Wu,J.H.;Yue,G.T.;Lin,J.M.;Huang,M.L.;Fan, L.Q.;Lan,Z.Acta Phys.-Chim.Sin.2012,28,578. [肖堯明,吳季懷,岳根田,林建明,黃妙良,范樂慶,蘭 章.物理化學(xué)學(xué)報(bào),2012,28,578.]doi:10.3866/PKU.WHXB201201032

    (10) Wang,Z.L.Adv.Mater.2000,12,1295.doi:10.1002/1521-4095 (200009)12:17<1295::AID-ADMA1295>3.0.CO;2-B

    (11) Hu,J.T.;Odom,T.W.;Lieber,C.M.Accounts Chem.Res.1999, 32,435.doi:10.1021/ar9700365

    (12) Xia,Y.N.;Yang,P.D.;Sun,Y.G.;Wu,Y.Y.;Mayers,B.;Gates, B.;Yin,Y.D.;Kim,F.;Yan,Y.Q.Adv.Mater.2003,15,353. doi:10.1002/adma.200390087

    (13) Kang,S.H.;Choi,S.H.;Kang,M.S.;Kim,J.Y.;Kim,H.S.; Hyeon,T.;Sung,Y.E.Adv.Mater.2008,20,54.doi:10.1002/ adma.200701819

    (14) Mor,G.K.;Shankar,K.;Paulose,M.;Varghese,O.K.;Grimes, C.A.Nano Lett.2006,6,215.doi:10.1021/nl052099j

    (15) Feng,X.J.;Shankar,K.;Varghese,O.K.;Paulose,M.; Latempa,T.J.;Grimes,C.A.Nano Lett.2008,8,3781.doi: 10.1021/nl802096a

    (16) Zhu,K.;Neale,N.R.;Miedaner,A.;Frank,A.J.Nano Lett. 2007,7,69.doi:10.1021/nl062000o

    (17) Suzuki,Y.;Ngamsinlapasathian,S.;Yoshida,R.;Yoshikawa,S. Central Eur.J.Chem.2006,4,476.doi:10.2478/s11532-006-0015-3

    (18) Asagoe,K.;Suzuki,Y.;Ngamsinlapasathian,S.;Yoshikawa,S. J.Phys.:Conf.Ser.2007,61,1112.doi:10.1088/1742-6596/61/ 1/220

    (19) Prins,M.W.J.;Grosse-Holz,K.O.;Cillessen,J.F.M.;Feiner, L.F.J.Appl.Phys.1998,83,888.doi:10.1063/1.366773

    (20) Dinh,N.N.;Bernard,M.C.;Goff,A.H.L.;Stergiopoulos,T.; Falaras,P.Comptes Rendus Chimie 2006,9,676.doi:10.1016/ j.crci.2005.02.042

    (21) Xia,J.B.;Li,F.Y.;Yang,S.M.;Huang,C.H.Chin.Chem.Lett. 2004,5,619.

    (22)Yin,W.Y.;Wei,B.Q.;Hu,C.W.Chem.Phys.Lett.2009,471, 11.doi:10.1016/j.cplett.2009.02.021

    (23) Liu,R.H.;Zhang,S.;Xia,X.Y.;Yun,D.Q.;Bian,Z.Q.;Zhao, Y.L.Acta Phys.-Chim.Sin.2011,27,1701.[劉潤(rùn)花,張 森,夏新元,云大欽,卞祖強(qiáng),趙永亮.物理化學(xué)學(xué)報(bào),2011,27, 1701.]doi:10.3866/PKU.WHXB20110734

    (24) Dloczik,L.;Ileperuma,O.;Lauermann,I.;Peter,L.M.; Ponomarev,E.A.;Redmond,G.;Shaw,N.J.;Uhlendorf,I. J.Phys.Chem.B 1997,101,10281.doi:10.1021/jp972466i

    (25) Qu,J.;Gao,X.P.;Li,G.R.;Jiang,Q.W.;Yan,T.Y.J.Phys. Chem.C 2009,113,3359.doi:10.1021/jp810692t

    (26) Pan,K.;Dong,Y.Z.;Tian,C.G.;Zhou,W.;Tian,G.H.;Zhao, B.F.;Fu,H.G.Electrochim.Acta 2009,54,7350.doi:10.1016/ j.electacta.2009.07.065

    (27) Gonzalez-Valls,I.;Lira-Cantu,M.Energy Environ.Sci.2009,2, 19.doi:10.1039/b811536b

    (28)Yang,Z.Z.;Xu,T.;Ito,Y.S.;Welp,U.;Kwoko,W.K.J.Phys. Chem.C 2009,113,20521.doi:10.1021/jp908678x

    March 2,2012;Revised:May 8,2012;Published on Web:May 8,2012.

    Electron Transport Properties of One-Dimensional Structural SnO2Belts

    LI Xiao-Ning1,2BAI Shou-Li1,*YANG Wen-Sheng1CHENAi-Fan1SUN Li-Na1LIN Yuan2ZHANG Jing-Bo2,3,*
    (1State Key Laboratory of Chemical Resource Engineering,Beijing University of Chemical Technology,Beijing 100029,P.R.China;2Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R. China;3Tianjin Key Laboratory of Structure and Performance for Functional Molecules,
    Tianjin Normal University,Tianjin 300387,P.R.China)

    Well-crystallized one-dimensional(1D)structural SnO2belts are synthesized using a simple water-assisted chemical vapor deposition method.To increase the yield of SnO2belts,small Sn particles with and without Au-modifications are used as source materials to grow different width SnO2belts. Dye-sensitized solar cells(DSSCs)fabricated using the composite(nanoparticle/nanobelt)SnO2thin films, are used to evaluate the electron transport properties of the SnO2belts.Pastes containing different ratios of nanoparticles and belts are used to prepare the composite film by the doctor-blade method.The DSSCs exhibit different photovoltaic performances which are dependent on the nanoparticle/nanobelt ratio and width of the SnO2belts in the thin film.The enhanced electron transport properties of the composite films containing the SnO2belts is evaluated using intensity modulated photocurrent spectroscopy(IMPS).1D SnO2belts with a particular belt width improve the photovoltaic performance by providing electron paths to accelerate electron transport in the composite nanocrystalline thin films.

    One-dimensional structural SnO2belt;Electron transport;Composite nanocrystalline thin film;Dye-sensitized solar cell;Photovoltaic performance

    10.3866/PKU.WHXB201205081

    O646

    ?Corresponding authors.ZHANG Jing-Bo,Email:jbzhang@iccas.ac.cn;Tel:+86-10-82615031.BAI Shou-Li,Email:baisl@mail.buct.edu.cn;

    Tel:+86-10-64434899.

    The project was supported by the National Natural Science Foundation of China(20873162,51102011)and Natural Science Foundation of Beijing, China(8102028,8112022).

    國(guó)家自然科學(xué)基金(20873162,51102011)和北京自然科學(xué)基金(8102028,8112022)資助項(xiàng)目

    猜你喜歡
    薄膜粒徑電池
    復(fù)合土工薄膜在防滲中的應(yīng)用
    電池很冤
    “一粒鹽電池”
    軍事文摘(2022年14期)2022-08-26 08:14:30
    把電池穿身上
    穿在身上的電池
    木屑粒徑對(duì)黑木耳栽培的影響試驗(yàn)*
    β-Ga2O3薄膜的生長(zhǎng)與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    基于近場(chǎng)散射的顆粒粒徑分布測(cè)量
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    CIGS薄膜太陽(yáng)電池柔性化
    舔av片在线| 国产日韩欧美在线精品| 久久久久免费精品人妻一区二区| 边亲边吃奶的免费视频| 久久精品久久久久久噜噜老黄| 色哟哟·www| 精品久久久精品久久久| 国产大屁股一区二区在线视频| 国产伦理片在线播放av一区| 人人妻人人澡欧美一区二区| 日韩av免费高清视频| 日韩成人av中文字幕在线观看| 乱系列少妇在线播放| 日本黄色片子视频| 美女内射精品一级片tv| 又粗又硬又长又爽又黄的视频| 欧美高清性xxxxhd video| 亚洲欧洲国产日韩| 亚洲在线观看片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 我要看日韩黄色一级片| 深夜a级毛片| 亚洲自拍偷在线| 亚洲怡红院男人天堂| 久久精品久久久久久噜噜老黄| 欧美xxⅹ黑人| 精品久久久久久久人妻蜜臀av| 在线免费十八禁| av免费观看日本| 国产免费又黄又爽又色| 国产av国产精品国产| 中国国产av一级| 久久久久久久久大av| 国产三级在线视频| 午夜福利高清视频| 成人亚洲精品一区在线观看 | 欧美激情国产日韩精品一区| 欧美潮喷喷水| 亚洲精品一区蜜桃| 久久亚洲国产成人精品v| ponron亚洲| xxx大片免费视频| 久久久久九九精品影院| videos熟女内射| 白带黄色成豆腐渣| 美女国产视频在线观看| 18禁裸乳无遮挡免费网站照片| 成年av动漫网址| 成人高潮视频无遮挡免费网站| 婷婷色麻豆天堂久久| 97在线视频观看| 成人性生交大片免费视频hd| 看黄色毛片网站| 欧美精品一区二区大全| 精品一区在线观看国产| 国产中年淑女户外野战色| 国产淫语在线视频| 日韩人妻高清精品专区| 激情五月婷婷亚洲| 在线 av 中文字幕| 91精品一卡2卡3卡4卡| 婷婷色麻豆天堂久久| xxx大片免费视频| 一级毛片久久久久久久久女| 一级片'在线观看视频| 欧美+日韩+精品| 99热这里只有是精品在线观看| 中国国产av一级| 国产精品一区二区在线观看99 | 三级毛片av免费| 日韩欧美三级三区| 亚洲欧美精品专区久久| 亚洲精品日韩在线中文字幕| 国产 亚洲一区二区三区 | 五月玫瑰六月丁香| 欧美zozozo另类| av国产久精品久网站免费入址| 男女视频在线观看网站免费| av在线播放精品| 少妇的逼好多水| 九九在线视频观看精品| 一级黄片播放器| 免费大片18禁| 国产精品福利在线免费观看| 成人二区视频| 久久99热这里只频精品6学生| 高清欧美精品videossex| 国产亚洲一区二区精品| 亚洲图色成人| 一级毛片aaaaaa免费看小| 久久久久国产网址| 看免费成人av毛片| 建设人人有责人人尽责人人享有的 | 一个人观看的视频www高清免费观看| 国产不卡一卡二| 男女啪啪激烈高潮av片| 精品国产三级普通话版| 欧美精品国产亚洲| 搡老乐熟女国产| 插阴视频在线观看视频| 午夜福利视频精品| 国精品久久久久久国模美| 亚洲精品国产成人久久av| 日韩人妻高清精品专区| 日韩成人伦理影院| 久热久热在线精品观看| 插阴视频在线观看视频| 久久人人爽人人片av| 国产在视频线在精品| 一个人看视频在线观看www免费| av网站免费在线观看视频 | 国产伦精品一区二区三区视频9| 国产成人a区在线观看| 一本久久精品| 国产 亚洲一区二区三区 | 99视频精品全部免费 在线| 内地一区二区视频在线| 国产黄片视频在线免费观看| 久久这里只有精品中国| 国内精品一区二区在线观看| 欧美成人午夜免费资源| 久久精品熟女亚洲av麻豆精品 | 日韩制服骚丝袜av| 日日干狠狠操夜夜爽| 五月天丁香电影| 建设人人有责人人尽责人人享有的 | 18禁在线无遮挡免费观看视频| 久久99蜜桃精品久久| 免费无遮挡裸体视频| 99热这里只有是精品50| 亚洲成人久久爱视频| 亚洲av免费高清在线观看| or卡值多少钱| 久久久久久伊人网av| 国内少妇人妻偷人精品xxx网站| 午夜福利成人在线免费观看| 国产黄片视频在线免费观看| 亚洲综合色惰| ponron亚洲| 免费看a级黄色片| 亚洲av免费在线观看| 午夜老司机福利剧场| 精品99又大又爽又粗少妇毛片| 内射极品少妇av片p| 精品一区二区三区人妻视频| 久久久久久九九精品二区国产| 精品人妻视频免费看| 日本与韩国留学比较| 黄片无遮挡物在线观看| 亚洲精品一二三| 免费黄频网站在线观看国产| 狂野欧美白嫩少妇大欣赏| 久久久色成人| 午夜精品国产一区二区电影 | 十八禁国产超污无遮挡网站| 最近最新中文字幕大全电影3| 晚上一个人看的免费电影| 三级毛片av免费| 国产av国产精品国产| 嫩草影院精品99| 色吧在线观看| 身体一侧抽搐| 国产白丝娇喘喷水9色精品| 日韩电影二区| 国产伦理片在线播放av一区| 22中文网久久字幕| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 久久久久久久久久久免费av| 日韩av在线免费看完整版不卡| 国产一区二区在线观看日韩| 亚洲av福利一区| 国产高清国产精品国产三级 | 亚洲久久久久久中文字幕| 2021少妇久久久久久久久久久| 在线观看免费高清a一片| 国产视频内射| 国产又色又爽无遮挡免| 欧美精品一区二区大全| 2018国产大陆天天弄谢| 精品久久久久久久末码| 男人爽女人下面视频在线观看| 大片免费播放器 马上看| 在线观看美女被高潮喷水网站| 色哟哟·www| 最新中文字幕久久久久| 22中文网久久字幕| 欧美日韩一区二区视频在线观看视频在线 | 啦啦啦中文免费视频观看日本| 99久国产av精品国产电影| 在线观看人妻少妇| 色网站视频免费| 2021天堂中文幕一二区在线观| 色哟哟·www| 最后的刺客免费高清国语| 天堂俺去俺来也www色官网 | 在线播放无遮挡| 伦理电影大哥的女人| 精品国内亚洲2022精品成人| 国产大屁股一区二区在线视频| 丝瓜视频免费看黄片| xxx大片免费视频| 国产不卡一卡二| 日本免费a在线| 日本黄色片子视频| 亚洲,欧美,日韩| 99视频精品全部免费 在线| 免费无遮挡裸体视频| 免费大片黄手机在线观看| 午夜视频国产福利| 久久精品国产鲁丝片午夜精品| 一级黄片播放器| 国产精品美女特级片免费视频播放器| 亚洲最大成人手机在线| 卡戴珊不雅视频在线播放| 日本爱情动作片www.在线观看| 久久精品夜色国产| 国产伦精品一区二区三区四那| 日韩人妻高清精品专区| 国产亚洲最大av| 久久久久精品性色| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 亚洲成人av在线免费| 精品一区二区三区人妻视频| 人体艺术视频欧美日本| 夫妻性生交免费视频一级片| av天堂中文字幕网| 国产伦一二天堂av在线观看| 精品不卡国产一区二区三区| 日韩欧美三级三区| 在线 av 中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲精品久久久久久婷婷小说| 噜噜噜噜噜久久久久久91| 男女视频在线观看网站免费| 69人妻影院| 欧美性猛交╳xxx乱大交人| 国国产精品蜜臀av免费| 男女国产视频网站| 97超视频在线观看视频| 亚洲自拍偷在线| 国产精品一及| 亚洲一级一片aⅴ在线观看| 久久这里只有精品中国| 国产在视频线精品| av专区在线播放| 汤姆久久久久久久影院中文字幕 | 久久精品久久久久久久性| 亚洲最大成人中文| 亚洲精品,欧美精品| 国产黄色小视频在线观看| 日韩一区二区三区影片| 天堂av国产一区二区熟女人妻| 欧美一级a爱片免费观看看| 国产乱人偷精品视频| 中文字幕人妻熟人妻熟丝袜美| 日日啪夜夜爽| 乱码一卡2卡4卡精品| 国产成人a区在线观看| 秋霞伦理黄片| 小蜜桃在线观看免费完整版高清| 午夜福利高清视频| 久久99热这里只有精品18| 超碰av人人做人人爽久久| 国产精品久久久久久久久免| 日产精品乱码卡一卡2卡三| 久久国内精品自在自线图片| 国产精品1区2区在线观看.| 亚洲av电影在线观看一区二区三区 | 99热这里只有是精品50| 在线观看一区二区三区| 国产精品久久久久久久久免| 国产精品无大码| 成人性生交大片免费视频hd| 国内精品美女久久久久久| 欧美成人a在线观看| 久久久久免费精品人妻一区二区| 男女边吃奶边做爰视频| 中文字幕久久专区| 一级毛片 在线播放| 欧美丝袜亚洲另类| av在线蜜桃| 一区二区三区免费毛片| 三级经典国产精品| 69av精品久久久久久| 亚洲欧美成人精品一区二区| 精品午夜福利在线看| 欧美成人午夜免费资源| 国产精品福利在线免费观看| 久久久久性生活片| 永久网站在线| 六月丁香七月| 国产黄片美女视频| 91久久精品国产一区二区成人| 18+在线观看网站| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频 | 99热全是精品| 亚洲精品自拍成人| 国产麻豆成人av免费视频| 天堂中文最新版在线下载 | 国内精品宾馆在线| 亚洲电影在线观看av| 日本av手机在线免费观看| 国产乱人偷精品视频| 美女脱内裤让男人舔精品视频| 久久久国产一区二区| 欧美成人一区二区免费高清观看| 亚洲精品一区蜜桃| 欧美区成人在线视频| 1000部很黄的大片| 六月丁香七月| 黄色配什么色好看| 日本爱情动作片www.在线观看| 免费看不卡的av| 九色成人免费人妻av| 十八禁国产超污无遮挡网站| 97超视频在线观看视频| 国产综合懂色| 国产精品久久久久久精品电影| 中文字幕亚洲精品专区| 国产不卡一卡二| 婷婷色av中文字幕| 国产一区二区三区av在线| 亚洲精品成人av观看孕妇| 中文天堂在线官网| 能在线免费观看的黄片| 在线观看av片永久免费下载| 久久久久精品性色| 国内少妇人妻偷人精品xxx网站| 亚洲最大成人手机在线| 天堂俺去俺来也www色官网 | 一区二区三区乱码不卡18| 亚洲色图av天堂| 嫩草影院精品99| av专区在线播放| 国产成年人精品一区二区| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 国产亚洲一区二区精品| 亚洲成人精品中文字幕电影| 婷婷色av中文字幕| 日本午夜av视频| 啦啦啦啦在线视频资源| 美女大奶头视频| 韩国高清视频一区二区三区| 日韩欧美精品v在线| 国产黄色视频一区二区在线观看| ponron亚洲| 在现免费观看毛片| 寂寞人妻少妇视频99o| 亚洲国产最新在线播放| 你懂的网址亚洲精品在线观看| videossex国产| 黄色日韩在线| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 一本久久精品| 国产成人精品久久久久久| 久久国内精品自在自线图片| 一级毛片黄色毛片免费观看视频| 亚洲四区av| 免费观看在线日韩| 成年人午夜在线观看视频 | 丝袜美腿在线中文| 欧美不卡视频在线免费观看| 深爱激情五月婷婷| 伦精品一区二区三区| 深爱激情五月婷婷| 日韩,欧美,国产一区二区三区| 搡老妇女老女人老熟妇| www.av在线官网国产| 女人十人毛片免费观看3o分钟| 天天一区二区日本电影三级| 91精品伊人久久大香线蕉| 三级经典国产精品| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 午夜老司机福利剧场| 人体艺术视频欧美日本| 亚洲av免费高清在线观看| 寂寞人妻少妇视频99o| 在现免费观看毛片| 天天躁夜夜躁狠狠久久av| 国产黄色视频一区二区在线观看| 国产av在哪里看| 99热这里只有是精品在线观看| 免费看a级黄色片| 建设人人有责人人尽责人人享有的 | 欧美日韩国产mv在线观看视频 | 久久99热这里只频精品6学生| 久久精品国产亚洲av涩爱| 日本午夜av视频| 特大巨黑吊av在线直播| 国产一区二区在线观看日韩| 色尼玛亚洲综合影院| 久久久久久久久大av| 最近最新中文字幕大全电影3| 亚州av有码| 精品一区二区三卡| 久久久精品94久久精品| 欧美人与善性xxx| 91在线精品国自产拍蜜月| 少妇高潮的动态图| 插阴视频在线观看视频| 永久免费av网站大全| 精品人妻熟女av久视频| 国产亚洲5aaaaa淫片| 亚洲一区高清亚洲精品| 少妇被粗大猛烈的视频| 日韩欧美国产在线观看| 2018国产大陆天天弄谢| 国产精品不卡视频一区二区| 国产高清有码在线观看视频| 在线a可以看的网站| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站| 国产中年淑女户外野战色| 只有这里有精品99| 欧美日韩亚洲高清精品| 免费av毛片视频| 久久久久久久亚洲中文字幕| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| 亚洲精品影视一区二区三区av| 精品国产露脸久久av麻豆 | 伦理电影大哥的女人| 一区二区三区免费毛片| 麻豆久久精品国产亚洲av| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 国产v大片淫在线免费观看| 日韩精品有码人妻一区| 久久久久久久亚洲中文字幕| 淫秽高清视频在线观看| 少妇熟女aⅴ在线视频| 美女内射精品一级片tv| 国产精品一区二区性色av| 午夜激情欧美在线| 婷婷色综合大香蕉| 中文在线观看免费www的网站| av又黄又爽大尺度在线免费看| 午夜免费观看性视频| 搡老乐熟女国产| 日本熟妇午夜| 亚洲va在线va天堂va国产| av在线蜜桃| 久久精品国产亚洲网站| 最新中文字幕久久久久| 亚洲在线观看片| a级毛片免费高清观看在线播放| 亚洲,欧美,日韩| 一个人观看的视频www高清免费观看| 国产熟女欧美一区二区| 51国产日韩欧美| 少妇人妻一区二区三区视频| 丝瓜视频免费看黄片| 极品少妇高潮喷水抽搐| av国产免费在线观看| 尤物成人国产欧美一区二区三区| 精品久久久久久久久av| 久久精品国产亚洲av涩爱| 18禁在线无遮挡免费观看视频| 永久网站在线| 午夜福利视频1000在线观看| 亚洲欧美一区二区三区黑人 | 久久久亚洲精品成人影院| 亚洲一区高清亚洲精品| 亚洲美女视频黄频| 国产日韩欧美在线精品| 欧美性感艳星| 久久久久久久久久久免费av| 亚洲精品日本国产第一区| 亚洲精品久久久久久婷婷小说| 女的被弄到高潮叫床怎么办| 免费电影在线观看免费观看| 波多野结衣巨乳人妻| 综合色丁香网| 国产熟女欧美一区二区| 韩国av在线不卡| 亚洲欧美日韩无卡精品| 国产 一区 欧美 日韩| 精品久久久久久久久av| 日韩,欧美,国产一区二区三区| 午夜福利在线观看吧| 日韩欧美 国产精品| 青春草国产在线视频| 热99在线观看视频| 亚洲在线观看片| 亚洲av电影在线观看一区二区三区 | 国产精品.久久久| 男插女下体视频免费在线播放| 亚洲精品视频女| 极品教师在线视频| 国产成年人精品一区二区| 久久久久久久久中文| 丝袜美腿在线中文| 日本黄大片高清| 美女高潮的动态| 又大又黄又爽视频免费| 免费人成在线观看视频色| or卡值多少钱| av天堂中文字幕网| 国产片特级美女逼逼视频| 亚洲自拍偷在线| 欧美高清性xxxxhd video| 又粗又硬又长又爽又黄的视频| 国产又色又爽无遮挡免| 好男人视频免费观看在线| 国产一级毛片七仙女欲春2| 秋霞在线观看毛片| 成人国产麻豆网| 久久久久久久亚洲中文字幕| 一级毛片久久久久久久久女| 国产精品1区2区在线观看.| 国产人妻一区二区三区在| 国产三级在线视频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品色激情综合| 日韩在线高清观看一区二区三区| 日日摸夜夜添夜夜爱| 成人毛片60女人毛片免费| 日韩一区二区三区影片| 日日撸夜夜添| 亚洲av中文字字幕乱码综合| 毛片一级片免费看久久久久| 身体一侧抽搐| 特大巨黑吊av在线直播| 美女黄网站色视频| 国产伦一二天堂av在线观看| 亚洲高清免费不卡视频| 亚洲av二区三区四区| 69av精品久久久久久| 九草在线视频观看| 我要看日韩黄色一级片| 赤兔流量卡办理| 久久久久久久久久黄片| 一级av片app| 国产真实伦视频高清在线观看| 蜜桃亚洲精品一区二区三区| 美女大奶头视频| 亚洲av电影不卡..在线观看| 日韩伦理黄色片| 内地一区二区视频在线| 久久这里只有精品中国| 99热这里只有精品一区| 国产精品av视频在线免费观看| 99久久人妻综合| 草草在线视频免费看| 亚洲av在线观看美女高潮| 国产伦精品一区二区三区视频9| 成年av动漫网址| 日本wwww免费看| 亚洲精品乱码久久久v下载方式| 久久精品久久久久久噜噜老黄| 中文字幕制服av| 亚洲美女视频黄频| 日本三级黄在线观看| 日韩制服骚丝袜av| 欧美高清成人免费视频www| 午夜老司机福利剧场| 2022亚洲国产成人精品| 尤物成人国产欧美一区二区三区| 亚洲av电影在线观看一区二区三区 | 99视频精品全部免费 在线| 人妻系列 视频| 色综合亚洲欧美另类图片| 日日摸夜夜添夜夜添av毛片| 性色avwww在线观看| 91aial.com中文字幕在线观看| 欧美一级a爱片免费观看看| 日本爱情动作片www.在线观看| 纵有疾风起免费观看全集完整版 | 日韩精品青青久久久久久| 又爽又黄a免费视频| 我要看日韩黄色一级片| 成年女人看的毛片在线观看| 亚洲精品中文字幕在线视频 | 内地一区二区视频在线| 久久精品综合一区二区三区| 国产老妇女一区| 韩国高清视频一区二区三区| 777米奇影视久久| 伦理电影大哥的女人| 欧美xxxx性猛交bbbb| 99久久中文字幕三级久久日本| 搞女人的毛片| 精品一区二区三区视频在线| 亚洲av成人精品一二三区| 午夜免费男女啪啪视频观看| 最近手机中文字幕大全| av国产免费在线观看| 可以在线观看毛片的网站| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡欧美一区二区| 午夜精品一区二区三区免费看| 国产av国产精品国产| 22中文网久久字幕| 久久久久久久久久久丰满| 一级毛片久久久久久久久女| 一区二区三区高清视频在线| 欧美高清性xxxxhd video| av在线天堂中文字幕| 永久网站在线| 欧美成人午夜免费资源| 久久久精品欧美日韩精品| 日本黄大片高清| 中文字幕免费在线视频6| 舔av片在线| 亚洲欧美精品自产自拍| 欧美高清性xxxxhd video| 欧美一区二区亚洲|