• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚乙烯唑啉作用下甲烷水合物分解的分子動(dòng)力學(xué)模擬

    2012-12-21 06:33:58王燕鴻陳玉娟郎雪梅樊栓獅
    物理化學(xué)學(xué)報(bào) 2012年7期
    關(guān)鍵詞:水合物聚乙烯甲烷

    王燕鴻 陳玉娟 包 玲 郎雪梅 樊栓獅

    (華南理工大學(xué)化學(xué)與化工學(xué)院,傳熱強(qiáng)化與過程節(jié)能教育部重點(diǎn)實(shí)驗(yàn)室,廣州510640)

    聚乙烯唑啉作用下甲烷水合物分解的分子動(dòng)力學(xué)模擬

    王燕鴻 陳玉娟 包 玲 郎雪梅 樊栓獅*

    (華南理工大學(xué)化學(xué)與化工學(xué)院,傳熱強(qiáng)化與過程節(jié)能教育部重點(diǎn)實(shí)驗(yàn)室,廣州510640)

    利用分子動(dòng)力學(xué)模擬系統(tǒng)研究了不同質(zhì)量濃度下(1.25%、2.50%、6.06%)聚乙烯唑啉(PEtO)對(duì)甲烷水合物的分解作用.模擬體系為甲烷水合物2×2×2的超胞和聚合物對(duì)接體系.模擬發(fā)現(xiàn)水分子間氫鍵構(gòu)架的水合物籠型結(jié)構(gòu)在PEtO的作用下出現(xiàn)扭曲,最終導(dǎo)致水合物籠型結(jié)構(gòu)完全坍塌.通過氧原子徑向分布函數(shù)、均方位移以及擴(kuò)散系數(shù)比較不同濃度PEtO的作用,證實(shí)在一定濃度范圍內(nèi),PEtO的濃度越高,其水合物分解作用越強(qiáng).此外,PEtO具有一定的可生物降解性.PEtO對(duì)水合物的作用為:PEtO吸附在水合物表面,其中的酰胺基(N―C=O)與成籠的水分子形成氫鍵,破壞鄰近的籠形結(jié)構(gòu),令水合物分解;PEtO不斷分解表面的水合物,直到水合物籠完全分解.

    甲烷水合物;聚乙烯唑啉;分子動(dòng)力學(xué)模擬;水合物抑制劑

    1 Introduction

    Gas clathrate hydrates are crystalline inclusion compounds which are composed of gas and water.1Water molecules form a lattice structure with cavities through hydrogen bonds by van der Waals type dispersion force.The cavities are occupied by gas molecules,such as methane,ethane,propane etc.at high-pressure and low-temperature.2

    Since discovered by Hammerschmidt in 1934,3gas hydrate has attracted much attention as a major potential threat in oil and gas transportation.Kinds of methods have been attempted to prevent hydrate blockages.The most available way is to use thermal hydrate inhibitors,such as methanol,glycol,etc.Thermal hydrate inhibitors prevent hydrate form by shifting the hydrate phase boundary to lower temperature and higher pressure.However,high concentrations(up to 60%(w,mass fraction))of inhibitor required for certain field cases lead to high cost and environmental pollution.Kinetic hydrate inhibitors (KHIs),acting effectively at low concentration,had aroused much attention.

    Currently available KHIs work at a subcooling of 13°C, which still does not satisfy many applications of the oil and gas industry.Developing new KHIs to act at higher subcooling or lower concentration is a great interest.How inhibitors act and affect the formation and growth of hydrate is crucial for the designing of new inhibitors,whereas it is still poorly known. Many researchers have carried out relevant study,employing molecular dynamics(MD)simulation on mechanism of hydrate inhibitor.

    Rodger?sgroup4studied the inhibition mechanism of poly(N-vinyl pyrrolidone)(PVP)to{111}face of type II clathrate hydrate by MD in 1996,and they found that the monomeric unit was adsorbed onto the surface and the adsorption site was determined by the location of the pendant hydrogen.In 1999,they5continued to investigate the structural behavior of PVP monomer and liquid water.Synergistic solvation effects arising from the conjunction of hydrophobic solvation(around the methyl group)and hydrophilic solvation(around the amide oxygen)might play an important role in the structuring effect of the pyrrolidone ring on surrounding water.In 2004,they6designed a new kind of KHI-tributylammoniumpropylsulfonate (TBAPS)and used MD to study its performance.TBAPS,with sulfonate-induced structure to propagate strongly over several solvation shells,had an activity comparable with PVP.In 2006,they7worked on poly(dimethylaminoethylmethacrylate) (PDMAEMA)to determine the effect of polydispersity in a real polymeric inhibitor.They8carried out the MD simulation the next year to study the inhibition mechanism of PVP and PDMAEMA of the nucleation process for methane hydrate and put forward the mechanism of surface energy which was very different from previous surface adsorption and structuring effect mechanism.The following year they investigated PMAEMA?s inhibition performance to water/methane system at different temperatures to demonstrate the impact of temperature.9

    Kvamme?s groupdid MD simulations of PVP kinetic inhibitor in liquid water and hydrate/liquid water systems in 1997. In 2005,they11researched poly(N-vinyl caprolactam(PVCap) and confirmed PVCap outperformed PVP as a kinetic hydrate inhibitor using MD.In 2010,they12carried out a study to determine the relation of the inhibition characteristic of PVP and PVCap polymers with molecular weight,and supposed that there would exist an inhibitor layer to hinder the diffusion of hydrate formers.

    Wan et al.13studied methane hydrate dissociation process in the presence of thermodynamic inhibitor—ethylene glycol by MD simulation.Results indicated that hydrate dissociation started from the surface layer of the solid hydrate and then gradually expanded to the internal layer.

    Balbuena et al.14studied the behavior and activity of PVP, PVCap etc.in clathrate-methane-water system and found that the hydrophobic inhibitors might block the surface of the nascent crystals,whereas the hydrophilic ones disrupting the water structure mainly happened at initial stages of clathrate formation.

    Anderson?s group15,16considered that the inhibition mechanism of KHI can be stated as the following 2 steps:(1)inhibitor molecules disrupt the local organization of the water and guest molecules,increasing the barrier to nucleation and nuclei propagation;(2)once nucleation occurs,the inhibitor binds to the surface of hydrate nanocrystal and retards growth along the bound growth plane.

    Rodger?s simulation results8showed that PVP induced dissolution of small hydrate clusters without any direct contact between the additive and the hydrate surface.They supposed that PVP increased the interfacial surface energy without adsorbing onto hydrate surface,thus disputing step(2)of Anderson?s hypothesis.Kvamme?s group12agreed in general with step(1)of Anderson hypothsis,while assumed that PVP and similar low dosage hydrate inhibitor(LDHI)would form a layer between the water and the gas phase and affect the diffusion of hydrate former.

    KHIs have been in commercial and used in oil and gas industry for about 18 years.Among these commercial KHIs,most of them contain amide groups.Exxon Company17deduced that a key structure in many KHI polymers was an amide group attached to a hydrophobic group in repeating unit.Though a number of experiments have tested that polymer had good kinetic inhibition,there were few direct facts to prove that aminogroup played a main role in KHI inhibitors.Present work is focused on the amino-group to investigate the CH4hydrate decomposing process in the presence of amide groups by dynamics simulation.

    Poly(2-ethyl-2-oxazoline)(PEtO)is a nontoxic,biodegradability polymer.Karaaslan and Parlaktuna18have already tested PEtO at 1%concentration and find that it can inhibit CH4hydrate formation at high pressures and low temperatures.Without the regular ring structure of KHIs,PEtO has simple struc-ture,only containing amide groups in repeating unit.To avoid the effect of ring structure,we chose PEtO as KHI and investigated the inhibition effect of amide group in this work by dynamics simulation.

    2 Simulation method

    2.1 Model details

    CH4hydrate unit cell is a crystal with a lattice parameter of 1.189 nm belonging to the cubic space group Pm3n.There are 46 water molecules and 8 CH4molecules in type I CH4hydrate unit cell at 100%occupancy.The simulation layer system consisted of a CH4hydrate with 2×2×2 supercell crystal and kinetic inhibitor PEtO at different concentrations.

    Oxygen positions were set according to X-ray diffraction experiments.19-21Hydrogen atoms were placed in a manner consistent with the 2-fold crystallographic texture,following the Bernal-Fowler rule.Water molecules were modeled using the SPC potential(partial point charge of O and H atom:-0.82e, 0.41e,respectively)and methane with united atom potentials. Lennard-Jones interactions were used between O atoms to account for short-range repulsion and long-range dispersion interactions between water molecules.Potential parameters of CH4hydrate were given an accurate description in Rodger?s previous studies.4-6The PEtO was modeled using an all-atom CHARMm force filed.An orthorhombic supercell hydrate was constructed based on type I hydrate unit cell.There were 368 water molecules and 64 CH4gas molecules in the hydrate system with a cell parameters of 2.378 nm×2.378 nm×2.378 nm (x×y×z)(see Fig.1).The most potential chemical structures as inhibitors often possess active groups for attaching themselves to the hydrate surface including the double-bond oxygen,the hydroxyl groups,and the nitrogen.22Fig.2 shows the PEtO unit structure,which contains double-bond oxygen and nitrogen. PEtO at concentrations of 1.25%,2.50%,6.06%with molecule numbers of 1,2,5,respectively were added to study the decomposition effect to CH4hydrate.All atomic positions were allowed to freely fluctuate during the simulation.

    2.2 Simulation details

    Fig.1 A2×2×2 super cell of structure I CH4hydrateball-stick for H2O molecules;stick for CH4molecules;dashed lines for the hydrogen bonding network between H2O molecules

    Fig.2 Structure of poly(2-ethyl-2-oxazoline)(PEtO)

    The molecular dynamics simulations were performed based on Materials Studio.23When the CH4hydrate-PEtO system was built,optimization was carried out using the steepest descent and conjugate gradient method.19The final configuration of layer system was acquired after geometry and energy optimization.MD simulation calculations were conducted using NVT ensemble.Periodic boundary conditions were applied.Consistent valence force field(CVFF)was employed to conduct the mutual forces between CH4gas molecules.Long-range Coulomb forces were treated by Ewald.24The water parameters were as follows:O―H bond length was 0.096 nm,H―O―H bond angle was 104.520°.Temperature of systems was kept at 273.15 K by Nose-Hoover thermostat.25The time step was set as 1 fs and total simulation time was 3000 ps.

    3 Results and discussion

    After the CH4hydrate-PEtO layer system was conducted in NVT ensemble,the trajectory of system and final conformation were available.Several methods have been employed to investigate the influence of inhibitors interacted with the CH4hydrate.Great attention has been paid to structural effect of PEtO on hydrate including the radial distribution functions(RDFs), and configurations of layer system.Results on dynamics effect like mean square displacement of oxygen atoms,diffusion coefficient of water molecules were also investigated.

    3.1 Snapshots of the layer system configurations

    Snapshots of configurations of the dynamics simulation layer system at different PEtO concentrations at 273.15 K are presented in Fig.3-Fig.7.Fig.3 shows that all layer structures are of perfect CH4hydrate,informed by the neat hydrogen bond network between H2O molecules without distortions at the initial time.As shown in Fig.4,an obvious distortion of the hydrogen bond in hydrate cages appears after 1 ps.Some CH4molecules have escaped from the original cages and aggregated together,demonstrating that the decomposition of hydrate has started at the interface,which is considered as the best mass transmission and heat transfer place.The surface of hydrate crystal is distorted and CH4molecules escape from the cages at edge.Nevertheless,cages in the bulk of hydrate crystal are still not affected by inhibitor polymer.

    The change process of hydrate from 50 to 100 ps are presented Fig.5 and Fig.6,showing that hydrate cages is out of shape in the presence of PEtO.The ellipsoid parts are given in detail to show how PEtO interacts with water molecules.Dissolved at the interface,PEtO gets close and permeates into the hydrate crystal which benefits mass transmission.It is observed that the double-bonded oxygen atoms of polymer combine with hy-drogen atoms and form hydrogen bonds shown in Fig.5 and the detailed figures,both at concentrations of 2.50%and 6.06%. Hydrogen bonds between water molecules have been disrupted by“foreign hydrogen”,which conforms to previous studies,26,27Double-bonded oxygen is likely to form hydrogen bonds with hydrogen atoms at appropriate conditions and may form more than one hydrogen bond.Once the original hydrogen bonds are disrupted or displaced,the hydrate cage turns to be imperfect with the trapped CH4coming out,i.e.,a decomposition of the touched hydrate cages.As simulation going on,by the time of 100 ps(Fig.6),PEtO penetrates into the bulk and double-bonded oxygen of group N―C=O combines with hydrogen atoms of water molecules to form hydrogen bonds and distort hydrogen bond in hydrate cages.The hydrophilic groups produce steric hindrance preventing the decomposing water molecules from regenerating hydrogen bonds with each other,inhibiting the growth of hydrate.

    Fig.3 Initial configurations of CH4hydrate crystal-PEtO layer systemswPEtO/%:(a)1.25,(b)2.50,(c)6.06;the big ball-stick for PEtO molecule with a darker color to sign oxygen atoms;the small ball-stick for H2O molecules; stick for CH4molecules;dashed lines for the hydrogen bonding network between H2O molecules

    Fig.4 Snapshot configurations of CH4hydrate crystal-PEtO layer systems at 1 pswPEtO/%:(a)1.25,(b)2.50,(c)6.06

    Fig.7 presents final configurations of CH4hydrate-PEtO layer systems(3000 ps)with three concentrations.Evident collapse of the hydrogen bonding network in CH4hydrate can be observed.Inhibitor polymer has pierced the layer system.Hydrogen bonds and cages in original perfect crystal are in a complete chaos status.Almost all CH4molecules have run away from the initial positions and aggregate together at the interface,but do not disperse in liquid water because CH4is slightly soluble in water.The final configurations of CH4hydrate crystal-PEtO layer systems with three concentrations are completely collapsed and have few differences.

    3.2 Radial distribution function of oxygen atoms

    Radial distribution function gαβ(r)is an important parameter to identify the degree order of solid or liquid structures,like the ratio of the area density to the average density.RDF shows the probability of finding the same kinds of atoms from central atom,whose expression is

    where Nαis total amount of α particles;Nβis total amount of β particles;Vsis the volume of the system;niβ(r)is amount of β

    particles in the area of r to(r+Δr).

    Fig.5 Snapshot configurations of CH4hydrate crystal-PEtO layer systems at 50 pswPEtO/%:(a)1.25,(b)2.50,(c)6.06.The below are detailed figures of ellipsoid parts to show how oxygen atoms of PEtO interact with water molecules.

    Fig.6 Snapshot configurations of CH4hydrate crystal-PEtO layer systems at 100 pswPEtO/%:(a)1.25,(b)2.50,(c)6.06.The below are detailed figures of ellipse parts to show how oxygen atoms of PEtO interact with water molecules.

    There are two typical peaks at distances of 0.27 and 0.44 nm in RDFs for hydrate crystals,while the second characteristic peak disappears in liquid water.RDFs of oxygen atoms of water in three different CH4hydrate systems at 273.15 K are presented in Fig.8.Such figures display that the RDFs of oxygen atoms gOO(r)fluctuate within simulation time,showing great differences between the inhibited and uninhibited(0 ps)hydrates.As presented in Fig.8(a),gOO(r)of the first peak(0.27 nm)in gOO(r)of water molecules is 24.15,gOO(r)of the second peak(0.44 nm)is 5.03 at the beginning of dynamics simulation,indicating the initial structure is perfect hydrate crystal. The first peak decreases from 24.15 to 5.56,and the second peak also reveals a significant declining trend after 1 ps.At 50 ps,the peaks height decreases continuously.The profiles vary more violently and the second peak almost disappears at 100 ps.The gOO(r)at 100 and 3000 ps are nearly of the same,peak at 0.44 nm gone.RDF characteristic peak height decreases because“foreign molecules”(PEtO)interact with water molecules in CH4hydrate,changing the network structure with hydrogen between water molecules in hydrate.With the impact of PEtO at concentration of 1.25%,perfect CH4hydrate system becomes a disorder.Furthermore,the peaks decline faster and in a larger scale,CH4hydrate is in a more disorder state.RDFs of O atoms at 2.50%and 6.06%PEtO(Fig.8(b)and Fig.8(c)) show the same trends as that of 1.25%.When the simulation goes on for 50 ps,the first and the second peaks have fallen to a large extend,especially for the 6.06%PEtO.At the time of 100 ps,the two basic characteristic peaks of hydrate almost vanish completely,demonstrating that solid water has already changed to liquid water.PEtO shows the ability in decomposing CH4hydrate.

    Fig.7 Snapshots of final configurations(at 3000 ps)of CH4hydrate crystal-PEtO layer systemswPEtO/%:(a)1.25,(b)2.50,(c)6.06

    Fig.8 Radial distribution functions of oxygen atoms of CH4hydrate at different simulation time with PEtO concentrations of 1.25%(a),2.5%(b),and 6.06%(c)

    3.3 Mean square displacement(MSD)of oxygen

    atoms

    Mean square displacement is a measure of the average distance of a molecule travels.MSD is on the behalf of movements away from equilibrium position of atoms within the whole simulation process due to inter-molecule forces,indicating the intensity between molecules.The expression of MSD defines as follows:

    where R(t)represents the mean square displacement of the atoms during the simulation time;Ri(t0)is atom i position at the time of t0;N is the amount of the total atoms.

    Fig.9 MSD of oxygen atoms in CH4hydrate with PEtO

    MSD can be used to identify whether the simulation system is in solid or in fluid.As for a perfect crystal,the constituent molecules vibrate around their lattice sites.Regarding to solid hydrate crystal,all water molecules are in a relatively fixed lattice point,and can not deviate far away from the lattice point, and MSD variation curve with time is a line parallel to X axis. As for liquid water,water molecules are in disorder.The MSD variation curve with time will increase with time going on.

    The MSD curves of oxygen atoms of CH4hydrate in the presence of three PEtO concentrations(1.25%,2.50%,6.06%) are shown in Fig.9.The MSD of oxygen atoms increases greatly with time at three concentrations and declares that PEtO has a good effect on decomposing CH4hydrate.Besides, it is observed that the MSD of oxygen atoms at a concentration of 1.25%is smaller than those of 2.50%and 6.06%.With PEtO concentration increasing,its inhibition effect gets stronger.But when PEtO concentrations exceed 2.50%,inhibition effect increases little.The inhibition effect of 6.06%PEtO is closed to that of 2.50%PEtO.In conjunction with previous studies,28it is conformed that PEtO is a low dosage hydrate inhibitor,which can be as active as PVP even at 1%.

    3.4 Diffusion coefficient of water molecules

    Based on statistics,the diffusion coefficient(D)of dynamics simulation system can be defined as follows:

    The diffusion coefficient is closely related to mean square displacement.If a straight line is fitted for the mean square displacement curve as:y=ax+b,the diffusion coefficient is deduced as D=a/6.The diffusion coefficient of water molecules is calculated based on the above-mentioned formula.

    Chemical reaction is an interaction between different molecules with mass and heat transfer.The higher diffusion coefficient of water molecules means higher heat and mass transmission.Decomposition of CH4hydrate is an endothermic process. It is helpful to deliver or absorb heat for the CH4hydrate system decomposition.Higher diffusion coefficient makes hydrate inhibitor contact sufficiently with CH4hydrate easier and faster,and results in a good decomposing effect on CH4hydrate.

    The diffusion coefficient of water molecules in CH4hydrate with PEtO concentration at 1.25%is 1.34×10-9m2·s-1.Compared to 1.34×10-9m2·s-1,the values of concentrations at 2.50%(1.50×10-9m2·s-1)and 6.06%(1.52×10-9m2·s-1)have increased by 11.9%and 13.4%,respectively.Thus,it suggests that the decomposing effect of 2.50%PEtO is similar to that of 6.06%PEtO,and both greater than that of 1.25%.

    The decomposing effect of PEtO on CH4hydrate is derived from chemical structure and functional group.PEtO contains a hydrophilic functional group N―C=O as exists in many KHIs,and the lone electron pair of O atom attracts H atom in water molecule to form hydrate bond.Once PEtO binds to the surface of hydrate,O atom in N―C=O group is likely to combine with H atom of water molecule and forms hydrogen bond, which disrupts the previous hydrogen bonds and destroys the hydrate crystal cages.

    As can be seen clearly in Fig.3-Fig.7,PEtO polymer absorbs onto the surface of hydrate crystal,the double-bonded O atoms have formed hydrogen bonds with more than one hydrate hydrogen at the same time.On the other hand,there are two side chain ethyls in PEtO,which make the active centers of hydrate crystal segregated and result in steric hindrance to prevent water molecules from contacting with water molecules and makes the cage hard to grow.The active group(N―C=O)adsorbs onto crystal surface forming hydrogen bonds with water molecule.It is likely to display good activity of inhibition.The interactions between hydrate and inhibitor destroy the former perfect neat cages.

    4 Conclusions

    The decomposing effect of poly(2-ethyl-2-oxazoline)on CH4hydrate was studied by molecular dynamics simulations. The simulation results(RDFs and MSD of O atoms,diffusion coefficient of water molecule)show that PEtO is a good low dosage hydrate inhibitor,which is as active as PVP even at 1%. Within a certain concentration,higher concentration gives rise to better inhibition effect.The polymer binds onto the surface of the CH4hydrate crystal,and starts to interact with water molecules at the interface.The double-bonded oxygen of the active functional group N―C=O combines with H atoms in hydrate and forms hydrogen bonds,resulting in distortion or imperfectness of hydrate cages and the release of trapped CH4molecules.PEtO has two side chain ethyls,which produce steric hindrance.Steric hindrance prevents the decomposing water molecules from regenerating hydrogen bonds with each other. The hydrogen bond displacement by N―C=O group and hydrate cage distortion promote the decomposition of hydrate and the steric hindrance of PEtO makes hydrate hard to grow.

    (1) Sum,A.K.;Koh,C.A.;Sloan,E.D.Industrial&Engineering Chemistry Research 2009,48,7457.doi:10.1021/ie900679m

    (2) Long,J.P.;Sloan,E.D.Int.J.Thermophys.1996,17,1.doi: 10.1007/BF01448204

    (3) Hammerschmidt,E.G.Industrial&Engineering Chemistry 1934,26,851.

    (4) Rodger,P.M.;Forester,T.R.;Smith,W.Fluid Phase Equilib. 1996,116,326.doi:10.1016/0378-3812(95)02903-6

    (5) Carver,T.J.;Drew,M.G.B.;Rodger,P.M.Phys.Chem.Chem. Phys.1999,1,1807.

    (6) Storr,M.T.;Taylor,P.C.;Monfort,J.P.;Rodger,P.M.J.Am. Chem.Soc.2004,126,1569.doi:10.1021/ja035243g

    (7) Hawtin,R.W.;Rodger,P.M.J.Mater.Chem.2006,16,1934. doi:10.1039/b600285b

    (8) Moon,C.;Hawtin,R.W.;Rodger,P.M.Faraday Discuss.2007, 136,367.doi:10.1039/b618194p

    (9) Zhang,J.;Hawtin,R.W.;Yang,Y.;Nakagava,E.;Rivero,M.; Choi,S.K.;Rodger,P.M.J.Phys.Chem.B 2008,112,10608. doi:10.1021/jp076904p

    (10) Kvamme,B.;Huseby,G.;Forrisdahl,O.K.Mol.Phys.1997, 90,979.

    (11) Kvamme,B.;Kuznetsova,T.;Aasoldsen,K.J.Mol.Graph. Model.2005,23,13.

    (12) Kuznetsova,T.;Sapronova,A.;Kvamme,B.;Johannsen,K.; Haug,J.Macromol.Symp.2010,287,168.doi:10.1002/ masy.201050124

    (13) Wan,L.H.;Yan,K.F.;Li,X.S.;Fan,S.S.Acta Phys.-Chim. Sin.2009,25,486.[萬(wàn)麗華,顏克鳳,李小森,樊栓獅.物理化學(xué)學(xué)報(bào),2009,25,486.]doi:10.3866/PKU.WHXB20090315

    (14) Balbuena,D.A.G.;Balbuena,P.B.J.Phys.Chem.C 2007,111, 15554.doi:10.1021/jp071959c

    (15) Anderson,B.J.;Radhakrishnan,R.;Tester,J.W.;Trout,B.L. Abstr.Am.Chem.Soc.2005,229,U593.

    (16) Zhang,M.;Anderson,B.J.;Warzinski,R.P.;Holder,G.D. Molecular Dynamics Simulation of Hydrate Lattice Distortion. Prepr.Pap.Am.Chem.Soc.,Div.Fuel Chem.,Salt Lake City, 2009;p 237.

    (17) Colle,K.S.;Oelfke,R.H.;Kelland,M.A.Polymer contg. amide unit|used for inhibiting formation of gas hydrate(s)in e.g. oil or gas pipeline;GB Patent 2301824-A,1996-12-18.

    (18) Karaaslan,U.;Parlaktuna,M.Energy&Fuels 2002,16,1387. doi:10.1021/ef0200222

    (19) Geng,C.Y.;Wen,H.;Zhou,H.J.Phys.Chem.A 2009,113, 5463.doi:10.1021/jp811474m

    (20) Kirchner,M.T.;Boese,R.;Billups,W.E.;Norman,L.R.J.Am. Chem.Soc.2004,126,9407.doi:10.1021/ja049247c

    (21) McMullan,R.K.;Jeffrey,G.A.J.Chem.Phys.1965,42,2725. doi:10.1063/1.1703228

    (22) Berendsen,H.J.C.;Grigera,J.R.;Straatsma,T.P.J.Phys. Chem.1987,91,6269.doi:10.1021/j100308a038

    (23) Materials Studio,Version 4.4;Accelrys Software Inc:San Diego,2008.

    (24) Tse,J.S.;Klein,M.L.;McDonald,I.R.J.Phys.Chem.1983, 87,4198.doi:10.1021/j100244a044

    (25) Moon,C.;Taylor,P.C.;Rodger,P.M.J.Am.Chem.Soc.2003, 125,4706.doi:10.1021/ja028537v

    (26) Kelland,M.A.J.Appl.Polym.Sci.2011,121,2282.doi: 10.1002/app.33942

    (27)Ajiro,H.;Takemoto,Y.;Akashi,M.;Chua,P.C.;Kelland,M.A. Energy&Fuels 2010,24,6400.doi:10.1021/ef101107r

    (28) Chen,Y.J.;Wang,Y.H.;Fan,S.S.;Lang,X.M.Acta Chimica Sinica 2010,68,2253. [陳玉娟,王燕鴻,樊栓獅,郎雪梅.化學(xué)學(xué)報(bào),2010,68,2253.]

    December 7,2011;Revised:April 10,2012;Published on Web:April 10,2012.

    Molecular Dynamics Simulation of CH4Hydrate Decomposition in the Presence of Poly(2-ethyl-2-oxazoline)

    WANG Yan-Hong CHEN Yu-Juan BAO Ling LANG Xue-Mei FAN Shuan-Shi*
    (Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education,School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,P.R.China)

    Molecular dynamics simulations were carried out to study the decomposition of CH4hydrate in the presence of poly(2-ethyl-2-oxazoline)(PEtO)at different concentrations,including 1.25%,2.50%,and 6.06%(w,mass fraction).The simulation system was composed of a CH4hydrate crystal and PEtO,which contained a 2×2×2 supercell of CH4hydrate crystal and PEtO polymer.System configurations showed that hydrogen bonding networks between water molecules making up the main framework of the hydrate cages were distorted in the presence of the PEtO polymer.Final configurations in all of the systems were completely collapsed.Radial distribution functions of the oxygen atoms,mean square displacements,and diffusion coefficients of water molecules were applied to compare the effect of different PEtO concentrations on the CH4hydrate.Within a certain concentration range,higher concentrations led to a better inhibition effect.It was confirmed that PEtO is a type of prospective low dosage inhibitor with biodegradability.The decomposition mechanism involves the absorption of the PEtO polymer onto the surface of the hydrate crystal,with its active functional group(N―C=O)forming hydrogen bonds with water molecules in the hydrate and decomposing the hydrate surface.PEtO continued to decompose the surface layer of hydrate,resulting ultimately in the collapse of the hydrate cages.

    CH4hydrate;Poly(2-ethyl-2-oxazoline);Molecular dynamics simulation; Hydrate inhibitor

    10.3866/PKU.WHXB201204113

    ?Corresponding author.Email:ssfan@scut.edu.cn;Tel:+86-20-22236581.

    The project was supported by the National Natural Science Foundation of China(51106054),Colleges and Universities High-level Talents Program of Guangdong Province,China,and National Key Basic Research Program of China(973)(2009CB219504-03).

    國(guó)家自然科學(xué)基金(51106054),廣東省高層次人才項(xiàng)目和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973)(2009CB219504-03)資助?Editorial office ofActa Physico?Chimica Sinica

    O641

    猜你喜歡
    水合物聚乙烯甲烷
    氣井用水合物自生熱解堵劑解堵效果數(shù)值模擬
    液氧甲烷發(fā)動(dòng)機(jī)
    論煤炭運(yùn)輸之甲烷爆炸
    水上消防(2020年1期)2020-07-24 09:26:02
    熱水吞吐開采水合物藏?cái)?shù)值模擬研究
    Gas from human waste
    后吸收法交聯(lián)聚乙烯制備及存儲(chǔ)性研究
    電線電纜(2018年2期)2018-05-19 02:03:43
    天然氣水合物保壓轉(zhuǎn)移的壓力特性
    我國(guó)海域天然氣水合物試采成功
    廢棄交聯(lián)聚乙烯回收利用研究進(jìn)展
    ◆ 塑料管
    波多野结衣av一区二区av| 亚洲成国产人片在线观看| av.在线天堂| 久久久久精品人妻al黑| 人人妻人人爽人人添夜夜欢视频| 久久久精品免费免费高清| 成年av动漫网址| 亚洲精品中文字幕在线视频| 亚洲国产精品成人久久小说| 一边摸一边抽搐一进一出视频| 亚洲欧美一区二区三区国产| 少妇人妻精品综合一区二区| 一二三四中文在线观看免费高清| 国精品久久久久久国模美| 嫩草影院入口| 好男人视频免费观看在线| 少妇猛男粗大的猛烈进出视频| 国产成人a∨麻豆精品| 校园人妻丝袜中文字幕| 国产av国产精品国产| 日本av手机在线免费观看| 久久午夜综合久久蜜桃| 国产精品免费大片| 久久午夜综合久久蜜桃| 黄色毛片三级朝国网站| 日日爽夜夜爽网站| 亚洲欧美一区二区三区久久| 国产精品久久久久成人av| 不卡av一区二区三区| 99久国产av精品国产电影| 777久久人妻少妇嫩草av网站| 建设人人有责人人尽责人人享有的| 美女视频免费永久观看网站| 成人国产麻豆网| 美女大奶头黄色视频| 久久久亚洲精品成人影院| 婷婷色麻豆天堂久久| 一级片免费观看大全| 狠狠婷婷综合久久久久久88av| av.在线天堂| 久久国产精品大桥未久av| 色94色欧美一区二区| 十八禁网站网址无遮挡| 女性生殖器流出的白浆| 午夜福利免费观看在线| 亚洲中文av在线| 亚洲成色77777| 高清av免费在线| 久久99精品国语久久久| 免费观看a级毛片全部| 精品国产一区二区久久| 免费高清在线观看视频在线观看| 国产黄频视频在线观看| 少妇被粗大猛烈的视频| 极品人妻少妇av视频| 色吧在线观看| 精品久久蜜臀av无| 国产亚洲欧美精品永久| 91老司机精品| 在线观看免费高清a一片| 大片免费播放器 马上看| 日韩av在线免费看完整版不卡| 制服丝袜香蕉在线| 一级毛片黄色毛片免费观看视频| 精品免费久久久久久久清纯 | 一区在线观看完整版| 香蕉国产在线看| 亚洲国产av影院在线观看| √禁漫天堂资源中文www| 黄片播放在线免费| 色视频在线一区二区三区| 久久精品国产综合久久久| 欧美日韩国产mv在线观看视频| 老司机亚洲免费影院| 久久久久久免费高清国产稀缺| 亚洲av在线观看美女高潮| 亚洲,欧美,日韩| 国产成人精品久久二区二区91 | 久久影院123| 美女福利国产在线| www日本在线高清视频| 激情视频va一区二区三区| av在线老鸭窝| 亚洲久久久国产精品| 欧美人与善性xxx| 十八禁网站网址无遮挡| 丝袜美腿诱惑在线| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄| 欧美中文综合在线视频| 黄色怎么调成土黄色| 一区二区三区四区激情视频| 精品一区二区三区av网在线观看 | 欧美xxⅹ黑人| 肉色欧美久久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 日韩精品有码人妻一区| 成人国产av品久久久| 色吧在线观看| 黄色怎么调成土黄色| 曰老女人黄片| 亚洲精品在线美女| 亚洲成人免费av在线播放| 蜜桃在线观看..| 久久鲁丝午夜福利片| 欧美最新免费一区二区三区| 久久性视频一级片| 国产成人91sexporn| 久久午夜综合久久蜜桃| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 熟妇人妻不卡中文字幕| 国产精品国产av在线观看| 亚洲成人av在线免费| 最黄视频免费看| 欧美国产精品一级二级三级| 亚洲欧美一区二区三区久久| 性色av一级| 丝袜在线中文字幕| av线在线观看网站| tube8黄色片| 亚洲久久久国产精品| 人体艺术视频欧美日本| 免费观看a级毛片全部| 国产激情久久老熟女| 欧美精品av麻豆av| 午夜日韩欧美国产| 如何舔出高潮| 美女午夜性视频免费| 免费看不卡的av| 香蕉丝袜av| 亚洲天堂av无毛| 久久久久人妻精品一区果冻| 女人爽到高潮嗷嗷叫在线视频| 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 中文字幕人妻丝袜一区二区 | 久久久久久久精品精品| 国产精品一区二区精品视频观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品第二区| 五月开心婷婷网| 尾随美女入室| 精品福利永久在线观看| 亚洲欧美激情在线| 国语对白做爰xxxⅹ性视频网站| netflix在线观看网站| 激情视频va一区二区三区| 久久婷婷青草| 国产有黄有色有爽视频| 日本av免费视频播放| 国产男女内射视频| 亚洲成人手机| 999精品在线视频| 亚洲第一av免费看| 亚洲欧美色中文字幕在线| 亚洲成av片中文字幕在线观看| 成人毛片60女人毛片免费| 在线观看免费午夜福利视频| 美女扒开内裤让男人捅视频| 国产精品 欧美亚洲| 国产在视频线精品| 在线亚洲精品国产二区图片欧美| 在线观看一区二区三区激情| 国产成人精品福利久久| 香蕉国产在线看| 久久ye,这里只有精品| 最近手机中文字幕大全| 国产精品久久久久久精品古装| 在线观看免费视频网站a站| 久久国产精品大桥未久av| 国产精品国产三级专区第一集| 婷婷色综合大香蕉| 亚洲成国产人片在线观看| 精品少妇久久久久久888优播| 不卡av一区二区三区| 国产成人欧美| 天天躁狠狠躁夜夜躁狠狠躁| 热99久久久久精品小说推荐| 国产av精品麻豆| 男的添女的下面高潮视频| 视频区图区小说| 日本猛色少妇xxxxx猛交久久| 久久精品久久精品一区二区三区| 老司机深夜福利视频在线观看 | 亚洲人成电影观看| 日本vs欧美在线观看视频| www.熟女人妻精品国产| 女人爽到高潮嗷嗷叫在线视频| 飞空精品影院首页| 一区二区日韩欧美中文字幕| 国产精品一区二区在线观看99| 汤姆久久久久久久影院中文字幕| 亚洲一级一片aⅴ在线观看| 亚洲,一卡二卡三卡| 亚洲精品国产区一区二| videos熟女内射| 国产毛片在线视频| 天堂中文最新版在线下载| 在线观看免费午夜福利视频| 男女高潮啪啪啪动态图| 亚洲,一卡二卡三卡| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久精品古装| 波多野结衣av一区二区av| 国产探花极品一区二区| 欧美精品一区二区大全| 欧美日韩视频精品一区| 国产精品三级大全| 一级毛片我不卡| 飞空精品影院首页| 中文字幕亚洲精品专区| 考比视频在线观看| 一级毛片黄色毛片免费观看视频| 91aial.com中文字幕在线观看| 夫妻午夜视频| 中文字幕最新亚洲高清| 午夜日韩欧美国产| 久久久久久免费高清国产稀缺| 日韩视频在线欧美| 捣出白浆h1v1| 亚洲精品自拍成人| 少妇的丰满在线观看| 91老司机精品| 国产精品免费视频内射| tube8黄色片| 五月开心婷婷网| 久久久久久久久久久久大奶| 亚洲美女视频黄频| 久久国产亚洲av麻豆专区| 男人舔女人的私密视频| 99re6热这里在线精品视频| 最近最新中文字幕大全免费视频 | 少妇人妻久久综合中文| 精品一区二区三区av网在线观看 | 99久久99久久久精品蜜桃| 中文字幕制服av| 国产成人一区二区在线| 又大又爽又粗| 成年女人毛片免费观看观看9 | 国产精品.久久久| 亚洲美女黄色视频免费看| 成人影院久久| 日韩免费高清中文字幕av| 97在线人人人人妻| videosex国产| 观看av在线不卡| 91老司机精品| 国产精品一区二区精品视频观看| 亚洲成人免费av在线播放| 国产成人精品在线电影| 成人黄色视频免费在线看| 美女大奶头黄色视频| 日韩av免费高清视频| 免费在线观看视频国产中文字幕亚洲 | 99九九在线精品视频| 18禁动态无遮挡网站| 欧美老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 国产探花极品一区二区| 天天躁夜夜躁狠狠久久av| www.熟女人妻精品国产| 欧美精品亚洲一区二区| 赤兔流量卡办理| 亚洲七黄色美女视频| 最近最新中文字幕免费大全7| 王馨瑶露胸无遮挡在线观看| 久久久精品区二区三区| 国产在线一区二区三区精| 精品少妇黑人巨大在线播放| 国产成人精品无人区| 日韩伦理黄色片| 国产片内射在线| av电影中文网址| 久久久久国产精品人妻一区二区| 亚洲专区中文字幕在线 | 欧美国产精品一级二级三级| 亚洲欧美清纯卡通| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区三区综合在线观看| 亚洲一区二区三区欧美精品| 免费av中文字幕在线| 欧美国产精品va在线观看不卡| 国产深夜福利视频在线观看| 欧美变态另类bdsm刘玥| 精品国产露脸久久av麻豆| 99热国产这里只有精品6| 午夜免费鲁丝| 久久久精品区二区三区| 午夜福利,免费看| 这个男人来自地球电影免费观看 | 国产精品麻豆人妻色哟哟久久| 国产高清不卡午夜福利| bbb黄色大片| 成人漫画全彩无遮挡| 亚洲熟女毛片儿| 宅男免费午夜| 街头女战士在线观看网站| 成人影院久久| 欧美精品亚洲一区二区| 美女中出高潮动态图| 成人毛片60女人毛片免费| 自拍欧美九色日韩亚洲蝌蚪91| 日韩免费高清中文字幕av| 亚洲国产精品国产精品| 免费女性裸体啪啪无遮挡网站| 人人妻人人澡人人看| 我的亚洲天堂| 国产乱来视频区| 亚洲欧美成人精品一区二区| 男的添女的下面高潮视频| 成年女人毛片免费观看观看9 | 天天影视国产精品| 国产男女超爽视频在线观看| 欧美日韩福利视频一区二区| 国产99久久九九免费精品| 久久久久久人人人人人| 免费在线观看完整版高清| 中文欧美无线码| 日韩成人av中文字幕在线观看| 国产亚洲一区二区精品| 午夜免费观看性视频| 国产成人精品在线电影| 午夜老司机福利片| 91精品国产国语对白视频| 天天躁夜夜躁狠狠躁躁| av有码第一页| 免费不卡黄色视频| 日韩欧美精品免费久久| 亚洲av在线观看美女高潮| 女性生殖器流出的白浆| 日本wwww免费看| 中文字幕最新亚洲高清| 日本欧美国产在线视频| 欧美在线黄色| 美女高潮到喷水免费观看| 婷婷色麻豆天堂久久| 高清av免费在线| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 亚洲一区二区三区欧美精品| 国产亚洲最大av| 亚洲精品国产区一区二| 黄色一级大片看看| 欧美日韩视频精品一区| 热re99久久国产66热| 妹子高潮喷水视频| 亚洲人成77777在线视频| 日韩制服骚丝袜av| 亚洲成人手机| 国产亚洲av片在线观看秒播厂| 久久女婷五月综合色啪小说| 久久久久国产一级毛片高清牌| 老司机在亚洲福利影院| a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 9191精品国产免费久久| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 丰满乱子伦码专区| 三上悠亚av全集在线观看| 亚洲成色77777| 国产亚洲最大av| 纯流量卡能插随身wifi吗| 女性生殖器流出的白浆| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 两性夫妻黄色片| 两个人看的免费小视频| 黄色 视频免费看| 国产免费现黄频在线看| 少妇的丰满在线观看| 亚洲五月色婷婷综合| 亚洲男人天堂网一区| 看非洲黑人一级黄片| 2021少妇久久久久久久久久久| av视频免费观看在线观看| 亚洲天堂av无毛| 精品久久久精品久久久| 人妻 亚洲 视频| 亚洲美女黄色视频免费看| 欧美日韩视频高清一区二区三区二| 国产精品蜜桃在线观看| 免费高清在线观看日韩| 中文精品一卡2卡3卡4更新| 亚洲成人一二三区av| 黑丝袜美女国产一区| 免费久久久久久久精品成人欧美视频| 亚洲熟女毛片儿| 性高湖久久久久久久久免费观看| 波多野结衣一区麻豆| 精品国产国语对白av| 男女无遮挡免费网站观看| 国产一区二区三区av在线| 一区二区三区乱码不卡18| 巨乳人妻的诱惑在线观看| 一区二区三区精品91| 毛片一级片免费看久久久久| 亚洲图色成人| 男的添女的下面高潮视频| xxxhd国产人妻xxx| 欧美 日韩 精品 国产| 满18在线观看网站| 观看美女的网站| 亚洲精品一区蜜桃| 色精品久久人妻99蜜桃| 观看美女的网站| 欧美av亚洲av综合av国产av | 2021少妇久久久久久久久久久| 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 一边摸一边做爽爽视频免费| 99国产综合亚洲精品| 欧美久久黑人一区二区| 国产亚洲av高清不卡| 国产免费又黄又爽又色| 少妇被粗大猛烈的视频| 黄色怎么调成土黄色| 中文字幕制服av| 久久天躁狠狠躁夜夜2o2o | 91精品伊人久久大香线蕉| 考比视频在线观看| 国产麻豆69| 丝袜脚勾引网站| 最近中文字幕2019免费版| 精品一区在线观看国产| 天天躁夜夜躁狠狠躁躁| 天天操日日干夜夜撸| 日日爽夜夜爽网站| 精品一区二区三卡| 婷婷色综合大香蕉| 99久国产av精品国产电影| 欧美黄色片欧美黄色片| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 一级毛片黄色毛片免费观看视频| 国产亚洲最大av| 伊人久久大香线蕉亚洲五| 亚洲精品视频女| 久久精品国产综合久久久| 亚洲成人国产一区在线观看 | 久久这里只有精品19| av不卡在线播放| 亚洲人成网站在线观看播放| 久久这里只有精品19| 妹子高潮喷水视频| 成人毛片60女人毛片免费| 大片免费播放器 马上看| 少妇被粗大的猛进出69影院| 一本色道久久久久久精品综合| 18禁动态无遮挡网站| 一级片免费观看大全| 久久韩国三级中文字幕| 亚洲视频免费观看视频| 久久久久视频综合| 巨乳人妻的诱惑在线观看| 免费观看av网站的网址| 人人妻人人添人人爽欧美一区卜| 美女午夜性视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜脚勾引网站| 国产在线免费精品| 欧美精品av麻豆av| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 不卡av一区二区三区| videosex国产| 久久ye,这里只有精品| 午夜影院在线不卡| 最近最新中文字幕大全免费视频 | 国产在视频线精品| 欧美激情极品国产一区二区三区| 欧美另类一区| 十八禁高潮呻吟视频| 亚洲色图 男人天堂 中文字幕| 最近2019中文字幕mv第一页| 国产一区二区激情短视频 | 亚洲欧美一区二区三区黑人| 又大又黄又爽视频免费| 自线自在国产av| 婷婷色麻豆天堂久久| 侵犯人妻中文字幕一二三四区| 久久久亚洲精品成人影院| 亚洲精品第二区| 黄频高清免费视频| 久久精品国产综合久久久| 欧美人与善性xxx| 制服人妻中文乱码| 日韩 欧美 亚洲 中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 免费黄网站久久成人精品| 少妇人妻 视频| 飞空精品影院首页| 一区在线观看完整版| 啦啦啦啦在线视频资源| 免费高清在线观看日韩| 嫩草影院入口| 亚洲成色77777| 咕卡用的链子| 十八禁网站网址无遮挡| 久久毛片免费看一区二区三区| 极品人妻少妇av视频| 亚洲精品日本国产第一区| 丰满饥渴人妻一区二区三| 久久人妻熟女aⅴ| 亚洲婷婷狠狠爱综合网| 亚洲第一青青草原| 2018国产大陆天天弄谢| 极品少妇高潮喷水抽搐| 一区在线观看完整版| a 毛片基地| 国产熟女欧美一区二区| 观看美女的网站| 熟女av电影| xxx大片免费视频| 亚洲国产精品国产精品| 亚洲色图 男人天堂 中文字幕| 日本欧美国产在线视频| 成人亚洲精品一区在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美黑人精品巨大| 久久久久国产一级毛片高清牌| 午夜福利视频在线观看免费| 最新在线观看一区二区三区 | 国产精品三级大全| 久久精品aⅴ一区二区三区四区| 国产男人的电影天堂91| 国产成人系列免费观看| 菩萨蛮人人尽说江南好唐韦庄| 国产爽快片一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满饥渴人妻一区二区三| 精品国产乱码久久久久久男人| 咕卡用的链子| 黑丝袜美女国产一区| 91精品伊人久久大香线蕉| 久久精品人人爽人人爽视色| 国产成人免费无遮挡视频| 人妻一区二区av| 久久影院123| 考比视频在线观看| 女人精品久久久久毛片| 纯流量卡能插随身wifi吗| 一区在线观看完整版| 黄网站色视频无遮挡免费观看| 婷婷色麻豆天堂久久| 欧美精品亚洲一区二区| 交换朋友夫妻互换小说| 高清欧美精品videossex| 波野结衣二区三区在线| 男女高潮啪啪啪动态图| 少妇被粗大的猛进出69影院| 一边亲一边摸免费视频| 丝袜在线中文字幕| 亚洲七黄色美女视频| 亚洲一区中文字幕在线| 免费高清在线观看日韩| 国产视频首页在线观看| 亚洲国产看品久久| 久久久久视频综合| 欧美在线黄色| 国产成人啪精品午夜网站| 赤兔流量卡办理| av一本久久久久| 久久毛片免费看一区二区三区| www.精华液| 国产不卡av网站在线观看| 成人影院久久| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 国产精品久久久人人做人人爽| 搡老乐熟女国产| 午夜福利一区二区在线看| 美女扒开内裤让男人捅视频| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 国产野战对白在线观看| e午夜精品久久久久久久| 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说| 午夜激情av网站| 一级,二级,三级黄色视频| 午夜激情av网站| a级毛片在线看网站| 韩国av在线不卡| 国产一区二区三区av在线| 国产欧美日韩一区二区三区在线| 精品国产一区二区久久| 女人高潮潮喷娇喘18禁视频| 又大又黄又爽视频免费| 亚洲伊人色综图| 亚洲成国产人片在线观看| 美女午夜性视频免费| 免费久久久久久久精品成人欧美视频| 欧美97在线视频| svipshipincom国产片| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线不卡| 亚洲欧美成人精品一区二区| 黄片播放在线免费| 久久鲁丝午夜福利片| 看免费av毛片| 午夜福利免费观看在线| 日本av手机在线免费观看| 老汉色av国产亚洲站长工具| 丁香六月欧美| 黄色视频不卡| 亚洲精品国产av成人精品| 午夜福利网站1000一区二区三区| 曰老女人黄片|