• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    傳遞性

    • 充分條件、必要條件判斷的五個途徑
      、必要條件具有傳遞性,即由p1?p2?…?pn,可得p1?pn。傳遞法是判斷含有三個及以上命題之間的關系時必須采用的一種基本方法。例5已知p是r的充分不必要條件,s是r的必要條件,q是s的必要條件,那么p是q成立的( )。A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件分析:通過命題p、q、r、s之間的遞推關系,結合傳遞性,可得p與q之間的遞推關系。解:依題意得p?r,r?s,s?q,且r?/p,結合傳遞性得p?r?s?q。因為

      中學生數(shù)理化·高一版 2023年9期2023-09-22

    • 半群上的L-模糊同余
      次證明L-模糊傳遞性,有(μ°ν)°(μ°ν)=(μ°ν)°(ν°μ)?μ°ν°μ=μ°μ°ν?μ°ν。最后證明L-模糊對稱性,任意的a,b∈S有μ°ν(a,b)=ν°μ(a,b)。因此μ°ν(a,b)=ν°μ(a,b)=∨z∈S(ν(a,z)∧μ(z,b))≥∨z∈S(μ(b,z)∧ν(z,a))≥μ°ν(b,a),又因為μ,ν是半群S上的L-模糊同余,所以μ°ν是L-模糊同余。定理3設μ是半群S上的L-模糊同余,任意的a,b∈S,都有以下結論:(1)μ

      甘肅科學學報 2023年1期2023-04-16

    • 判斷充分必要條件的幾個小措施
      必要條件之間的傳遞性來進行判斷的方法,通常稱之為傳遞法.由充分條件的傳遞性可知,若,則,即Q1是Qn的充分條件,由必要條件的傳遞性可知,則,即Q1是Qn的必要條件.例3.(1)已知p是r的充分不必要條件,s是r的必要不充分條件,q是s的必要不充分條件,那么p是q的什么條件?(2)已知p是q的充分條件,q是r的必要條件也是s的充分條件,r是s的必要條件,那么p,q,r,s中哪幾對互為充要條件?解答此類問題,一般要根據(jù)充分條件、必要條件、充要條件之間的關系和傳

      語數(shù)外學習·高中版上旬 2022年9期2022-11-30

    • 選用合適的方法,提升證明不等式的效率
      等式的可加性、傳遞性、可乘性證明結論.三、分析法分析法是指從所要求證的目標出發(fā),利用相關的公式、定理、性質(zhì)等進行推導,逐步找到使得命題成立的充分條件,直至得到使不等式明顯成立的條件.運用分析法證明不等式,需“執(zhí)果尋因”,采用“要證——則證——即需證——即證”的格式.例3.四、放縮法有些不等式較為復雜,利用相關的公式、定理、性質(zhì)無法直接證明不等式,需將不等式一側或兩側的式子放大或者縮小,再利用不等式的傳遞性證明不等式成立.若要證明A≤B,可以將B縮小成為D≤

      語數(shù)外學習·高中版下旬 2022年9期2022-11-27

    • 域矩陣與簡化域矩陣的應用研究
      夠直接判斷,而傳遞性從關系圖或關系矩陣中不能直接反映出來,二元關系中包含序偶時,判斷反對稱性容易產(chǎn)生誤解。文獻[6]對傳遞性的前提條件進行補充,給出一種傳遞性判斷的等價定義。文獻[7]利用二元關系的關系矩陣,通過行與行之間的布爾加運算,判斷關系矩陣是否為衡平矩陣來判定二元關系的傳遞性。文獻[8]用數(shù)理邏輯方法和命題制作方法給出二元關系傳遞性的等價定義,并給出判斷二元關系傳遞性的幾個充分必要條件。文獻[9]對反對稱性進行研究,給出一種反對稱性判斷的等價定義。

      蘇州科技大學學報(自然科學版) 2022年3期2022-09-19

    • 淺析集合論中的等價關系及其判斷方法
      反性、對稱性和傳遞性,則關系R稱為等價關系.在集合X上定義一個等價關系R,可進一步對集合X進行劃分,劃分得到的塊稱為等價類,具體定義如下:定義4設R是集合X上的等價關系,對任一x∈X可以構造一個X的子集[x]R,稱為x對于R的等價類,記為[x]R={y|y∈X,xRy},也即[x]R={y|y∈X,(x,y)∈R}.在實際生活中,存在很多等價關系,如老鄉(xiāng)關系、同學關系、同事關系等,在整數(shù)集合上,定義的一種同余關系也為等價關系,即R={(x,y)|x-y能被

      大學數(shù)學 2022年3期2022-06-24

    • 巧用放縮法證明數(shù)列不等式
      可利用不等式的傳遞性證明不等式成立.一般地,要證 A≤B,需尋找一個(或多個)中間變量 C,再根據(jù)不等式的傳遞性證明 A≤ C≤B,從而證明結論.例2.證明:所以不等式 è(?)1+ ?(?)n <3成立.我們首先將不等式左邊的式子用二項式定理展開,然后將每一項中的部分因式看作小于1的進行放縮,使不等式左邊的式子化簡為++…+,再根據(jù) n!<2n -1對不等式進行放縮,運用等比數(shù)列的前n 項和公式即可證明結論.例3.已知數(shù)列an的前 n 項和 Sn =2a

      語數(shù)外學習·高中版下旬 2022年1期2022-03-23

    • 藝術的觀看視角
      藝術作品情感的傳遞性,及觀者對于藝術作品最終完整性取得的重要意義。關鍵詞:情感表現(xiàn)與塑造? 鑒賞力? 傳遞性? 想象力中圖分類號:J0-05文獻標識碼:A? ?文章編號:1008-3359(2021)19-0165-03情感在我們的表達和交流之中傳遞,即使是最不容易動怒或最不容易露出微笑的一本正經(jīng)的人,也會展現(xiàn)自己的情感以及接收他人的情感,僅是在程度上激烈或平緩。這其中,語言是進行表達和交流的重要途徑。對于藝術家而言,他們的情感得以表達的重要途徑是藝術作品

      藝術評鑒 2021年19期2021-10-29

    • 友誼
      愛。友誼的不可傳遞性,決定了它是一部孤本的書。我們可以和不同的人有不同的友誼,但我們不會和同一個人有不同的友誼。友誼是一條越掘越深的巷道,沒有回頭路可以走??坦倾懶牡挠颜x也如仇恨一樣,沒齒難忘。友情這棵樹上只結一個果子,叫作信任。紅蘋果只留給灌溉果樹的人品嘗。別的人摘下來嘗一口,很可能酸倒了牙。友誼之鏈不可繼承,不可轉讓,不可貼上封條保存起來而不腐爛,不可冷凍在冰箱里永遠新鮮。友誼需要滋養(yǎng)。有的人用錢,有的人用汗,還有的人用血。友誼是很貪婪的,絕不滿足于餐

      初中生之友·中旬刊 2021年10期2021-10-11

    • 面向多尺度決策形式背景的粒結構模型
      研究各種協(xié)調(diào)的傳遞性,以及最優(yōu)尺度選擇,并給出具體的算例;最后,我們總結這篇文章.2 相關工作與基礎知識針對多尺度形式背景問題,文獻[30]研究了多標記形式背景下的粒規(guī)則,其中要求每個對象在第i個標記Li下的取值是唯一的,這樣一個標記下的形式背景對應于論域的一個劃分,標記的每個取值以及取該值的對象全體匹配構成一個粒標記概念,即對任意的y∈Li,(f-1(y),y)是一個概念(這里f-1(y)表示取值為y的對象全體),由于它滿足f(f-1(y))=y.但對于

      小型微型計算機系統(tǒng) 2021年7期2021-07-08

    • 利用不等式性質(zhì)比較代數(shù)式大小
      趙愛琴在比較代數(shù)式大小時,我發(fā)現(xiàn)主要有兩種方法,一是特殊值法,二是利用不等式的性質(zhì)。下面我就來談談我是如何利用不等式的性質(zhì)比較代數(shù)式大小的。請看這道題:已知x這道題的條件中有一個不等式,于是我便從這個不等式出發(fā)。因為x這組題比較簡單,只要套用不等式的性質(zhì)就能很快做出來。下面我們再看一題:如圖,若數(shù)軸上的兩點A、B表示的數(shù)分別為a、b,則下列結論正確的是()。這道題中,a、b的大小關系并沒有直接給出,而是用數(shù)軸表示的,于是我先根據(jù)數(shù)軸的特征,得出a、b的正負

      初中生世界·七年級 2020年6期2020-09-03

    • 群論中“不變子群”概念的理解
      以及不變子群的傳遞性問題.二、不變子群的由來問題1 設H 是群G 的子群,Sl={aH|a∈G}為H 的所有左陪集構成的集族,那么Sl關于子集乘法構成群嗎?解析 如果Sl關于子集乘法能夠構成群,則Sl中的元素關于子集乘法滿足封閉性,即對于任意的xH,yH∈Sl,xH·yH=zH∈Sl,也就是說左陪集xH 與左陪集yH 的乘積結果必須是一個左陪集.然而,要達到這一要求,須滿足下述條件.引理1 設H 是群G 的子群,?x,y∈G,則xH·yH 仍是左陪集??a

      數(shù)學學習與研究 2020年10期2020-08-15

    • 例談不等式內(nèi)容在小學數(shù)學中的滲透
      :1.不等式的傳遞性在比較大小中的滲透(不等式的傳遞性:a>b,b>c,則a>c)這一滲透主要體現(xiàn)于單位換算中。例如,在三年級上學期《時、分、秒》這一章存在這樣一類問題——比較具有不同時間單位的數(shù)的大小,見例1。例1:請你比較“4 時”和“240 秒”的大小。通常,會選取一個中間量作為橋梁來進行比較。例如,可以把“4時”換算成“240 分”,容易判斷,“240 分”肯定大于“240 秒”,由此得出“4 時”>“240 秒”。這里體現(xiàn)了不等式的傳遞性。類似情

      數(shù)學大世界 2020年5期2020-06-22

    • 利用不等式性質(zhì)比較代數(shù)式大小
      我用了不等式的傳遞性。因為根據(jù)不等式性質(zhì)1,可得x-2<y-2,而要比較的是x-2和y-1,根據(jù)不等式的性質(zhì)1可知y-2<y-1,于是我用了不等式的傳遞性,可得x-2<y-1。這組題比較簡單,只要套用不等式的性質(zhì)就能很快做出來。下面我們再看一題:如圖,若數(shù)軸上的兩點A、B表示的數(shù)分別為a、b,則下列結論正確的是( )。C.2a+b>0 D.a+b>0這道題中,a、b的大小關系并沒有直接給出,而是用數(shù)軸表示的,于是我先根據(jù)數(shù)軸的特征,得出a、b的正負性和大小

      初中生世界 2020年21期2020-06-05

    • 《離散數(shù)學》中二元關系傳遞性的判定
      二元關系性質(zhì)中傳遞性的判定是教學難點,本文列出傳遞性的真值表,利用真值表判斷傳遞性直觀有效,只有一種情形不滿足傳遞性,其余情形都滿足傳遞性。關鍵詞 《離散數(shù)學》 二元關系0引言在《離散數(shù)學中》,二元關系的性質(zhì)包括自反性、反自反性、對稱性、反對稱性和傳遞性。其中前四個性質(zhì)可以由定義和關系圖直觀地表達,但是否滿足傳遞性僅從定義很難觀察出來。二元關系傳遞性的定義如下:如果從定義來看,只能發(fā)現(xiàn)一種情形是滿足傳遞性的,即如,,,是傳遞的,但是,怎么用定義來判斷是否滿

      科教導刊·電子版 2020年2期2020-05-11

    • 基于pHash分塊局部探測的海量圖像查重算法
      討了圖片重復的傳遞性問題,針對傳遞和非傳遞兩種情況分別進行了算法實現(xiàn)。實驗結果表明,所提算法在處理海量圖片時具有非常高的效率,在設定相似度閾值為13的條件下,傳遞性算法對近30萬張圖片的查重僅需2min,準確率達到了53%。關鍵詞:重復圖片檢測;海量數(shù)據(jù);感知Hash;局部探測;傳遞性中圖分類號:TP391文獻標志碼:ADeduplication for massive images based on pHash block detectionDuplic

      計算機應用 2019年9期2019-10-31

    • 一個有趣的概率問題
      ,比較運算是有傳遞性的。如果兩個實數(shù)A>B,且B>C,那么一定有A>C。經(jīng)過與老師的交流和上網(wǎng)查詢,發(fā)現(xiàn)這種現(xiàn)象被稱為“非傳遞性骰子”,有點像我們經(jīng)常玩的游戲“石頭剪刀布”,可能會形成循環(huán)。事實上在很多生活常識和數(shù)學概念中,傳遞性都是不成立的。比如直線a和b共面,b和c共面,而a和c就不一定共面;比如直線a和b垂直,b和c垂直,而a和c就不一定垂直;比如生活中,甲認識乙,乙認識丙,甲也不一定認識丙;上述這樣的例子還有很多。我們遇到的“非傳遞性骰子”現(xiàn)象正是

      新教育論壇 2019年5期2019-09-10

    • 基于安徽動漫產(chǎn)業(yè) 淺析動漫產(chǎn)品特性
      象、作品本質(zhì)的傳遞性、從作品中獲得思考,從五個方面進行闡述。【關鍵詞】動漫產(chǎn)業(yè);消費者;傳遞性;戰(zhàn)略層中圖分類號:G459?文獻標志碼:A ? ? ? ? ? ?文章編號:1007-0125(2019)18-0162-01從安徽動漫產(chǎn)業(yè)實踐的局部來看,產(chǎn)業(yè)中存在的問題主要集中在內(nèi)容生產(chǎn)、傳播和營銷推廣等方面[1]。在討論經(jīng)濟層面與動漫產(chǎn)業(yè)之間的競爭策略之前,首先要談談消費者選擇消費的動機。問題是為什么消費者會被動畫所吸引。在行業(yè)之間的競爭策略方面,如果企業(yè)

      戲劇之家 2019年18期2019-07-25

    • 傳遞閉包的Matlab實現(xiàn)
      的二元關系R的傳遞性描述了序偶之間的內(nèi)在聯(lián)系。當A的元數(shù)|A|比較小(|A|≤4)時,可通過序偶法、關系矩陣法或關系圖法判定,計算量不大,人工判定可以完成。但當|A|較大時,不論上述三種方法哪一種,人工計算量都非常巨大,基本上不可能完成。而求關系R的傳遞閉包t(R)時,當R不具有傳遞性,就需要通過不斷添加新序偶使之具備傳遞性為止。因此當|A|較大時,求t(R)變得非常困難。此時Warshall提出了一種算法[1]。本文在Warshall算法基礎上,利用關系

      唐山學院學報 2019年3期2019-06-15

    • 父代收入對子代收入不平等的影響
      程度和代際收入傳遞性的大小。代際收入傳遞性體現(xiàn)了機會不均等及社會公平失衡程度,既是聯(lián)系父代收入與子代收入的橋梁,又是導致收入差距在代際間發(fā)生傳遞的渠道,父代收入分配格局將會影響子代收入格局,進而將靜態(tài)的收入不平等擴展到動態(tài)過程中。因此,父代收入對子代收入不平等的影響程度也體現(xiàn)了由家庭背景導致的機會不均等程度。對代際收入傳遞的研究始于Becker 和Tomes[1]建立的經(jīng)典模型,即y1=α+βy0+ε。此后,很多學者基于代際收入彈性分析法估計不同國家的代際

      東北財經(jīng)大學學報 2017年6期2017-12-15

    • 同余式
      odm);3.傳遞性,若a≡b(modm),b≡c(modm),則a≡c(modm)。反身性與對稱性是非常明顯的,我們只證明傳遞性。事實上,由a≡b(modm)知a-b=km,由b≡c(modm)知b-c=lm。上述兩式相加,有a-c=(k+l)m。這就意味著a≡c(modm)。傳遞性得證。以上性質(zhì)都與等式的性質(zhì)完全類似。此外,同余式還具有如下運算性質(zhì)。1.若a≡b(modm),c≡d(modm),則a+c≡b+ d(modm)。2.若a≡b(modm),

      湖南教育·C版 2017年11期2017-12-01

    • 淺談高中語文教學的課堂語言追求
      詞:教學語言 傳遞性 有效性 思維引導中圖分類號:G633.3人有三立:立德,立功,立言。所謂立言,依孔穎達疏——就是“言得其要,理足可傳”。形諸文字,也就成了文章,便可流傳。曹丕在《典論 ·論文》中說:“文章乃經(jīng)國之大業(yè),不朽之盛事?!笨磥聿⒉缓唵?,“不朽”二字最難,須經(jīng)千秋評說以鑒高下,錢、權、勢諸般亦無奈其何,可見立言之不易。無怪乎詩文蓋世的先哲毛澤東也慨嘆:“語言這東西不是隨便可以學好的,非下苦功夫不可!”筆者執(zhí)教語文也有數(shù)十春秋,竟無言可立。然而

      課程教育研究·新教師教學 2015年33期2017-09-27

    • 充分條件和必要條件的判定
      根據(jù)充要關系的傳遞性來判斷的方法叫傳遞法.充分條件具有傳遞性,若[A1?A2?A3?]…[?An],則[A1?An],即[A1]是[An]的充分條件.必要條件也具有傳遞性,若[A1?A2?A3?]…[?][An],則[An?A1],即[A1]是[An]的必要條件.例2 若[A,B]都是[C]的充要條件,[D]是[A]的必要條件,[B]是[D]的必要條件,則[D]是[C]的( )A. 充分不必要條件B. 必要不充分條件C. 充要條件D. 既不充分也不必要條件

      高中生學習·高二版 2017年2期2017-03-07

    • 充分條件和必要條件的判定
      根據(jù)充要關系的傳遞性來判斷的方法叫傳遞法.充分條件具有傳遞性,若[A1?A2?A3?]…[?An],則[A1?An],即[A1]是[An]的充分條件.必要條件也具有傳遞性,若[A1?A2?A3?]…[?][An],則[An?A1],即[A1]是[An]的必要條件.例2 若[A,B]都是[C]的充要條件,[D]是[A]的必要條件,[B]是[D]的必要條件,則[D]是[C]的( )A. 充分不必要條件B. 必要不充分條件C. 充要條件D. 既不充分也不必要條件

      高中生學習·高二版 2017年1期2017-02-20

    • 部分跟蹤與傳遞性
      8)部分跟蹤與傳遞性刁素蘭1, 曾 鵬1, 吳紅英2(1.廣州大學 數(shù)學與信息科學學院, 廣東 廣州 510006; 2.懷化學院 數(shù)學系, 湖南 懷化 418008)跟蹤性質(zhì); 遍歷偽軌; 平均偽軌; syndetic傳遞0 引 言設(X,f)是一個拓撲動力系統(tǒng)(簡稱動力系統(tǒng)),是指(X,ρ)是一個緊致度量空間,其中ρ表示X上的一個度量,f:X→X是一個連續(xù)滿射. 跟蹤性質(zhì)在動力系統(tǒng)中扮演著重要的角色.1980年,BLANK[1-2]引進了平均跟蹤性質(zhì)的

      廣州大學學報(自然科學版) 2016年5期2016-12-27

    • “充要條件”的判斷方法
      如圖.由推理的傳遞性可知,[D?C],同時[C?D],于是[C?D]. 故[D]是[C]的充要條件.點撥 對于較復雜的(如連鎖式)推理關系的判斷,一般可用遞推判斷法來解. 注意:充分條件具有傳遞性,即由[A1?A2?…?An]得,[A1?An],亦即[A1]是[An]的充分條件. 必要條件也有傳遞性,即由[A1?A2?…?An]得,[A1?An],亦即[A1]是[An]的必要條件. 同理,充要條件也有傳遞性.集合判斷法例3 設[p]:實數(shù)[x,y]滿足[(

      高中生學習·高二版 2016年12期2016-12-22

    • 赫爾希-蔡斯實驗能否證明“蛋白質(zhì)不是遺傳物質(zhì)”
      代間遺傳物質(zhì)的傳遞性,從而為遺傳物質(zhì)的化學本質(zhì)之爭畫上句號。赫爾希-蔡斯實驗的設計思路和科學方法均是非常好的生命科學教育素材。運用得當,可以使學生在體驗科學探究的過程中,有效訓練分析、推理等抽象思維能力,同時深化對實驗本質(zhì)的理解[1]。然而由于篇幅的原因,高中生物學教材簡化了實驗背景。因此,了解更詳細的實驗內(nèi)容很有必要。同時,利用邏輯工具去理解實驗結論也是一種有效的方法。1 問題的提出一些教輔書認為“赫爾希-蔡斯的實驗不能證明蛋白質(zhì)不是遺傳物質(zhì)”,一些教師

      生物學教學 2016年10期2016-08-20

    • 有限策略集全序解及其生成算法
      T具有自反性、傳遞性和完全性。于是問題轉變成:①找到X上的全序關系T,使得當(x,y)∈R時,總有(x,y)∈T成立;②在何種意義下這種全序關系是唯一的,求出全體這樣的全序關系。針對上述問題,本文提出最小全序解概念,并分別給出偏序策略集、預序策略集以及任意關系策略集最小全序解的表示及其生成算法。1 最小全序解以下X表示n個元素的有限集合,T是X上全序關系的全體,A′=X-A是A的補集,Rc是二元關系R的逆關系,I={(x,x)∶x∈X}是恒等關系。定義1設

      武漢科技大學學報 2016年4期2016-08-02

    • 嚴格偏好關系T-S-半傳遞性相關性質(zhì)的研究*
      關系T-S-半傳遞性相關性質(zhì)的研究*劉雪琴, 武彩萍, 楊曉晨(太原理工大學 數(shù)學學院,山西 太原 030024)摘要:基于可加的φ-模糊偏好結構,研究了嚴格偏好關系的T-S-半傳遞性相關性質(zhì).首先,給出了嚴格偏好關系的T-S-半傳遞性的一個充分條件; 其次,得出了P°TP°TI?P與(P°TP)∩T(I°TI)=?之間的一個等價命題; 最后,研究了(P°TP)∩T(I°TI)=?與S2條件之間的等價性.這些結論豐富了模糊偏好結構的研究.關鍵詞:可加的φ-

      中北大學學報(自然科學版) 2016年2期2016-06-16

    • 求解更多極大T-傳遞內(nèi)部的方法
      模糊關系;T-傳遞性;極大T-傳遞內(nèi)部模糊二元關系自Zadeh[1]提出以來,已被廣泛應用于決策科學的諸多領域中,例如:聚類分析[2]、模糊量排序[3]、模糊選擇函數(shù)[4]、模糊偏好結構[5]等。而在模糊關系的討論中,傳遞性占據(jù)著相當重要的地位。1971年,Zadeh[6]提出了傳遞的概念,Ovchinnikov[7]又于1984年將它拓展為T-傳遞。我們知道,從實際中獲取的數(shù)據(jù)往往很難滿足性質(zhì)P,特別是在模糊情況下。因此,Bandler,et al[8]

      太原理工大學學報 2016年1期2016-04-15

    • 模糊關系的性質(zhì)指標研究
      反性、完全性、傳遞性起著重要的作用.在這些模糊關系中,經(jīng)常出現(xiàn)的一些性質(zhì)主要有非自反、反對稱、T-傳遞、S-負傳遞、T-S-半傳遞、T-S-Ferrers關系等.Fodor[2]對這些性質(zhì)進行了討論,得出了:若Q非自反且T-S-半傳遞(T-S-Ferrers關系),則Q滿足T-傳遞性.隨后,Wang[3]進一步系統(tǒng)地討論了這些模糊關系性質(zhì)之間的聯(lián)系,得到:若Q反對稱且S-負傳遞,則Q滿足T-傳遞、T-S-半傳遞、TS-Ferrers關系.一般地,一個模糊關

      中北大學學報(自然科學版) 2015年5期2015-12-02

    • 例談不等式放縮中的常見錯誤
      著使用不等式的傳遞性。誤區(qū)二:第二項開始放大當n≥2時,則:Tn<++…+=+<>。同樣>,不能夠接著使用不等式的傳遞性。原因探究:放縮時機選擇不對。處理辦法:分析上面的錯誤,我們知道要繼續(xù)調(diào)整放縮的“時機”,即考慮從哪一項開始放縮,這就需要我們從n=1,n=2,n=3,…逐一調(diào)試。正解:當n≥3時,則Tn=++++…+<++++…+=+=+1-?搖n-2<+=<=又∵T1感悟:放縮不等式如果“放過了頭”,只要保證方向明確,可以逐一調(diào)試,讓常數(shù)逐漸“靠近目

      試題與研究·教學論壇 2015年13期2015-10-27

    • 基于衡平矩陣的二元關系傳遞性的判別法
      定比較容易,而傳遞性的判定有時則較困難,是學習的重點,也是難點。特別是當集合中的元素個數(shù)較多時,其判斷更為困難。本文實現(xiàn)了判斷一個二元關系是否具有傳遞性變?yōu)榕袛嗨年P系矩陣是否為衡平矩陣的轉化,從而可以準確而又迅速地實現(xiàn)二元關系傳遞性的判定。準備知識定義1 設A,B 為集合,用A 中元素為第一元素,B 中元素為第二元素構成有序對.所有這樣的有序對組成的集合叫做A 和B 的笛卡兒積,記作A×B[1-3].笛卡兒積的符號化表示為A×B={<x,y >| x ∈

      大慶師范學院學報 2015年3期2015-05-25

    • 高效的社會網(wǎng)絡傳遞性MapReduce并行計算方法*
      高效的社會網(wǎng)絡傳遞性MapReduce并行計算方法*李國慶1,2*, 程林鳳1(1.中國礦業(yè)大學 理學院,江蘇 徐州 221008;2.江蘇聯(lián)合職業(yè)技術學院,江蘇 徐州 221008)社會網(wǎng)絡中的傳遞性對于網(wǎng)絡中的社團分析和節(jié)點重要性分析都有著十分重要的意義.為了提高社會網(wǎng)絡傳遞性分析中三角計數(shù)的性能,提出了一種MapReduce環(huán)境下的三角計數(shù)并行計算方法.首先,將社會網(wǎng)絡的傳遞性問題轉化為計算網(wǎng)絡中三角個數(shù)的問題.其次,在計算網(wǎng)絡中的三角時按照節(jié)點之間

      湘潭大學自然科學學報 2015年2期2015-05-03

    • 傳遞閉包的增量式更新研究
      說R在A上具有傳遞性。定義2[1]設R是集合A上的二元關系,在R中添加最少的序偶集合R′,使得R∪R′具有傳遞性,則t(R)=R∪R′是R的傳遞閉包。如果關系R本身具有傳遞性質(zhì),則t(R)=R。定理1[1]設A是含有n個元素的集合,R是A上的二元關系,則存在一個正整數(shù)k≤n,使得t(R)=R∪R2∪R3∪…∪Rk。定理1給出了傳遞閉包的計算公式,其中Rk(Rk=Rk-1?R,k≤n)表示k個R復合,n越大,復合的次數(shù)就越多,計算傳遞閉包就越復雜。定義3[6

      蘇州科技大學學報(自然科學版) 2015年1期2015-04-02

    • 一類超空間上誘導映射的混沌*1
      運用拓撲空間的傳遞性、周期稠密性和弱混合性,解決了底空間映射混沌時由其誘導的超空間映射混沌的問題.超空間;傳遞性;Devaney混沌;弱混合21世紀初,國內(nèi)外學者受到生產(chǎn)實踐的啟示,將超空間系統(tǒng)研究作為科研的主要研究方向之一.其中當數(shù)Romn Flores的成果[1]較為突出,他重點討論了緊致系統(tǒng)和由該系統(tǒng)誘導的映射的傳遞性,同時研究了由其誘導的超空間系統(tǒng)的傳遞性與底空間系統(tǒng)的傳遞性的內(nèi)在聯(lián)系,并且指出有關混沌的基本問題:底空間系統(tǒng)Devaney混沌與其誘

      吉首大學學報(自然科學版) 2014年4期2014-09-06

    • 群體決策基數(shù)表示的一個充要條件
      理T[14](傳遞性公理)映射F滿足傳遞性公理,如果對任意的 U=(ur(xi1),ur(xi2),…,ur(xin))∈Δ 和U'=(u'r(xi1),u'r(xi2),…,u'r(xin))∈Δ使得,ur(xik)=u'r(xik)?k≠i,jur(xii)≥u'r(xij)并且有u'r(ii)=ur(ii)+ε≤1和u'r(xij)=ur(xij)-ε≥0(ε >0),那么F(U')> F(U)。引理 2對所有的 U=(ur(xi1),ur(xi2)

      江蘇高職教育 2014年2期2014-07-16

    • 二元關系傳遞性的等價定義及其判別法
      定比較容易,而傳遞性的判定有時則較困難,是學習的重點,也是難點。一方面,本文給出二元關系傳遞性的等價定義,得到解決途徑:從邏輯蘊涵式的角度,給出一種等價的定義形式,該定義把判斷集合A 上的二元關系R 是否具有傳遞性問題轉化為判斷蘊涵式的真假問題;另一方面,本文利用二元關系與其關系矩陣是一一對應的結論,給出矩形判別法,這樣就突破了難點,使對二元關系傳遞性的判定準確而又迅速。1 二元關系傳遞性的定義及其局限性在現(xiàn)有的離散數(shù)學教材文獻[1][2]中,對二元關系反

      大慶師范學院學報 2014年6期2014-05-25

    • 二元關系性質(zhì)的組合性
      性、反對稱性和傳遞性。我們常見的幾種關系,比如:相容關系,等價關系和偏序關系等都是滿足這五種性質(zhì)中若干性質(zhì)的組合。一些文獻從不同的角度探討了二元關系的性質(zhì)問題,文[1~2]基于二元關系的矩陣討論了二元關系性質(zhì)的判別問題,文[3]利用整數(shù)拆分探討了特殊二元關系的計數(shù)問題。在教學過程中,我們發(fā)現(xiàn)部分同學對于二元關系性質(zhì)的把握存在一定的問題,本文從組合數(shù)學的角度來討論這五種性質(zhì)組合的存在性問題,并給出相關結論的證明。為了簡化問題,本文僅考慮非空集合上的非空關系。

      湖北師范大學學報(自然科學版) 2013年2期2013-11-19

    • 向量變分原理
      sx;(2) 傳遞性:若對任意的x1,x2,x3∈X:x1sx2,x2sx3?x1sx3;(3) 反對稱性:若對任意的x1,x2∈X:x1sx2,x2sx1?x1=x2.若xs*y,當且僅當存在X中的有限個元素x1,x2,…,xn∈X使得x=x1,x1sx2,…,xn-1sxn,xn=y,關系s*是關系s的傳遞閉包.顯然,如果s具有傳遞性,則s=s*.定義1[8]設s為非空集合X上的二元關系,X0?X是非空集合,元素x0∈X0稱為X0關于關系s的最大元素(

      重慶工商大學學報(自然科學版) 2013年9期2013-10-24

    • 離散數(shù)學中等價關系的性質(zhì)
      ,稱 R 具有傳遞性。定義4 設R為非空集合A上的二元關系,如果R具有自反性、對稱性和傳遞性,則稱R為A上的等價關系。2 主要結果定理1 設R是集合A上的二元關系,令S={<x,y>∣ ?z∈A使<x,z>∈R且<z,y>∈R},若R是等價關系,則S也是等價關系。證明:因為R是等價關系(1)由于R是自反的,所以對任意 x∈A有<x,x>∈R,由 S的定義知<x,x>∈R 且<x,x>∈R,所以<x,x>∈S,所以 S 是自反的。(2)若<x,y>∈S,則?

      科技視界 2013年14期2013-08-15

    • 基于關系矩陣中等價關系的判定
      1]、[2]。傳遞性一般無規(guī)律性可言,本文主要討論傳遞性的判定。2 傳遞性的判定方法定義 1 設R是非空集合A上的二元關系,對任意的a, b, c∈A,每當(a, b)∈R,且(b, c)∈R時,就有(a, c)∈R,則稱二元關系R在A上是傳遞的,也稱R是A上的傳遞關系。定義2 設A,B,C為三個非空集合,R1是A,B上的二元關系,R2是B,C上的二元關系,則集合定義3 設R是非空集合A上的二元關系,R?R,記作 R2,稱為R的二次冪。如果集合A上的二元關

      唐山師范學院學報 2013年2期2013-07-23

    • 對洛侖茲變換傳遞性的探究
      茲變換是否具有傳遞性.1 建立假設模型首先,考慮這樣一種環(huán)境:在一個無限大的空間里僅存在一個質(zhì)點.在這樣的環(huán)境中,質(zhì)點既可以說是運動的也可以說是靜止的,運動是其絕對存在,然而在無限大的環(huán)境中這種運動也可以看作是相對靜止.總而言之,在沒有參考系的前提下其運動狀態(tài)是絕對未知的.因而我們可以把參考系(通常指慣性系)理解為物質(zhì)某一種運動狀態(tài)函數(shù)表出的基礎,對于不同參考系必然存在不同的表出,由于參考系之間有著確定的關系,因而對于同一事件在不同參考系下的表出有著一定的

      科技視界 2013年3期2013-04-13

    • 基于分布式偏好理論的Luce-Suppes難題之消解
      該偏好結構滿足傳遞性和完全性,且有非循環(huán)性的要求。然而,Luce等人[2-3]的研究卻對選擇理論的這一直觀性假定構成了挑戰(zhàn),無差異偏好關系不具有傳遞性,進而可以推導出一般性偏好結構也不具有嚴格意義上的傳遞性。其他一些經(jīng)濟學家則表達了這樣一種觀點,實際選擇情景中,行動主體的偏好可能不是傳遞的,準傳遞性[4-5]會更有利于選擇的做出。實驗社會選擇理論通過具體選擇實驗,結果表明,即便是行動主體的偏好是嚴格的偏好關系,也會出現(xiàn)意想不到的選擇結果,這構成對偏好結構直

      天津商業(yè)大學學報 2012年6期2012-10-22

    • 校園公示語翻譯的信息等價性和傳遞性
      的信息等價性和傳遞性李 丹1, 夏 娟2(1.湖南農(nóng)業(yè)大學 外國語學院 湖南 長沙 410128;2.湖南農(nóng)業(yè)大學 東方科技學院,湖南 長沙 410128)隨著國力的逐漸增強,我國的國際化程度越來越高,來我國的國際友人也越來越多,傳播信息的公示語及其翻譯也越來越受到重視。校園是學生學習的圣地,在英語教育越來越受到重視的中國,營造良好的英語學習環(huán)境顯得尤為重要。而正確的校園公示語翻譯正是良好英語學習環(huán)境的重要部分。但是,由于翻譯中的疏忽和對英語文化的錯誤認識

      長江師范學院學報 2012年1期2012-08-15

    • 基于二元翻譯標準的高校校園標識語翻譯
      :信息等價性與傳遞性二元翻譯標準-信息等價性與傳遞性,是馮志杰,馮改萍在《譯文的信息等價性與傳遞性:翻譯的二元基本標準》一文中提出。文中指出,信息等價性 (Information equivalency)就是譯文對原文信息的包含程度。而信息傳遞性 (Information transitivity)既是譯文使目標語言讀者獲得原作信息的程度。信息等價性是針對原作而言,而信息傳遞性是針對目標語言即英語讀者而言[1]。根據(jù)二元翻譯理論,公共標識語的翻譯是將原公共

      海南熱帶海洋學院學報 2011年6期2011-08-15

    • 群體決策中k?偏差規(guī)則的排序法
      性、中立性和非傳遞性等特征;為了排序,提出選擇函數(shù)的概念,解決了不具備傳遞性的k?偏差規(guī)則的排序問題.群體決策;Arrow公理;偏差規(guī)則;選擇函數(shù)群體決策是現(xiàn)代決策科學的主要分支,在現(xiàn)代政治、經(jīng)濟、科技及軍事決策等領域均有著廣泛的應用.自從1963年Arrow在文獻[1]中提出偏愛公理系和不可能性定理以來,基于方案間偏愛關系的群體決策理論和方法研究引起了學者們的廣泛關注[2-8].較多偏愛規(guī)則(或稱多數(shù)規(guī)則)是群體決策中基本的決策規(guī)則,文獻[2]曾研究了該

      溫州大學學報(自然科學版) 2011年4期2011-01-12

    • 分布式偏好及其在選擇中的作用
      接受偏好關系的傳遞性,還是準傳遞性,都會導致偏好關系的循環(huán),致使連最基本的選擇都無法做出,或出現(xiàn)選擇理論與選擇實踐相反矛盾的情景。分布式偏好是基于傳統(tǒng)偏好關系傳遞性基礎上提出的一種偏好關系,給出了分布式偏好的定義、相關定理以及選擇條件,對于經(jīng)典理論中因偏好關系傳遞性問題引起選擇困難的解決提供了一種新思路,解釋了個人在選擇中出現(xiàn)偏好反轉現(xiàn)象依舊能夠做出選擇的問題。社會選擇;行動主體;認知世界;偏好;模糊偏好;分布式偏好一、引言選擇依賴于偏好可以說選擇的本質(zhì)就

      河南社會科學 2010年4期2010-08-26

    夜夜躁狠狠躁天天躁| 欧美三级亚洲精品| 久久欧美精品欧美久久欧美| 亚洲精品粉嫩美女一区| 最近在线观看免费完整版| 亚洲第一电影网av| 国产乱人伦免费视频| 亚洲成人精品中文字幕电影| 听说在线观看完整版免费高清| 18禁裸乳无遮挡免费网站照片| 特大巨黑吊av在线直播| 日韩精品中文字幕看吧| 午夜a级毛片| 天堂√8在线中文| 最近视频中文字幕2019在线8| 午夜免费观看网址| 久久精品亚洲精品国产色婷小说| 午夜日韩欧美国产| 国产乱人伦免费视频| 免费看a级黄色片| 中文字幕人成人乱码亚洲影| 美女高潮喷水抽搐中文字幕| 久久人妻福利社区极品人妻图片| 久久午夜亚洲精品久久| svipshipincom国产片| 9191精品国产免费久久| 午夜激情av网站| 动漫黄色视频在线观看| av国产免费在线观看| 国产欧美日韩精品亚洲av| 色播亚洲综合网| 美女 人体艺术 gogo| 黄色丝袜av网址大全| 午夜久久久久精精品| 亚洲 欧美一区二区三区| 国产伦在线观看视频一区| av免费在线观看网站| 妹子高潮喷水视频| 婷婷精品国产亚洲av在线| 国产野战对白在线观看| 伊人久久大香线蕉亚洲五| 国产视频一区二区在线看| 黑人巨大精品欧美一区二区mp4| 国产伦在线观看视频一区| 一本大道久久a久久精品| 国产精品亚洲美女久久久| 国产精品野战在线观看| 可以在线观看毛片的网站| 午夜久久久久精精品| 欧洲精品卡2卡3卡4卡5卡区| 国产av一区在线观看免费| 日韩欧美在线二视频| 蜜桃久久精品国产亚洲av| 不卡av一区二区三区| 久久人人精品亚洲av| 久久久精品欧美日韩精品| 国产成人av教育| 国产激情欧美一区二区| 99国产极品粉嫩在线观看| 欧美日韩中文字幕国产精品一区二区三区| aaaaa片日本免费| 一级毛片精品| 免费看a级黄色片| 俄罗斯特黄特色一大片| 特大巨黑吊av在线直播| 一边摸一边做爽爽视频免费| 长腿黑丝高跟| 久久这里只有精品19| 看片在线看免费视频| 老熟妇仑乱视频hdxx| 99在线人妻在线中文字幕| 最近在线观看免费完整版| 国产精品电影一区二区三区| 精品电影一区二区在线| 丝袜美腿诱惑在线| 亚洲国产中文字幕在线视频| 在线观看免费视频日本深夜| 变态另类丝袜制服| 国产视频内射| 老熟妇乱子伦视频在线观看| 欧美黄色片欧美黄色片| 在线观看日韩欧美| 亚洲国产日韩欧美精品在线观看 | 校园春色视频在线观看| 又紧又爽又黄一区二区| 美女黄网站色视频| bbb黄色大片| 99国产精品99久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 69av精品久久久久久| 亚洲avbb在线观看| 国产精品久久久久久久电影 | 色在线成人网| 日韩av在线大香蕉| 久久久久久久久免费视频了| 此物有八面人人有两片| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| 久久精品亚洲精品国产色婷小说| 又紧又爽又黄一区二区| 2021天堂中文幕一二区在线观| 草草在线视频免费看| 51午夜福利影视在线观看| 色av中文字幕| 欧美成人午夜精品| 久久久水蜜桃国产精品网| 一级作爱视频免费观看| 久久久久久免费高清国产稀缺| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 99热这里只有精品一区 | 在线观看66精品国产| 丰满人妻一区二区三区视频av | 亚洲,欧美精品.| 国产精华一区二区三区| 午夜日韩欧美国产| 日韩精品免费视频一区二区三区| 香蕉国产在线看| 啦啦啦韩国在线观看视频| 97碰自拍视频| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 一区二区三区激情视频| 国产一区二区在线av高清观看| 成人手机av| 日日夜夜操网爽| 亚洲精品在线观看二区| 久久精品91无色码中文字幕| 日日夜夜操网爽| 最好的美女福利视频网| 久久天躁狠狠躁夜夜2o2o| 久久人妻av系列| 国产爱豆传媒在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 久久久久久亚洲精品国产蜜桃av| av免费在线观看网站| 五月玫瑰六月丁香| 国产精品美女特级片免费视频播放器 | 级片在线观看| 亚洲全国av大片| 久久中文字幕人妻熟女| 国产又黄又爽又无遮挡在线| 亚洲精品在线观看二区| 这个男人来自地球电影免费观看| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 69av精品久久久久久| 观看免费一级毛片| 国产野战对白在线观看| 欧美乱妇无乱码| 色综合婷婷激情| 国产成人系列免费观看| 精品欧美国产一区二区三| 一区二区三区国产精品乱码| www日本黄色视频网| 最近最新免费中文字幕在线| 亚洲av中文字字幕乱码综合| 一级a爱片免费观看的视频| a级毛片在线看网站| 啦啦啦观看免费观看视频高清| av中文乱码字幕在线| 久久亚洲真实| 亚洲成av人片在线播放无| 丁香欧美五月| 18禁裸乳无遮挡免费网站照片| 国产av麻豆久久久久久久| 免费看a级黄色片| av超薄肉色丝袜交足视频| 欧美久久黑人一区二区| 色哟哟哟哟哟哟| 国产91精品成人一区二区三区| 麻豆av在线久日| svipshipincom国产片| 中文字幕久久专区| 免费av毛片视频| 久久国产精品人妻蜜桃| www.www免费av| 免费人成视频x8x8入口观看| 国产精品久久久av美女十八| 欧美乱码精品一区二区三区| 日日夜夜操网爽| 久久久国产成人精品二区| 法律面前人人平等表现在哪些方面| 日本撒尿小便嘘嘘汇集6| 亚洲五月天丁香| 无人区码免费观看不卡| 免费看日本二区| 日韩大尺度精品在线看网址| 午夜两性在线视频| 国产免费男女视频| 两个人的视频大全免费| 老熟妇仑乱视频hdxx| 99久久精品热视频| 视频区欧美日本亚洲| 久久精品综合一区二区三区| 黄频高清免费视频| 香蕉国产在线看| 日本撒尿小便嘘嘘汇集6| 久久人妻av系列| 在线观看舔阴道视频| 一本综合久久免费| 变态另类成人亚洲欧美熟女| 波多野结衣高清无吗| 一a级毛片在线观看| av视频在线观看入口| 久久久国产成人精品二区| 国产免费男女视频| 国产高清激情床上av| 中国美女看黄片| 久久久久性生活片| 老司机深夜福利视频在线观看| 亚洲精品中文字幕在线视频| 不卡一级毛片| 精品久久久久久,| 久久婷婷成人综合色麻豆| 国产伦一二天堂av在线观看| 可以在线观看毛片的网站| 欧美最黄视频在线播放免费| 成人三级做爰电影| 久久午夜亚洲精品久久| 色播亚洲综合网| 宅男免费午夜| 国产91精品成人一区二区三区| 国内毛片毛片毛片毛片毛片| 91老司机精品| 亚洲精品中文字幕在线视频| 五月伊人婷婷丁香| 亚洲专区字幕在线| 动漫黄色视频在线观看| 精品不卡国产一区二区三区| 国产成人精品久久二区二区免费| 久久久久久九九精品二区国产 | 国产精品久久视频播放| 欧美另类亚洲清纯唯美| 人妻丰满熟妇av一区二区三区| 国产精品亚洲美女久久久| av免费在线观看网站| 九九热线精品视视频播放| 国产高清videossex| 亚洲真实伦在线观看| 一级片免费观看大全| 最新美女视频免费是黄的| 不卡av一区二区三区| 特级一级黄色大片| 日韩免费av在线播放| 久久久久久免费高清国产稀缺| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| 免费无遮挡裸体视频| www日本在线高清视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合久久99| 欧美3d第一页| 欧美乱码精品一区二区三区| 色在线成人网| 无限看片的www在线观看| 搞女人的毛片| 欧美 亚洲 国产 日韩一| 999精品在线视频| 成人三级做爰电影| 国产99久久九九免费精品| 欧美日本视频| 色尼玛亚洲综合影院| 九九热线精品视视频播放| 久久久久九九精品影院| 国产单亲对白刺激| 久久久精品大字幕| 亚洲国产精品久久男人天堂| 国产亚洲精品av在线| 91大片在线观看| 一级毛片精品| 日韩欧美在线乱码| 国产亚洲av高清不卡| 精品一区二区三区视频在线观看免费| 国产不卡一卡二| 国产91精品成人一区二区三区| 亚洲黑人精品在线| 男女那种视频在线观看| 在线观看www视频免费| av欧美777| 国产99白浆流出| 国产在线观看jvid| 亚洲成人精品中文字幕电影| 亚洲成人久久性| 精品久久久久久,| 婷婷六月久久综合丁香| 一a级毛片在线观看| 欧美日韩黄片免| 成在线人永久免费视频| 亚洲av日韩精品久久久久久密| 国产精品九九99| 久久中文看片网| 免费观看人在逋| 亚洲美女视频黄频| 国内毛片毛片毛片毛片毛片| 99热6这里只有精品| 精品欧美一区二区三区在线| 国产精品一区二区免费欧美| 中文字幕最新亚洲高清| 岛国在线观看网站| 老熟妇仑乱视频hdxx| 国产主播在线观看一区二区| 亚洲av第一区精品v没综合| 国产97色在线日韩免费| 国产熟女xx| 亚洲乱码一区二区免费版| 国产成人精品无人区| 两个人看的免费小视频| 日韩欧美国产一区二区入口| 嫩草影院精品99| 九九热线精品视视频播放| 欧美日韩黄片免| 欧美一区二区国产精品久久精品 | 国产人伦9x9x在线观看| 国产男靠女视频免费网站| 久久久久久久午夜电影| 十八禁人妻一区二区| 亚洲av成人一区二区三| 女人高潮潮喷娇喘18禁视频| 久久人妻福利社区极品人妻图片| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| avwww免费| 1024视频免费在线观看| 高清在线国产一区| 欧美高清成人免费视频www| 欧美中文综合在线视频| 999久久久精品免费观看国产| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 亚洲欧美日韩高清在线视频| 亚洲成av人片免费观看| 久久久久免费精品人妻一区二区| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 最新美女视频免费是黄的| 精华霜和精华液先用哪个| 一本一本综合久久| 日日夜夜操网爽| 午夜a级毛片| 99久久精品国产亚洲精品| 精品少妇一区二区三区视频日本电影| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| 人人妻,人人澡人人爽秒播| 琪琪午夜伦伦电影理论片6080| svipshipincom国产片| 夜夜看夜夜爽夜夜摸| 国产精品日韩av在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 欧美日韩国产亚洲二区| 啦啦啦观看免费观看视频高清| 久久精品人妻少妇| 精品久久久久久久毛片微露脸| 欧美国产日韩亚洲一区| 麻豆久久精品国产亚洲av| 精品人妻1区二区| 亚洲av电影在线进入| 午夜免费激情av| 女人被狂操c到高潮| 国产精品美女特级片免费视频播放器 | 免费搜索国产男女视频| 少妇的丰满在线观看| 在线国产一区二区在线| 国语自产精品视频在线第100页| 欧美又色又爽又黄视频| 久久久久久久久久黄片| 丁香欧美五月| 日本a在线网址| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 一级毛片女人18水好多| 亚洲熟女毛片儿| 欧美黑人欧美精品刺激| 久久久久久亚洲精品国产蜜桃av| 韩国av一区二区三区四区| 国产精品,欧美在线| 99久久综合精品五月天人人| 12—13女人毛片做爰片一| 最近最新中文字幕大全免费视频| 亚洲男人的天堂狠狠| 国产99白浆流出| 日韩av在线大香蕉| 91九色精品人成在线观看| 又粗又爽又猛毛片免费看| 久久天躁狠狠躁夜夜2o2o| 国产激情欧美一区二区| 国内少妇人妻偷人精品xxx网站 | 国产三级中文精品| 国产蜜桃级精品一区二区三区| 麻豆av在线久日| 嫁个100分男人电影在线观看| 69av精品久久久久久| 精品国内亚洲2022精品成人| 中文字幕人成人乱码亚洲影| 又大又爽又粗| 国产亚洲精品av在线| 国产爱豆传媒在线观看 | 国产亚洲精品一区二区www| 国产av在哪里看| 亚洲国产精品999在线| 国产麻豆成人av免费视频| 欧美激情久久久久久爽电影| 国产男靠女视频免费网站| 免费人成视频x8x8入口观看| 欧美一级a爱片免费观看看 | 日本a在线网址| e午夜精品久久久久久久| 精品国产亚洲在线| 俄罗斯特黄特色一大片| 国产精品 国内视频| 国产人伦9x9x在线观看| 午夜福利18| 久久中文字幕人妻熟女| 99国产精品99久久久久| 宅男免费午夜| 婷婷丁香在线五月| 动漫黄色视频在线观看| 欧美成人一区二区免费高清观看 | 午夜两性在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 老汉色∧v一级毛片| 亚洲人与动物交配视频| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区| 美女大奶头视频| 日韩欧美在线二视频| 久久中文看片网| 精品国内亚洲2022精品成人| 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 日日干狠狠操夜夜爽| av福利片在线观看| 国产精品久久视频播放| 午夜日韩欧美国产| or卡值多少钱| 色综合婷婷激情| 久久久精品欧美日韩精品| 久久人妻av系列| 草草在线视频免费看| 欧美一级毛片孕妇| 久久精品aⅴ一区二区三区四区| 亚洲第一欧美日韩一区二区三区| 人人妻人人澡欧美一区二区| 久久草成人影院| 91字幕亚洲| 别揉我奶头~嗯~啊~动态视频| 国语自产精品视频在线第100页| 俄罗斯特黄特色一大片| 欧美日韩国产亚洲二区| 国产精品久久久人人做人人爽| 可以免费在线观看a视频的电影网站| 久久精品国产综合久久久| 国内精品一区二区在线观看| 国产亚洲精品第一综合不卡| 免费观看人在逋| 黑人操中国人逼视频| 亚洲自拍偷在线| 亚洲av熟女| 成人av在线播放网站| 精品久久久久久久久久免费视频| 国产男靠女视频免费网站| 免费看十八禁软件| 日韩欧美在线乱码| 亚洲美女视频黄频| 无人区码免费观看不卡| 在线观看免费视频日本深夜| 99国产综合亚洲精品| 啦啦啦韩国在线观看视频| 1024香蕉在线观看| 熟女少妇亚洲综合色aaa.| 日韩欧美 国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 国产高清视频在线播放一区| 在线观看免费午夜福利视频| 又粗又爽又猛毛片免费看| 亚洲人与动物交配视频| 久久欧美精品欧美久久欧美| 欧美一级毛片孕妇| 88av欧美| 亚洲一区二区三区不卡视频| 久久久久国内视频| 日韩精品青青久久久久久| 老司机福利观看| 他把我摸到了高潮在线观看| 精品久久久久久久人妻蜜臀av| 18禁美女被吸乳视频| 午夜两性在线视频| 亚洲欧美激情综合另类| 国产精品香港三级国产av潘金莲| 人妻丰满熟妇av一区二区三区| 极品教师在线免费播放| 一级黄色大片毛片| 亚洲人与动物交配视频| 午夜a级毛片| 怎么达到女性高潮| 搡老妇女老女人老熟妇| 国产99白浆流出| 桃色一区二区三区在线观看| 村上凉子中文字幕在线| 最新美女视频免费是黄的| 露出奶头的视频| 精品福利观看| 日本一区二区免费在线视频| 男女下面进入的视频免费午夜| 50天的宝宝边吃奶边哭怎么回事| 久久中文字幕一级| 亚洲午夜精品一区,二区,三区| 一本一本综合久久| 在线视频色国产色| 精品久久久久久久久久免费视频| 欧美日韩亚洲综合一区二区三区_| 在线观看66精品国产| 18禁黄网站禁片午夜丰满| 午夜福利欧美成人| 99精品在免费线老司机午夜| 亚洲一码二码三码区别大吗| 每晚都被弄得嗷嗷叫到高潮| 特大巨黑吊av在线直播| 国产av不卡久久| 男男h啪啪无遮挡| 狠狠狠狠99中文字幕| 不卡一级毛片| 精品欧美一区二区三区在线| 十八禁网站免费在线| 一本大道久久a久久精品| 黄片大片在线免费观看| 大型黄色视频在线免费观看| 国产成人啪精品午夜网站| 亚洲18禁久久av| 老司机深夜福利视频在线观看| 国产精华一区二区三区| 无遮挡黄片免费观看| 国产激情久久老熟女| 女生性感内裤真人,穿戴方法视频| 日韩精品中文字幕看吧| 欧美人与性动交α欧美精品济南到| 国产在线观看jvid| 国产探花在线观看一区二区| 久久久久久国产a免费观看| 99久久99久久久精品蜜桃| 免费观看人在逋| 亚洲aⅴ乱码一区二区在线播放 | 18禁黄网站禁片免费观看直播| 成年女人毛片免费观看观看9| 成人三级黄色视频| 特大巨黑吊av在线直播| 搡老岳熟女国产| 熟女少妇亚洲综合色aaa.| 国产主播在线观看一区二区| 亚洲欧洲精品一区二区精品久久久| 久久天堂一区二区三区四区| 好男人在线观看高清免费视频| 欧美黑人巨大hd| www.熟女人妻精品国产| 欧美黑人精品巨大| 伦理电影免费视频| 午夜免费观看网址| 亚洲在线自拍视频| 亚洲成人久久性| 国产一区二区在线av高清观看| 国产精品一区二区免费欧美| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 色综合亚洲欧美另类图片| 制服人妻中文乱码| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添小说| 久久久精品欧美日韩精品| 国产免费男女视频| 国产精品久久久久久人妻精品电影| 18禁黄网站禁片午夜丰满| 中文字幕av在线有码专区| 欧美性猛交黑人性爽| 成人欧美大片| 久久久久久久午夜电影| 一本大道久久a久久精品| 欧美在线一区亚洲| 三级男女做爰猛烈吃奶摸视频| 久久午夜亚洲精品久久| 伊人久久大香线蕉亚洲五| 成年女人毛片免费观看观看9| 少妇被粗大的猛进出69影院| 精品久久久久久久久久久久久| 日本精品一区二区三区蜜桃| 免费观看精品视频网站| 19禁男女啪啪无遮挡网站| 在线观看舔阴道视频| 99国产精品一区二区蜜桃av| 曰老女人黄片| 在线观看免费日韩欧美大片| 久久久久久九九精品二区国产 | 国产免费男女视频| 色精品久久人妻99蜜桃| 久久香蕉精品热| 可以在线观看的亚洲视频| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 国产欧美日韩精品亚洲av| 亚洲国产欧美网| 免费观看人在逋| 麻豆成人av在线观看| 亚洲欧美日韩高清专用| 亚洲av成人不卡在线观看播放网| 国产精品亚洲av一区麻豆| 国产蜜桃级精品一区二区三区| 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| 老司机在亚洲福利影院| 真人一进一出gif抽搐免费| 女人高潮潮喷娇喘18禁视频| 亚洲男人的天堂狠狠| 免费高清视频大片|