中圖分類號(hào):S184 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1002-1302(2025)10-0001-12
植物在生長(zhǎng)發(fā)育過(guò)程中,常常伴隨著各種組織器官的顏色變化,對(duì)環(huán)境、植物本身或者人類生活都具有重要的價(jià)值。比如,彩葉植物具有高觀賞性;花色能夠吸引昆蟲(chóng)傳粉、躲避天敵;彩色果實(shí)內(nèi)的色素能夠提供較高的營(yíng)養(yǎng)和較好的風(fēng)味等。因此,植物呈色機(jī)制的研究愈發(fā)必要。隨著現(xiàn)代分子生物學(xué)和生物信息學(xué)的迅猛發(fā)展,轉(zhuǎn)錄組和代謝組技術(shù)的出現(xiàn)為植物呈色機(jī)制的研究提供了新支撐
轉(zhuǎn)錄組技術(shù)可以檢測(cè)植物呈色狀態(tài)下特定組織轉(zhuǎn)錄水平的整體差異,揭示不同顏色下的差異表達(dá)基因。代謝組是基因和表型之間的橋梁,是基因-轉(zhuǎn)錄-翻譯的最終產(chǎn)物。隨著生物學(xué)研究的不斷深入,單一的轉(zhuǎn)錄組或代謝組研究已不能較完整地闡述植物呈色機(jī)制。因此,轉(zhuǎn)錄組和代謝組聯(lián)合分析成為一種突破單一組學(xué)研究瓶頸的有效方法。轉(zhuǎn)錄組和代謝組聯(lián)合分析可以反映植物呈色狀態(tài)下基因轉(zhuǎn)錄到代謝的情況,實(shí)現(xiàn)差異基因與差異代謝物共表達(dá)分析,探究基因與代謝物的關(guān)系,篩選出重要通路、關(guān)鍵基因和關(guān)鍵代謝物,系統(tǒng)地解析植物呈色的調(diào)控過(guò)程。迄今為止,轉(zhuǎn)錄組和代謝組技術(shù)已應(yīng)用于許多植物組織器官的呈色研究中,從深層次挖掘了關(guān)鍵基因和關(guān)鍵代謝物,探索了各分子之間的調(diào)控及因果關(guān)系,解析了基因功能和互作網(wǎng)絡(luò)。在此背景下,本文綜述了轉(zhuǎn)錄組和代謝組技術(shù)在植物葉、花、果實(shí)等組織器官呈色方面的研究進(jìn)展,分析了突變和外界因素對(duì)植物呈色的影響,整合了當(dāng)前研究存在的問(wèn)題并進(jìn)行了展望,為深入探析植物呈色機(jī)制、培育彩色新品種提供了參考。
1基于雙組學(xué)植物不同組織器官呈色機(jī)制研究
花、葉、果實(shí)、根、種子等植物組織器官的顏色形成是一個(gè)極其復(fù)雜的過(guò)程。在顏色形成過(guò)程中,植物需要大量基因和代謝物發(fā)揮功能,因此,闡述植物呈色調(diào)控機(jī)制是一個(gè)巨大的挑戰(zhàn)。目前,轉(zhuǎn)錄組和代謝組聯(lián)合分析已經(jīng)在探索植物不同組織器官呈色中得到了廣泛應(yīng)用,具體如表1所示。
1.1花色
花色是植物重要的觀賞性狀和品種分類標(biāo)準(zhǔn),不僅提高了花的觀賞價(jià)值、應(yīng)用價(jià)值和經(jīng)濟(jì)價(jià)值,而且是植物向傳粉者傳遞信號(hào)的重要功能性狀,在植物繁殖中起著重要作用。
綜合近幾年轉(zhuǎn)錄組和代謝組聯(lián)合分析在花色調(diào)控機(jī)制中的應(yīng)用研究,發(fā)現(xiàn)調(diào)控花色的色素主要是類黃酮/花青素和類胡蘿卜素,其中類黃酮/花青素是最常見(jiàn)、研究最廣的色素。研究對(duì)其關(guān)鍵/主要通路、調(diào)節(jié)基因(包括結(jié)構(gòu)基因、轉(zhuǎn)錄因子等)進(jìn)行了挖掘和分析。例如,F(xiàn)3GT1通過(guò)調(diào)節(jié)LAR和ANR來(lái)影響鹿角杜鵑花瓣花青素的合成和積累,調(diào)控紫色花瓣形成[1];bHLH63轉(zhuǎn)錄因子可能調(diào)控PmCCD4 ,從而影響梅花花瓣中葉黃素的積累,是梅花花瓣呈現(xiàn)黃色的關(guān)鍵2;玫瑰花瓣中MYB(RC7G0019000)和WRKY(RC1G0363600)可能結(jié)合了F3'H(RC7G0058400)DFR(RC6G0470600)或ANS(RC7G0212200)的啟動(dòng)子,WRKY(RC1G0363600)也可能與MYB(RC7G0019000)的啟動(dòng)子結(jié)合,激活玫瑰花斑點(diǎn)區(qū)域矢車菊素等花青素的積累,促使玫瑰花瓣從玫紅色到深紅色斑點(diǎn)的形成[3]
1.2 葉色
葉色是植物重要的表型特征,在觀賞性、食用性以及品種分辨等方面具有重要作用。綜合轉(zhuǎn)錄組和代謝組技術(shù)在植物葉片呈色機(jī)制中的研究顯示,類黃酮/花青素、類胡蘿卜素等是影響植物葉片呈色的主要色素,其中類黃酮/花青素色素研究范圍最廣。目前,部分植物葉色的分子調(diào)控機(jī)制通過(guò)雙組學(xué)技術(shù)被闡述。例如,SOCI(MADS-box)、CPC(MYB) 和bHLHI62(bHLH)轉(zhuǎn)錄因子可能直接或間接調(diào)控DFR、ANS和UFGTI等結(jié)構(gòu)基因來(lái)影響香椿花青素的合成和積累,間接控制香椿紅葉表型[4]; F3′H 參與了矢車菊素-3-0-葡萄糖苷的形成且相關(guān)性較高,bHLHI和bHLH2轉(zhuǎn)錄因子與F3′H 表達(dá)模式相似,并在閩楠紅葉過(guò)表達(dá)試驗(yàn)中被驗(yàn)證促進(jìn)花青素的合成[5;美洲黑楊紫葉形成過(guò)程中,屬于SG5亞家族的R2R3-MYB轉(zhuǎn)錄因子Podel.04G021100與 及UFGT等結(jié)構(gòu)基因有相似的表達(dá)模型,且與花青素化合物含量顯著相關(guān),表明Podel.04G021100調(diào)節(jié)花青素的合成和積累[6]
1.3果色
果色是植物重要的品質(zhì)性狀之一,賦予顏色的色素關(guān)系到果實(shí)的營(yíng)養(yǎng)、健康和風(fēng)味。因此,果色一直是育種者和消費(fèi)者非常重視的表型。果實(shí)之所以能呈現(xiàn)出鮮艷的顏色,是因?yàn)橛性S多與果色相關(guān)色素的存在。
綜合近幾年轉(zhuǎn)錄組和代謝組技術(shù)在植物果實(shí)呈色上的應(yīng)用報(bào)道,發(fā)現(xiàn)類黃酮/花青素、類胡蘿卜素以及甜菜素等色素對(duì)果色具有關(guān)鍵作用,其中類黃酮/花青素研究范圍最廣,且在大部分果實(shí)呈色中起主導(dǎo)作用。目前,通過(guò)雙組學(xué)挖掘了一批關(guān)鍵/主要的調(diào)節(jié)因子,分析了相關(guān)的分子調(diào)節(jié)機(jī)制。比如,矢車菊素-3-0-半乳糖苷是軟棗弼猴果實(shí)呈現(xiàn)紅色的關(guān)鍵因子,結(jié)構(gòu)基因(AaPAL3、Aa4CL3、AaCHS2/3/8/9/11、AaDFR1/2、AaANR1、UFGT3a、UFGT6b)和轉(zhuǎn)錄因子(MYB108、bHLH30、bHLH94-1、WD43)調(diào)節(jié)矢車菊素-3-0-半乳糖苷的合成和積累[7];CMB1-1、WRKY22-1、WRKY22-3和RAP2-I3-like 轉(zhuǎn)錄因子通過(guò)調(diào)節(jié)PSYI和ZDSI等結(jié)構(gòu)基因,調(diào)控類胡蘿卜素化合物的合成,影響枸杞果實(shí)呈色效果[8]?;瘕埞t色和黃色果皮的形成主要依賴于甜菜素生物合成通路,WRKY轉(zhuǎn)錄因子激活CYP76ADs的表達(dá)[9。
1.4其他組織器官
除了葉、花、果外,部分植物的根、莖、種子等組織器官也通過(guò)轉(zhuǎn)錄組和代謝組聯(lián)合分析了呈色研究。 CHS,CHI,DFR,F(xiàn)LS,F(xiàn)3H,F(xiàn)3′5′H,LAR,ANS, ANR等57個(gè)基因和柚皮苷查爾酮、柚皮素等代謝物在參薯塊莖呈色中扮演重要角色[10];紫竹莖呈現(xiàn)紫黑色是由于矮牽牛素-3-0-葡萄糖苷和錦葵色素-O-己糖苷的差異積累,其中PnMYB6、PnMYB1PnbHLHs、PnAnl1以及PnSPL9等轉(zhuǎn)錄因子調(diào)控 PnF3′Hs,PnF3′5′Hs,PnANS2,PnUFGTs PnCHI2 以及 PnCHSI 等結(jié)構(gòu)基因的表達(dá),影響花青素的合成和積累[\"];綠豆呈黑色是由于其富含花青素,VrMYB90是重要的調(diào)節(jié)因子[12] C
通過(guò)轉(zhuǎn)錄組和代謝組聯(lián)合分析對(duì)植物花、葉、果等組織器官進(jìn)行呈色機(jī)制分析,發(fā)現(xiàn)類黃酮/花青素色素在植物呈色過(guò)程中是最常見(jiàn)且最主要的色素。其中,葉片呈色的主要色素與前人的研究結(jié)果[13]一致。然而,影響花瓣呈色的色素與前人研究的不太相符(有研究表明,植物花瓣呈色色素包括類黃酮類/花青素、類胡蘿卜素類以及甜菜素[14]),缺少花瓣呈色研究中甜菜素的影響,可能是相關(guān)研究或者論文并沒(méi)有報(bào)道。
2基于雙組學(xué)植物不同組織器官顏色突變研究
自然界中,大量植物的花、葉、果實(shí)等組織器官顏色發(fā)生了變異。在我們?nèi)粘I钪?,一些蔬菜、水果、觀賞植物、中藥材等植物品種往往來(lái)源于顏色變異。近年來(lái),隨著轉(zhuǎn)錄組和代謝組技術(shù)的不斷發(fā)展,這些常見(jiàn)的顏色變異的品種的呈色機(jī)制也被進(jìn)行了雙組學(xué)研究,具體如表2所示。
綜合近幾年轉(zhuǎn)錄組和代謝組聯(lián)合分析在植物不同組織器官顏色突變呈色機(jī)制中的相關(guān)報(bào)道,得出顏色突變主要還是由葉綠素、類胡蘿卜素以及類黃酮/花青素3類色素的差異積累所導(dǎo)致的,其中一些結(jié)構(gòu)基因、轉(zhuǎn)錄因子等調(diào)節(jié)因子被挖掘出來(lái)。例如,MYB21、UGT88F3、GSTF12和VPS32.3等基因與矢車菊素-3-0-葡萄糖苷的合成和積累密切相關(guān),共同調(diào)節(jié)陸地棉突變體花瓣呈現(xiàn)粉紅色和底部深紅色的斑點(diǎn)[63]; MaMYBII3a/b 基因在葡萄風(fēng)信子花色突變體花瓣白色區(qū)域低表達(dá),紫色區(qū)域高表達(dá),促進(jìn)了花青素的積累[64];葉綠素b還原酶基因NYCI的上調(diào)表達(dá)和4個(gè)Lhcb基因的下調(diào)表達(dá)加速了哈密瓜突變體黃綠色葉片中葉綠素b的降解,抑制了LhcB2蛋白的表達(dá),使其突變體在整個(gè)生育期均表現(xiàn)為黃綠葉表型[65];MdMYB66能夠特異性激活MdF3H,調(diào)節(jié)花青素的合成和積累,使蘋(píng)果芽突變體幼果果皮呈現(xiàn)深紅色[];BhiPRR6與多個(gè)基因相互作用,調(diào)控光信號(hào)的吸收,從而改變冬瓜果皮的顏色和類黃酮化合物的合成[67]
通過(guò)轉(zhuǎn)錄組和代謝組聯(lián)合分析技術(shù),闡述了植物組織器官顏色突變機(jī)制,篩選出了關(guān)鍵/主要代謝通路、代謝物以及基因,為后續(xù)植物呈色研究和突變物種的篩選提供了新的基因資源。
3基于雙組學(xué)外界因素對(duì)植物呈色影響機(jī)理的研究
植物花、葉、果實(shí)等組織器官受到外界因素的干擾,會(huì)呈現(xiàn)出不同的顏色,并通過(guò)轉(zhuǎn)錄組和代謝組進(jìn)行調(diào)控機(jī)理分析,具體如表3所示。
不同地域環(huán)境的差異會(huì)影響植物花色。例如,種植于青海省共和地區(qū)和西寧地區(qū)的甘青鐵線蓮花瓣呈現(xiàn)不同的顏色。通過(guò)雙組學(xué)分析可知,類黃酮類化合物是花色主要調(diào)節(jié)色素,BZ1-1和FG3-1 是花青素生物合成中飛燕草素-3-0-蕓香糖苷的關(guān)鍵基因,HCT-5和FG3-3是類黃酮生物合成中野漆樹(shù)苷和柚皮苷以及黃酮和黃酮醇的關(guān)鍵基因,類黃酮生物合成中綠原酸的關(guān)鍵基因包括HCT-6、CHS-1 和 IF7MAT-1[84]
葉色研究顯示,光、轉(zhuǎn)基因手段、環(huán)剝手段以及溫度等影響植物葉色的改變。高強(qiáng)度光照下辣椒葉片變黃是由于 bHLH7I-like,CaVDE 和LUT5的表達(dá)增加,ZEP的表達(dá)降低,進(jìn)一步促進(jìn)了花青素和玉米黃質(zhì)的生物合成和積累,進(jìn)而導(dǎo)致葉片變黃[85];對(duì)紅楓枝條進(jìn)行環(huán)狀剝皮處理,導(dǎo)致該部位以上葉片呈現(xiàn)紅色,其中Pkinase(c108619.graph_ )、UDPGT(c117950.graph_
)、Metallophos(cl15191. graph
)、Ampbinding(c109312. graph_cO )、UDP-GT(C122287.c)通過(guò)調(diào)節(jié)苯丙素生物合成、花青素生物合成和黃酮類生物合成來(lái)調(diào)節(jié)紅楓葉片的顏色[8];AmRoseal基因在84K楊樹(shù)中過(guò)表達(dá),直接調(diào)控BZ1 ,ANS 和DFR等基因,增加了葉片中花青素相關(guān)代謝物的含量,使84K楊樹(shù)葉片由綠變紅[87];低溫馴化可以間接促進(jìn)白菜Y-05葉片內(nèi)部 BrFLU 的表達(dá),阻斷 α- 亞麻酸(ALA)的合成,導(dǎo)致葉綠素含量降低,葉片變黃[88]
果實(shí)顏色受光、激素、輻射、嫁接、病菌侵染等外界因素影響。辣椒 48h 光處理后,其CHS2、D F R \ 、 F 3 ^等結(jié)構(gòu)基因和MYB4-like、MYB113-like、MYB308-like、EGL1等轉(zhuǎn)錄因子調(diào)節(jié)飛燕草素等花青素的合成,使果實(shí)呈現(xiàn)淺紫色[9];葡萄葉面施用三碳酸鈾酰胺(AUT)能夠使trpB轉(zhuǎn)錄因子上調(diào),并促進(jìn)葬草酸途徑中生物堿的生物合成,提高了代謝物L(fēng)-苯丙氨酸的積累,增強(qiáng)了 CHI,PAL,DFR 等基因的活性,改變了果實(shí)顏色,縮短了著色期[90];克瑞森無(wú)核葡萄異種嫁接促進(jìn)花青素生物合成通路中上游(PAL)到下游(UFGT、ANS)相關(guān)基因的表達(dá),增加花青素含量,使果色較早形成[9];中波紫外線(UV-B)誘導(dǎo)青蘋(píng)果呈現(xiàn)紅色可能是通過(guò)調(diào)控UV-B響應(yīng)信號(hào)[包括UVR8(MD12G1149100)和MBW復(fù)合體成員」,調(diào)控花青素生物合成基因的表達(dá)[92];HLB侵染使砂糖橘果皮持綠,可能涉及苯丙素衍生代謝途徑和光合相關(guān)基因下調(diào)[93] 。
綜上,外界因素對(duì)植物花、葉、果實(shí)等組織器官呈色影響明顯,能夠影響植物色素合成途徑相關(guān)基因的表達(dá),進(jìn)而影響色素的合成和積累。
4展望
轉(zhuǎn)錄組和代謝組聯(lián)合分析可以提高關(guān)鍵基因和關(guān)鍵代謝物篩選的準(zhǔn)確性,更能全面地解析植物組織器官呈色調(diào)控機(jī)制。近年來(lái),轉(zhuǎn)錄組和代謝組技術(shù)的快速發(fā)展,推動(dòng)了植物呈色方面的研究進(jìn)展,系統(tǒng)全面地解析了植物從轉(zhuǎn)錄到代謝的呈色機(jī)制,為植物呈色機(jī)制的深入研究和彩色新品種的培育提供了資料基礎(chǔ)。
目前,植物轉(zhuǎn)錄組和代謝組分析植物呈色機(jī)制的研究成果還不夠完善:許多植物全基因組測(cè)序尚未完成或不夠完善,缺少參考基因組,導(dǎo)致需要借助生物信息學(xué)進(jìn)行基因功能注釋;代謝物結(jié)構(gòu)類型的多樣性和未知代謝物鑒定的復(fù)雜性導(dǎo)致多種代謝物的種類未能被鑒別;一些植物生長(zhǎng)周期長(zhǎng)等特點(diǎn)導(dǎo)致了很多基因的功能尚不明確。因此,植物呈色調(diào)控網(wǎng)絡(luò)上還有許多空白位點(diǎn),仍需要更多的差異代謝物和差異基因來(lái)填補(bǔ)?;谏鲜鰡?wèn)題,將來(lái)的試驗(yàn)設(shè)計(jì)可以為:進(jìn)行更多的植物全基因組測(cè)序,進(jìn)一步拓展生物信息數(shù)據(jù)庫(kù);將不同組學(xué)技術(shù)整合應(yīng)用,更精準(zhǔn)、更深入地揭示植物呈色調(diào)控網(wǎng)絡(luò);探索類黃酮、類胡蘿卜素、甜菜素以外的色素代謝研究,豐富代謝數(shù)據(jù)信息。
參考文獻(xiàn):
[1]Xiao P,Zhang H,Liao QL,et al.Insightinto the molecular mechanism of flowercolorregulationin Rhododendron latoucheae Franch:a multi-omics approach[J]. Plants,2023,12(16) :2897.
[2]DingAQ,BaoF,YuanX,etal.Integrativeanalysisofmetabolome andtranscriptomerevealed luteinmetabolismcontributedtoyellow flowerformationinPrunusmume[J].Plants,2023,12(18) :3333.
[3]JiNZ,Wang QY,Li SS,etal.Metabolic profile and transcriptome revealthemysteryof petalblotch formationinrose[J].BMCPlant Biology,2023,23(1) :46.
[4]XuJ,F(xiàn)anYR,HanXJ,etal.Integrated transcriptomic and metabolomicanalysisrevealtheunderlyingmechanismof anthocyaninbiosynthesisin Toonasinensisleaves[J].International Journal ofMolecularSciences,2023,24(20):15459.
[5]Wang L,Wang Q G,F(xiàn)u N N,et al. Cyanidin -3- O - glucoside contributes to leaf colorchangebyregulatingtwobHLH transcription factorsin Phoebebournei[J].International Journal ofMolecular Sciences,2023,24(4) :3829.
[6]Peng XQ,Ai Y J,Pu Y T,et al. Transcriptome and metabolome analysesreveal molecularmechanismsofanthocyanin-relatedleaf colorvariationinpoplar(Populusdeltoides)cultivars[J].Frontiers in Plant Science,2023,14:1103468.
[7]Ye L X,Bai F X,Zhang L,et al. Transcriptome and metabolome analyses of anthocyanin biosynthesis inpost-harvest fruitsofafull red-type kiwifruit(Actinidia arguta)‘Jinhongguan’[J]. FrontiersinPlant Science,2023,14:1280970.
[8]WeiF,WanR,Shi ZG,etal.Transcriptomicsand metabolomics reveal the critical genes of carotenoid biosynthesis and color formationof goji(LyciumbarbarumL.)fruit ripening[J].Plants, 2023,12(15) :2791.
[9]ZhouZX,Gao HM,MingJH,etal.Combined transcriptome and metabolome analysis of pitaya fruit unveiled the mechanisms underlying peel and pulp color formation[J].BMC Genomics, 2020,21(1) :734.
[10]Wang Y,LuRS,Li MH,et al.Unraveling the molecular basis of colorvariation in Dioscorea alata tubers:integrated transcriptome and metabolomics analysis[J].International Journal of Molecular Sciences,2024,25(4) :2057.
[11] Cai O, Zhang H J,Yang L,et al. Integrated transcriptome and metabolomeanalysesrevealbambooculmcolorformation mechanismsinvolved inanthocyaninbiosyntheticinPhyllostachys nigra[J].International Journal of Molecular Sciences,2024,25 (3) :1738.
[12]Ma C,F(xiàn)engY L,Zhou S,et al. Metabolomics and transcriptomics provide insights into the molecular mechanisms of anthocyanin accumulation in the seed coat of differently colored mung bean (Vigna radiata L.)[J]. Plant Physiology and Biochemistry,2023, 200:107739.
[13]陳璇,謝軍,岳遠(yuǎn)征,等.彩葉植物葉片呈色分子機(jī)制研究 進(jìn)展[J].西北植物學(xué)報(bào),2020,40(2):358-364.
[14]張和臣,袁欣,高杰,等.植物花瓣呈色機(jī)理及花色分子育 種[J].生物技術(shù)通報(bào),2023,39(5):23-31.
[15]Wang D,Liu G L,Yang J,et al.Integrated metabolomics and transcriptomics reveal molecular mechanisms of corolla coloration in Rhododendron dauricumL.[J].Plant Physiologyand Biochemistry,2024,207:108438.
[16]Huang L,Lin B G,Hao P F,et al. Multi -omics analysis reveals thatanthocyanin degradation and phytohormone changes regulate red color fading in rapeseed(Brassica napus L.)petals[J]. International Journal of Molecular Sciences,2024,25(5) :2577.
[17] Huang X Z,Liu L,Qiang XJ,et al.Integrated metabolomic and transcriptomic profiles provide insights into the mechanisms of anthocyanin and carotenoid biosynthesis in petals of Medicago sativa ssp. sativa and Medicago sativa ssp. falcata[J]. Plants,2024,13 (5) :700.
[18] Zeng H T,Zheng T,Tang Q,et al. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleiferapetals with different color[J].BMC Plant Biology,2024,24 (1) :19.
[19]Jiang W H,Jiang QQ,Shui ZJ,et al.HaMYBA - HabHLH1 regulatory complex and HaMYBF fine-tune red flower coloration in the corolla of sunflower(Helianthusannuus L.)[J].Plant Science,2024,338:111901.
[20]Qu Y,Ou Z,Yong QQ,etal.Coloration differences in three Camellia reticulata Lindl.cultivars:‘ Tongzimian’,‘ Shizitou’and ‘Damanao'[J].BMC Plant Biology,2024,24(1):18.
[21]Hu X M,Sun TX,Liang Z H,et al.Transcription factors TgbHLH42-1 and TgbHLH42-2 positively regulate anthocyanin biosynthesis in tulip(Tulipa gesneriana L.)[J].Physiologia Plantarum,2023,175(3):e13939.
[22]DengXY,Hu C,Xie C Z,etal.Metabolomic and transcriptomic analysis reveal the role of metabolitesand genes in modulating flower color of Paphiopedilum micranthum[J].Plants,2023,12(10):2058.
[23]Ma L L,Zhang Y P,Cui G F,et al. Transcriptome analysis of key genes involved in color variation between blue and white flowers of iris bulleyana[J].BioMed Research International,2023,2023(1): 7407772.
[24]Shu W B,Shi M R,ZhangQ Q,et al. Transcriptomic and metabolomic analyses reveal differences in flavonoid pathway gene expression profiles between two Dendrobium varieties during vernalization[J].International Journal ofMolecularSciences, 2023,24(13) :11039.
[25]Qiu YJ,Cai C C,Mo X,et al. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl[J].Frontiers in Plant Science,2023, 14:1220507.
[26]LiYL,Sun Z S,Lu JY,et al.Integrated transcriptomics and metabolomics analysis provide insight into anthocyanin biosynthesis for sepal color formation in Heptacodium miconioides[J]. Frontiers inPlant Science,2023,14:1044581.
[27]ZhuZS,ZengXM,ShiXQ,etal.Transcriptionand metabolic profiling analysisof three discolorationsinaday of Hibiscus mutabilis[J].Biology,2023,12(8) :1115.
[28]Wu D,ZhuangFC,WangJR,et al.Metabolomicsand transcriptomics revealed a comprehensive understanding of the biochemical and genetic mechanisms underlying the color variations in Chrysanthemums[J]. Metabolites,2023,13(6):742.
[29]Zhou NZ,Yan YJ,Wen Y F,et al. Integrated transcriptome and metabolome analysis unveils the mechanism of color - transition in Edgeworthia chrysantha tepals[J]. BMC Plant Biology,2023,23 (1) :567.
[30]Sun Y,Hu PL,JiangYN,et al.Integrated metabolome and transcriptome analysisof petal anthocyaninaccumulationmechanism inGloriosasuperba‘Rothschildiana’during different flower development stages[J].International Journal of Molecular Sciences, 2023,24(20):15034.
[31]Zhao T,Yu Q X,Lin C J,et al.Analyzing morphology, metabolomics,and transcriptomics offrs invaluable insights into the mechanisms of pigment accumulation in the diverse- colored labellum tissuesofAlpinia[J].Plants,2023,12(21):3766.
[32]AiY,ZhengQD,Wang MJ,et al.Molecular mechanism of differentflowercolorformationofCymbidiumensifolium[J].Plant Molecular Biology,2023,113(4/5):193-204.
[33]ZhangM,LiYY,WangJL,et al.Integrated transcriptomic and metabolomic analyses revealsanthocyanin biosynthesis in leaf coloration of quinoa (Chenopodium quinoa Willd.)[J].BMC Plant Biology,2024,24(1) :203.
[34]Liu Q,Wang L J,He L N,et al. Metabolome and transcriptome reveal chlorophyll,carotenoid,and anthocyanin jointlyregulate the color formationofTriadicasebifera[J].PhysiologiaPlantarum, 2024,176(2) :e14248.
[35]TianX M,Xiang GF,LvH,etal.Transcriptomicand metabolic analysis unveils the mechanism behind leaf color development in Disanthuscercidifoliusvar. longipes[J].Frontiers in Molecular Biosciences,2024,11:1343123.
[36]Li S S,Yang Y Q,Yu J,et al. Molecular and metabolic insights into purplish leaf coloration through the investigation of two mulberry (Morus alba)genotypes[J].BMC Plant Biology,2024,24(1):
[37] Zhang Y Z,Wang L Y,Kong X R,et al. Integrated analysis of metabolome and transcriptome revealed diferent regulatory networks ofmetabolicfluxin teaplants[Camelliasinensis(L.)O.kuntze]with variedleaf colors[J].International Journalof Molecular Sciences, 2023,25(1) :242.
[38]Wang YL, Zhen JP,Che X Y,et al. Transcriptomic and metabolomic analysis of autumn leaf color change in Fraxinus angustifolia[J].PeerJ,2023,11:e15319.
[39]Luo YY,DengM,Zhang X,etal. Integrative transcriptomic and metabolomic analysis reveals the molecular mechanism of red maple (Acer rubrum L.) leaf coloring[J]. Metabolites,2023,13(4):464.
[40] Zhang X,Zhang L, Zhang D M,et al. Comprehensive analysis of metabolome and transcriptome reveals the mechanism of color formation in different leave of Loropetalum Chinensevar.rubrum [J].BMC Plant Biology,2023,23(1):133.
[41] ZhangSW,YuXR,Chen MJ,etal.Comparative transcriptome and metabolome profiling reveal mechanisms of red leaf color fading in Populus × euramericana cv.‘ Zhonghuahongye’[J].Plants, 2023,12(19) :3511.
[42]Luo X Q,An F F,Xue JJ,et al. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in cassava(Manihot esculenta Crantz) leaves[J].Frontiers in Plant Science,2023,14:1181257.
[43]Huang R S,Su Y T,ShenHY,et al.Integrative transcriptome and metabolome analysisto reveal red leaf coloration in shiya tea (Adinandra nitida)[J].Frontiers inBioscience,2023,28(10): 236.
[44]Mao JP,Gao Z,Wang XL,et al.Combined widely targeted metabolomic,transcriptomic,and spatial metabolomic analysis reveals the potential mechanism of coloration and fruit quality formation in Actinidiachinensis cv.Hongyang[J].Foods,2024,13 (2):233.
[45] Wu X M,Yang M,Liu C H,et al. Transcriptome,plant hormone, and metabolome analysis reveals the mechanism of purple pericarp formation in‘Zihui’papaya(Carica papaya L.)[J].Molecules, 2024,29(7) 1485.
[46]Huang H J,Zhao L, Zhang B,et al. Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple[J]. Food Research International, 2024,175:113711.
[47]Song KH,ZhangXM,Liu JM,et al.Integration of metabolomics and transcriptomics to explore dynamic alterations in fruit color and quality n‘ Comte de Paris’pineapples during ripening processes [J]:International Journal of Molecular Sciences,2023,24 (22) :16384.
[48]Lyu JH,ZhangRH,Mo YR,et al. Integrative metabolome and transcriptome analyses provide insights into carotenoid variation in different -colored peppers[J]. International Journal of Molecular Sciences,2023,24(23):16563.
[49]Li YP.Li HF.Wang S Y.et al.Metabolomic and transcrintomic anaryses Havonoiu Iosynuenc pauway DIueberry (Vaccinium spp.)[J]. Frontiers in Plant Science,2023,14: 1082245.
[50]Huang JF,Qin Y L,Xie Z L,et al. Combined transcriptome and metabolome analysis reveal that the white and yellow mango pulp colorsare associated with carotenoidand flavonoidaccumulation, andphytohormonesignaling[J].Genomics,2023,115(5): 110675.
[51]XiongY,HeJY,LiMZ,etal.ntegrative analysis of metabolome and transcriptome reveals the mechanism of color formation in yellowfleshed kiwifruit[J]. International Journal of Molecular Sciences, 2023,24(2) :1573.
[52]Su W B,Zhu C Q,F(xiàn)an Z Q,et al. Comprehensive metabolome and transcriptome analysesdemonstrate divergent anthocyaninand carotenoid accumulationin fruits ofwild and cultivated loquats[J]. Frontiers in Plant Science,2023,14:1285456.
[53]LuRX,Song MY,Wang Z,et al.Independent flavonoid and anthocyaninbiosynthesis inthe flesh ofared-fleshed table grape revealed by metabolome and transcriptome co-analysis[J].BMC Plant Biology,2023,23(1) :361.
[54]Sun P,Yang C K,Zhu W C,et al. Metabolome,plant hormone,and transcriptome analyses reveal the mechanism of spatial accumulation patern of anthocyanins in peach flesh[J].Foods,2023,12(12): 2297.
[55]Wang Y,Wang ZY,Zhang J,et al.Integrated transcriptome and metabolome analyses provide insights into the coloring mechanism of dark-red andyellow fruits in Chinese cherry[Cerasus pseudocerasus(lindl.)G.Don][J].International Journal of Molecular Sciences,2023,24(4) :3471.
[56]Chu L W,Zheng W,Wang J,et al. Comparative analysis of the difference in flavonoid metabolic pathway during coloring between red-yellow and red sweet cherry(Prunus avium L.))[J].Gene, 2023,880 :147602.
[57]JuYL,WangWN,Yue XF,et al.Integrated metabolomic and transcriptomic analysis reveals the mechanism underlying the accumulation of anthocyanins and other flavonoids in the flesh and skinof teinturier grapes[J].Plant Physiologyand Biochemistry, 2023,197:107667.
[58]Zhang J,Zhang Z X,Wen B Y,et al. Molecular regulatory network ofanthocyaninaccumulationin black radish skin asrevealed by transcriptome and metabonome analysis[J].International Journal of Molecular Sciences,2023,24(17) :13663.
[59]Lyu YP,Zhao G,XieYF,etal.Transcriptome and metabolome profiling unveil pigment formation variations in brown cotton lines (Gossypium hirsutumL.)[J]. International Journal of Molecular Sciences,2023,24(6) :5249.
[60]He MH,Zhang GH,Huo DF,et al.Combined metabolome and transcriptome analysis of creamy yellow and purple colored Panax notoginseng roots[J].Life,2023,13(10):2100.
[61]Yu L,YueJJ,Dai Y X,et al. Characterization of color variation in bamboo sheath of Chimonobambusa hejiangensisby UPLC-ESI - (1) :466.
[62]Xiao JP,Xu X Y,LiM X,etal.Regulatory network characterization of anthocyanin metabolites in purple sweetpotato via joint transcriptomics and metabolomics[J].Frontiers in Plant Science,2023,14:1030236.
[63]Shao D N,Liang Q,Wang XF,et al. Comparative metabolome and transcriptome analysis of anthocyanin biosynthesis in white and pink petals of cotton(Gossypium hirsutum L.)[J].International Journal of Molecular Sciences,2022,23(17) :10137.
[64]Ma JR,Li Z,Liu Y L. Integrating multi -omics analysis reveals the regulatory mechanisms of white - violet mutant flowers in grape hyacinth(Muscari latifolium)[J].International Journalof Molecular Sciences,2023,24(5) :5044.
[65]Han H W,Zhou Y,Liu HF,et al.Transcriptomics and metabolomicsanalysisprovidesinsight into leafcolorand photosynthesis variation of theyellow-green leaf mutant of Hami melon(Cucumis melo L.)[J].Plants,2023,12(8):1623.
[66]HuangYP,LiWF,Jiao SZ,et al.MdMYB66 isassociated with anthocyanin biosynthesis via the activation of the MdF3H promoter in the fruit skin of an apple bud mutant[J]. International Journal of Molecular Sciences,2023,24(23) :16871.
[67]XieLL,Wang J,Liu F,etal.Integrated analysis of multiomics and fine-mapping revealsa candidategene regulating pericarp color and flavonoids accumulation in wax gourd (Benincasa hispida) [J].Frontiers in Plant Science,2022,13:1019787.
[68]GuoFD,GuanRW,SunXR,etal. Integrated metabolome and transcriptome analyses ofanthocyanin biosynthesisrevealkey candidate genes involved in colour variation of Scutellaria baicalensis flowers[J].BMC Plant Biology,2023,23(1):643.
[69]Guan L S,Liu JS,Wang R L,etal.Metabolome and transcriptome analyses reveal flower color differentiation mechanisms in various Sophora japonicaL.petal types[J].Biology,2023,12(12):1466.
[70]Qiao Y,ChengQ M,ZhangY T,et al. Transcriptomic and chemical analyses toidentifycandidate genes involvedin colorvariation of sainfoin flowers[J].BMC Plant Biology,2021,21(1):61.
[71]Lu JJ,ZhangQ,LangL X,et al.Integrated metabolome and transcriptome analysis of the anthocyanin biosynthetic pathway in relation to color mutation in miniature roses[J].BMCPlant Biology,2021,21(1) :257.
[72]Zhang HL,Zhang S Y,Zhang H,et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erectaL.)[J]. Scientific Reports,2020,10(1):16835.
[73]Jiao FC,Zhao L,Wu XF,et al.Metabolome and transcriptome analyses of the molecular mechanisms of flower color mutation in tobacco[J].BMC Genomics,2020,21(1):611.
[74]ZhouYW,XuYC,Zhu GF,etal.Pigment diversity inleaves of Caladium×hortulanumbirdsey and transcriptomic and metabolic comparisons between red and white leaves[J]. International Journal of Molecular Sciences,2024,25(1) :605.
[75]YangY,Chen MJ,ZhangW,et al.Metabolome combined with red and green leaves of Populus × euramericana‘Zhonghuahongye' [J].Frontiers in Plant Science,2023,14:1274700.
[76]Zhang Q F,Li C L,Jiao Z X,et al. Integration of metabolomics and transcriptomics reveal the mechanism underlying accumulation of flavonols inalbino tea leaves[J].Molecules,2022,27(18):5792.
[77]MeiX,ZhangKK,LinYE,etal.Metabolicand transcriptomic profiling reveals etiolated mechanism in Huangyu tea(Camellia sinensis)leaves[J].International Journal of Molecular Sciences, 2022,23(23):15044.
[78]QiaoQ,WuC,ChengTT,etal.Comparative analysisofthe metabolome and transcriptome between the green and yellow-green regions of variegated leaves in a mutant variety of the tree species Pteroceltis tatarinowii[J].International Journal ofMolecular Sciences,2022,23(9) :4950.
[79]Zhang HL, Hu A S, Wu H W,et al. Integrated metabolome and transcriptome analysis unveils novel pathway involved in the fruit coloration of Nitraria tangutorum Bobr[J].BMC Plant Biology, 2023,23(1) :65.
[80]JiangLY,YueML,Liu Y Q ,et al.Alterations of phenylpropanoid biosynthesis lead to the natural formation of pinkish- skinned and white-fleshedstrawberry(Fragaria × ananassa)[J]. Intermational Journal of Molecular Sciences,2022,23(13):7375.
[81]Yuan HZ,Cai WJ,Chen X D,et al.Heterozygous frameshift mutation in FaMYBlO isresponsible for thenatural formation of red and white-fleshed strawberry(Fragaria Xananassa Duch.)[J]. FrontiersinPlant Science,2022,13:1027567.
[82]Chen C,Zhou G,Chen J,et al.Integrated metabolome and transcriptome analysis unveils novel pathway involved inthe formation of yellow peel in cucumber[J].International Journal of Molecular Sciences,2021,22(3) :1494.
[83]XuR,LuoM,XuJW,etal. Integrative analysis of metabolomic and transcriptomic data reveals the mechanism of color formation in corms of Pinellia ternata[J]. International Journal ofMolecular Sciences,2023,24(9) :7990.
[84]Guo X Z,Wang G,Li J,etal.Analysis of floral color diferences between different ecological conditionsof Clematistangutica (Maxim.)Korsh[J].Molecules,2023,28(1):462.
[85]Liu ZB,Mao L Z,YangBZ,et al.A multi-omics approach identifies bHLH71- likeasa positive regulatorof yellowing leaf pepper mutants exposed to high - intensity light[J]. Horticulture Research,2023,10(7) :uhad098.
[86]Yan Y Y,Liu Q,Yan K,et al. Transeriptomic and metabolomic analyses reveal how girdling promotes leaf color expression in Acer rubrum L.[J].BMC Plant Biology,2022,22(1):498.
[87]Yan H L, Zhang X X,Li X,et al. Integrated transcriptome and metabolome analyses reveal the anthocyanin biosynthesispathway in AmRoseal overexpression 84K poplar[J].Frontiers in Bioengineering aHu DIUICUUIUgy,zUZz,1U;711/01,
[88]WangH Y,LiZB,Yuan LY,etal.Cold acclimation can specifically inhibit chlorophyll biosynthesisinyoung leavesof Pakchoi[J].BMC Plant Biology,2021,21(1):172.
[89]Zhou Y,Mumtaz M A,ZhangY H,et al. Response of anthocyanin biosynthesis to light by strand-specific transcriptomeand miRNA analysisinCapsicum annuum[J].BMCPlant Biology,2022,22 (1) :79.
[90]ChangDD,Liu HJ,AnMJ,etal.Integrated transcriptomic and metabolomic analysisof themechanism of foliar application of hormone-type growth regulator in the improvement of grape(Vitis viniferaL.) coloration in saline-alkaline soil[J].Plants,202,11 (16):2115.
[91]ZhongH X,Liu ZJ,ZhangFC,etal.Metabolomicand transcriptomic analyses reveal the effects of self-and hetero - grafting on anthocyanin biosynthesisin grapevine[J].Horticulture Research,2022,9:uhac103.
[92]DingRR,Che X K,Shen Z,et al. Metabolome and transcriptome profiling provide insights into green apple peel reveals light-and UV-B- responsive pathway in anthocyanins accumulation[J]. BMC Plant Biology,2021,21(1)351.
[93]Wang FY,Wu YL,Wu W,et al.Integrativeanalysisof metabolome and transcriptome profilesprovides insight into the fruit pericarp pigmentation disorder caused by‘Candidatus Liberibacter asiaticus’infection[J].BMC Plant Biology,2021,21(1)397.
[94]Zhou Y,Wu W S,Sun Y,et al.Integrated transcriptome and metabolome analysis reveals anthocyanin biosynthesis mechanisms in pepper (Capsicum annuum L.) leaves under continuous blue light irradiation[J]. BMC Plant Biology,2024,24(1):210.
[95] Xie G W,Zou X Z,Liang Z S,et al. Integrated metabolomic and transcriptomic analyses reveal molecular response of anthocyanins biosynthesis in Perilla to lightintensity[J].Frontiers in Plant Science,2022,13:976449.
[96]Zheng X,HuangLY,F(xiàn)an B Y,et al. Integrated transcriptomics and metabolomics analyses of the effects of bagging treatmenton carotenoid biosynthesis and regulation of Areca catechu L.[J]. FrontiersinPlantScience,2024,15:1364945.
[97]YangL,ChenY,WangM,etal.Metabolomicand transcriptomic analyses reveal the effects of grafting on blood orange quality[J]. Frontiers in Plant Science,2023,14:1169220.
[98]Xu X X,Qin HH,Liu CL,etal.Transcriptome and metabolome analysis reveals the effect of nitrogen - potassium on anthocyanin biosynthesis in“Fuji”apple[J]. Journal of Agricultural and Food Chemistry,2022,70(48) :15057 -15068.
[99]Yin HN,WangL,Xi Z M.Involvement of anthocyanin biosynthesis of cabernet sauvignon grape skins in response to field screening and invitro cultureirradiatinginfraredradiation[J].Journalof Agricultural and Food Chemistry,2022,70(40) :12807-12818.