中圖分類號:R319 文獻標志碼:A
文章編號:2096-2983(2025)03-0026-09
Abstract: Malignant tumors have become an important category of diseases threatening human health, yet conventional therapies have serious side effects and a high recurrence rate of the disease after treatment with traditional methods. Copper-based nanomaterials have been widely studied in recent years due to their inherent physicochemical properties, unique biological characteristics and crucial roles in living organisms. The rise of nanotechnology has greatly promoted the development of copper-based nanomaterials, especially in the field of tumor, facilitating the rapid progress of tumor imaging and therapy. The characteristics of copper-based nanomaterials and their potential applications in the field of tumor treatment were discussed, including the intracellular metabolism of copper, the importance of copper homeostasis, tumor imaging, tumor therapy, and the differences between cuproptosis and other ways of inducing apoptosis. Meanwhile, the biocompatibility, current research focus and future application prospect of copper-based nanomaterials in the field of tumor therapy were also explored.
Keywords: copper-based nanomaterials; cell apoptosis; tumor diagnosis; tumor imaging
惡性腫瘤作為威脅人類健康的一大疾病,給我國醫(yī)療體系帶來了巨大壓力。據(jù)世界衛(wèi)生組織統(tǒng)計,在全球183個國家里,有112個國家將腫瘤列為70歲以內(nèi)人群的首要或第二大死亡原因。2020年,全球腫瘤新發(fā)病例有1930萬例,死亡病例已達1000萬例,預測到2040年,全球腫瘤新發(fā)病例將達2840萬例,治療的形勢十分嚴峻[1]。傳統(tǒng)的腫瘤治療方法如手術、化療、放療等,雖具有一定治療效果,卻不可避免地伴有副作用。腫瘤微環(huán)境具有以下獨特性質(zhì):異常的腫瘤血管系統(tǒng)、缺氧環(huán)境、弱酸性環(huán)境、過表達的酶、高濃度的 H2O2 以及高濃度的谷胱甘肽[2]。這些特性致使腫瘤細胞易增殖、轉(zhuǎn)化與轉(zhuǎn)移,成為腫瘤治療的難點,使得常規(guī)治療方法不再能完全滿足治療需求。因此,開發(fā)治療效果好且副作用小的新型治療策略迫在眉睫。目前,各類金屬基材料在腫瘤治療方面的潛力正被廣泛探索,這為未來腫瘤治療策略提供了新的理論依據(jù)。
銅廣泛存在于各類生物體內(nèi),直接參與各種生物過程,已被證明可以促進生命系統(tǒng)中的細胞增殖、血管生成、細胞遷移和膠原沉積[3-4],是生命的基本元素。銅獨特的氧化還原特性,使其對細胞既有益又有害[5]。
銅的生理作用和重要性
當細胞內(nèi)銅水平超出日常需求時,會產(chǎn)生細胞毒性并使細胞死亡;當銅缺乏時,銅的吸收和運輸過程受到阻礙,進而導致細胞內(nèi)銅分布異常。在生物學領域,銅的代謝過程與 Cu+ 和 Cu2+ 間的轉(zhuǎn)換密切相關,這種轉(zhuǎn)換通過接受或釋放單個電子實現(xiàn)]。每日攝入 0.8mg 的銅即可維持人體內(nèi)銅平衡。實際上,人體從食物中攝取的銅大多為 Cu2+ 然而細胞并不能直接吸收和利用該類銅。 Cu2+ 進入小腸后,由腸道細胞表面的還原酶進行處理。在二價金屬轉(zhuǎn)運蛋白1的協(xié)助下, Cu2+ 被還原成 Cu+ 隨后與二價金屬銅轉(zhuǎn)運蛋白1結合進入細胞中。在細胞內(nèi)銅被輸送到抗氧化劑1銅伴侶蛋白(antioxidant 1 copper chaperone protein,ATOX1)中。ATOX1與銅轉(zhuǎn)運腺苷三磷酸(adenosine triphosphate,ATP)酶B協(xié)同作用,合成銅藍蛋白,進而作用于全身[10-12]。銅在細胞內(nèi)所具有的氧化還原特性,使其成為眾多關鍵酶的輔助因子。細胞內(nèi)銅平衡對細胞的新陳代謝至關重要,是維持這些銅依賴性酶正常功能的基礎。
2 銅代謝與腫瘤環(huán)境
正常生理狀態(tài)下,細胞內(nèi)外的銅水平受到機體的嚴格調(diào)控。一旦銅穩(wěn)態(tài)失去平衡,便會引發(fā)嚴重疾病。大量研究表明,銅與人體腫瘤之間存在緊密關聯(lián),腫瘤組織中的銅水平顯著高于正常組織中的[3-17]。過高的銅水平會促進腫瘤組織的增殖、腫瘤血管的生成以及腫瘤的轉(zhuǎn)移。具體而言, Cu+ 可激活促腫瘤信號通路,進而增強腫瘤組織的增殖能力[18];還能激活腫瘤血管生成因子,刺激血管內(nèi)皮細胞增殖;與此同時,穩(wěn)定腫瘤中的核缺氧誘導因子,以此促使新的炎癥血管生成[19]。此外,銅還可以通過激活參與代謝和增殖過程的酶來增強腫瘤細胞的轉(zhuǎn)移能力。當細胞內(nèi)銅水平過低時,將會阻斷絲裂原活化蛋白激酶激酶1和2(mitogen-activatedproteinkinasekinasel/2,MEK1/2)、銅轉(zhuǎn)運ATP酶A、ATOX1、 Cu/Zn- 超氧化物歧化酶-1(superoxidedismutasel,SOD-1)、缺氧誘導因子-1(hypoxiainduciblefactor-1,HIF-1)和核因子 κB 的功能,進而抑制腫瘤細胞增殖、轉(zhuǎn)移和血管生成[,20]。圖1為Cu+ 在腫瘤細胞中的作用示意圖[7]。
3 細胞死亡
細胞死亡方式主要有細胞凋亡和細胞壞死,此外還包括細胞自噬和焦亡等[21-22]。在這些死亡方式中,細胞凋亡、細胞自噬,以及通過離子調(diào)控的鐵死亡與銅死亡,均屬于程序性細胞死亡;而細胞焦亡和壞死則屬于非程序性死亡。鐵死亡主要是由于細胞內(nèi)鐵水平過高,引發(fā)脂質(zhì)過氧化,進而誘導細胞凋亡[23]。在銅死亡機制方面:一方面,銅會致使活性氧(reactiveoxygenspecies,ROS)水平過高,降低細胞抗氧化能力,從而導致細胞死亡;另一方面,銅參與線粒體上三羧酸(tricarboxylicacid,TCA)循環(huán),引發(fā)蛋白質(zhì)毒性,進而促使細胞死亡[24]。
圖1 Cu? 在腫瘤細胞中的作用示意圖[7]
Fig.1 Schematic diagram of the role of Cu+ in tumor cells[7]
3.1 細胞凋亡
細胞凋亡是一種程序化且受調(diào)控的細胞自我毀滅過程,主要包括3種途徑,分別為內(nèi)在途徑、外在途徑和穿孔素或顆粒酶途徑[25]。其發(fā)生機制主要是在氧化應激狀態(tài)下會產(chǎn)生反應性中間體,這些中間體會導致膜脂質(zhì)雙層中的不飽和脂肪酸發(fā)生氧化。生成的氧化產(chǎn)物能夠與膜受體上的轉(zhuǎn)錄因子或抑制劑相互作用,從而激活細胞凋亡信號[25-26]。在細胞器層面,ROS能夠氧化線粒體膜上的不飽和脂肪酸,破壞線粒體膜的通透性以及線粒體通透性過渡孔的正常功能[27-29]。從分子水平而言,長鏈脂肪酸可通過誘導脂質(zhì)過氧化反應來觸發(fā)細胞凋亡[0-31]。
3.2 細胞自噬
自噬是細胞質(zhì)中受損的蛋白質(zhì)或細胞器被自噬小泡包裹后,轉(zhuǎn)運至動物細胞中的溶酶體或植物細胞液泡中這一過程的所有途徑的統(tǒng)稱[32]。自噬既可以保護細胞,也會造成細胞損傷。自噬主要可分為3種類型:巨自噬、微自噬和分子伴侶介導的自噬[34]。當細胞內(nèi)發(fā)生脂質(zhì)過氧化時,會產(chǎn)生大量ROS。ROS可作為信號分子,激活自噬相關基因的表達,進而啟動自噬過程。過氧化脂質(zhì)會與特定受體或者修飾蛋白相互作用,從而將損傷信號傳遞至自噬信號通路,以此調(diào)控自噬相關基因的表達。過度自噬有可能導致細胞死亡[35-36]
3.3 鐵死亡
2012年Dixon等[37首次提出并定義了鐵死亡這一新型死亡方式。鐵死亡過程涉及鐵依賴性的脂質(zhì)氧化反應。在鐵死亡過程中,細胞內(nèi)ROS水平顯著升高,特別是脂質(zhì)過氧化物大量積累。同時,谷胱甘肽(glutathione,GSH)水平降低,致使細胞抗氧化能力減弱。這些變化導致細胞膜通透性增加,最終引發(fā)細胞死亡[38-39]。近來有研究[40-41]發(fā)現(xiàn),某些與細胞鐵死亡相關的基因和蛋白,如GSH過氧化酶4(glutathioneperoxidase4,GPX4),能夠根據(jù)細胞需求,動態(tài)調(diào)節(jié)細胞對鐵死亡的敏感性。
3.4 銅死亡
有研究[2]發(fā)現(xiàn),銅能夠引發(fā)一種新型細胞死亡方式—銅死亡。銅死亡的主要機制是,銅靶向硫辛?;疶CA循環(huán)蛋白,導致硫辛?;鞍拙奂㈣F硫簇蛋白缺失,進而造成細胞代謝失衡,最終導致細胞死亡(見圖2)。芬頓反應是一種無機化學反應,其原理為, Fe2+ 催化 H2O2 并產(chǎn)生有毒的羥基自由基,從而導致細胞死亡[42]。當細胞內(nèi) Cu2+ 水平過高時,同樣會誘發(fā)芬頓反應,導致產(chǎn)生大量ROS。過量的ROS會使GSH水平降低和氧化應激加劇,進而對脂質(zhì)、蛋白質(zhì)和DNA造成損害,最終誘導細胞凋亡[43]?;阢~死亡這一特性,越來越多的研究者開展了以銅死亡為基礎的抗腫瘤研究工作。
圖2銅通過靶向硫辛?;疶CA循環(huán)蛋白誘導細胞死亡的示意圖[24]
Fig.2Schematic diagram of copper inducing celldeath by targeting a lipoacylated TCA circulating protein
4銅基納米材料在腫瘤診療中的應用
銅基納米材料可用于腫瘤診斷和治療領域。在腫瘤診斷方面,其可應用于正電子發(fā)射計算機斷層掃描(positron emission computed tomography, PET)、光聲成像(photoacoustic imaging,PAI)和磁共振成像(magnetic resonance imaging,MRI)。在腫瘤治療中,所涉及的銅基材料主要包括銅基納米材料、銅配合物和銅螯合物。
4.1 銅基納米材料用于腫瘤成像
腫瘤因處于獨特的微環(huán)境中,其組織的復雜性要高于正常組織的。因此,迫切需要具有高分辨率、高靈敏度以及更高效的成像策略,以實現(xiàn)精準診斷。腫瘤的早期診斷是腫瘤治療的關鍵環(huán)節(jié)之一,因此,影像學在臨床腫瘤診療中發(fā)揮著至關重要的作用[45]。影像學成像主要劃分為結構成像和功能成像兩類。其中,結構成像包括X射線、計算機斷層掃描(computed tomography,CT)、MRI;功能成像則包含單光子發(fā)射計算機斷層掃描(singlephotonemission computed tomography,SPECT)和 PET。銅基納米材料在放大成像信號、提高成像分辨率方面發(fā)揮著重要作用[7,46]
PET是一種微創(chuàng)成像技術,能夠獲得特定生化和生理過程的定量三維成像信息, 64Cu 的半衰期為12.7h ,具有衰變特性,是腫瘤微環(huán)境成像和測量血流的潛在候選者[47]。Zhou等[48]合成了一種新型的 納米顆粒,通過尾靜脈注射到小鼠體內(nèi),24h 后,可在小鼠全身獲得高分辨率的PET圖像。Piccardo等[49]評估了50名前列腺癌患者 64CuCl2 PET/CT和 18F-, 膽堿PET/CT的多項參數(shù),結果表明,與 18F- 膽堿PET/CT相比, 64CuCl2 PET/CT具有更高的檢出率。
PAI是一種光聲斷層掃描技術,是借助超聲波實現(xiàn)對生物組織的可視化。PAI已被證明能夠進行具有高超聲分辨率和高光學對比度的多尺度成像[50。若要使PAI展現(xiàn)出更強的成像能力,就需要具備高近紅外吸光能力的試劑,如金納米顆粒、石墨烯等。盡管這些材料對近紅外光具有很強的吸收能力,但要實現(xiàn)PAI向?qū)嶋H應用的轉(zhuǎn)化,仍需要能吸收更長波長的納米材料。Geng等[50]構建了一種用于深度PAI的半導體 CuS 納米顆粒,PAI圖像顯示該顆粒能夠有效地增強光聲對比度。文獻[51-52]中設計了一種全氟化碳納米液滴,該液滴含有 CuS 納米顆粒和有機膠束,應用于PAI時,可降低生物降解性和清除率,具有很高的臨床轉(zhuǎn)化潛力。
由于銅具有特殊性質(zhì),例如抗磁性的 Cu(I) 能夠被細胞內(nèi)的 H2O2 氧化為順磁性的 Cu(I) ,因此,銅可被設計用作 MRI的造影劑[53]。 Mou 等[54]構建了一種單一成分 Cu2-xS 納米探針,用于多模態(tài)成像,該多模態(tài)成像包括MRI、紅外熱成像(infraredthermography,IRT)和PAI。研究結果顯示,單一的銅基納米材料可通過多模態(tài)成像克服單模態(tài)成像的局限性,拓寬了銅基納米材料在腫瘤影像診斷領域的應用范圍(見圖3)。
4.2 銅基納米材料用于腫瘤治療
納米材料在近紅外光、超聲和微波等外在條件刺激下,能夠展現(xiàn)出更強的殺傷效果,可誘導細胞凋亡?;诩{米材料的藥物遞送系統(tǒng)已得到廣泛探索與應用[55]。在各種納米材料中,銅基納米材料因其具有良好的生物相容性、較大的比表面積、出色
的穩(wěn)定性和光響應性,被設計為載藥納米粒子。銅基納米材料對多種腫瘤細胞具有明顯毒性,例如CuO 納米顆粒對HeLaS3和A549細胞系有明顯毒性[56-57]。銅基納米材料可作為光熱轉(zhuǎn)換材料,在光熱治療中展現(xiàn)出突出的應用潛力。銅基納米材料能促進ROS的生成,從而提高腫瘤細胞的死亡率。銅基納米材料通過釋放 Cu2+ 來改變線粒體的呼吸方式,進而抑制線粒體為腫瘤細胞供能。此外,銅基納米材料還可搭載化療藥物用于腫瘤治療[58-60]。Cu2+ 能與雙硫侖(disulfiram,DSF)的代謝產(chǎn)物二乙二硫代氨基甲酸酯發(fā)生原位螯合,形成具有殺傷腫瘤細胞作用的銅離子復合物(見圖4)[61-62]。在生物醫(yī)藥應用方面,CuS是最常見的銅基納米材料之一,其對多種腫瘤細胞具有殺傷力,且對正常組織呈現(xiàn)低毒性[63]
Fig.3 Images of intratumoral imaging of Cu2-xS[54]
圖4 DSF與 Cu2+ 配合殺傷細胞的示意圖[62]
Fig.4Schematic diagram of cell kiling by the combination of DSF and Cu2+[62]
Cu2+ 配合物對腫瘤細胞具有顯著的細胞毒性,能夠引發(fā)氧化激活反應,誘導細胞內(nèi)生物分子受損,進而導致細胞死亡[64]。DSF具有特異的抗腫瘤活性。研究表明,DSF/Cu復合物通過激活絲裂原活化蛋白激酶(mitogen-activated protein kinase MAPK)通路,促使包括白血病細胞系和胃腫瘤細胞系凋亡,為腫瘤治療提供了新的策略[65-67]。含萘基的新型銅配合物通過與白血病細胞相互作用,阻滯白血病細胞周期,從而抑制細胞的生長和增殖,實現(xiàn)治療腫瘤的目的[68-69]。Gu等[70]通過設計并制備三聯(lián)吡啶銅復合物的研究得出,該銅復合物能夠誘導細胞周期相關蛋白表達發(fā)生改變,促使凋亡Bax蛋白的表達水平升高,而抗凋亡Bcl-2蛋白的表達水平降低,導致細胞色素c和半胱天冬酶級聯(lián)激活的釋放,并誘導線粒體介導的細胞凋亡。目前,治療惡性實體腫瘤主要方案是基于順鉑的聯(lián)合治療,但順鉑藥物存在嚴重的副作用,且腫瘤細胞對其極易產(chǎn)生耐藥性[7-72]。磷化銅配合物因其強大的抗腫瘤增殖作用而受到關注。Gandin等[73]對磷化銅配合物的抑制機制展開研究發(fā)現(xiàn),可通過副凋亡(一種非凋亡性細胞程序死亡)誘導細胞死亡。
此外,銅螯合劑可通過降低銅的生物利用度,抑制腫瘤增殖、轉(zhuǎn)移和血管生成。目前,常用于腫瘤治療的銅螯合劑有四硫代鉬酸鹽和曲恩汀。而 Cu2+ 載體可通過誘導細胞凋亡、抑制蛋白酶體活性以及產(chǎn)生 ROS 等方式來抑制腫瘤增殖[7]
5結論
銅作為人體內(nèi)必須的微量金屬元素,在維持機體正常生理功能方面發(fā)揮著關鍵作用。然而,人體內(nèi)銅穩(wěn)態(tài)一旦失衡,無論是銅過量還是缺乏,均會對人體造成嚴重損害。當銅過量時,會產(chǎn)生大量ROS。這些ROS與TCA循環(huán)發(fā)生反應,引發(fā)蛋白毒性應激,最終導致細胞死亡。在常見的金屬離子中, Cu2+ 的細胞毒性相對于錳離子和鐵離子的更強。不過,銅基納米材料正在逐步克服這一難題。銅基納米材料不僅能降低細胞毒性,且具備高生物相容性和靶向性等優(yōu)勢?;谶@些特性,銅基納米材料已在納米醫(yī)學領域得到廣泛應用,涵蓋腫瘤成像、診斷以及治療等多個方面。綜上所述,銅基納米材料在未來腫瘤診療領域展現(xiàn)出了極為廣闊的應用前景。
參考文獻:
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424.
[2]WU T,DAI Y. Tumor microenvironment and therapeutic response[J]. Cancer Letters, 2017,387: 61-68.
[3] GERARD C, BORDELEAU L J, BARRALET J, et al. The stimulation of angiogenesis and collagen deposition by copper[J]. Biomaterials, 2010, 31(5): 824-831.
[4]KO J W, SHIN N R, PARK J W, et al. Copper oxide nanoparticles induce collagen deposition via TGFβ1/Smad3 signaling in human airway epithelial cells[J]. Nanotoxicology,2018,12(3): 239-250.
[ 5]FESTA R A, THIELE D J. Copper: An essential metal in biology[J]. Current Biology,2011, 21(21): R877-R883.
[6]MEENA R, SAHOO S S, SUNIL A, et al. Cuproptosis: a copper-mediated programmed cell death[J]. ChemistryAn Asian Journal, 2025, 20(4): e202400934.
[7]LI Y Q. Copper homeostasis: emerging target for cancer treatment[J]. IUBMB Life, 2020, 72(9): 1900-1908.
[8]TURNLUND J R. Human whole-bodycopper metabolism[J]. The American Jourmal of Clinical Nutrition, 1998, 67(5): 960S-964S.
[9]GAETKE L M, CHOW C K. Copper toxicity, oxidative stress,and antioxidant nutrients[J]. Toxicology, 2003, 189(1-2): 147-163.
[10]MIGOCKA M. Copper-transporting ATPases:The evolutionarily conserved machineries for balancing copper in living systems[J]. IUBMB Life, 2015, 67(10): 737-745.
[11]KIDANE T Z, FARHAD R, LEE K J, et al. Uptake of copper from plasma proteins in cels where expression of CTR1 has been modulated[J]. Biometals, 2012, 25(4): 697-709.
[12]NOSE Y, WOOD L K,KIM B E, et al. Ctrl is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability[J]. Journal of Biological Chemistry,2010, 285(42): 32385-32392.
[13]PATEL P, PRABHU A V, BENEDEK T G. The history of John Hans Menkes and kinky hair syndrome[J]. JAMA Dermatology, 2017,153(1): 54.
[14] CZLONKOWSKA A, LITWIN T, DUSEK P, et al. Wilson disease[J].Nature Reviews Disease Primers, 2018, 4(1): 21.
[15]AASETH J O. Toxic and essential metals in human 1375.
[16]SALEH S A K, ADLY HM, ABDELKHALIQ A A, et al. Serum levels of selenium, zinc, copper, manganese, and iron in prostate cancer patients[J]. Current Urology, 2020,14(1): 44-49.
[17]FANG A P, CHEN P Y, WANG X Y,et al. Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort[J]. International Journal of Cancer, 2019, 144(11): 2823-2832.
[18]PRASAD S, GUPTA S C, TYAGI A K. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals[J]. Cancer Letters, 2017, 387: 95-105.
[19] DENOYER D, MASALDAN S, LA FONTAINE S, et al. Targeting copper in cancer therapy:'copper that cance'[J]. Metallomics, 2015, 7(11): 1459-1476.
[20] XIE W S, GUO Z H, ZHAO L Y, et al. The copper age incancer treatment: from copper metabolism to cuproptosis[J]. Progress in Materials Science, 2023, 138: 101145.
[21]HU Y, HANSHUO M, DENG Z P. H3K27 acetylation activated-CCS regulates autophagy and apoptosis of lung cancer by alleviating oxidative stress[J]. Tissue and Cell, 2023, 80: 101964.
[22]XU J, NUNEZ G. The NLRP3 inflammasome: activation and regulation[J]. Trends in Biochemical Sciences, 2023, 48(4): 331-344.
[23]TANG D,KROEMER G. Ferroptosis[J]. Current Biology,2020,30(21): R1292-R1297.
[24]TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science,2022,375(6586): 1254-1261.
[25]TKACHENKO A. Apoptosis and eryptosis: similarities and differences[J]. Apoptosis, 2024,29(3): 482-502.
[26]BOU-TEEN D, KALUDERCIC N, WEISSMAN D, et al. Mitochondrial ROSand mitochondria-targeted antioxidants in the aged heart[J].Free Radical Biology and Medicine, 2021,167: 109-124.
[27] TSUZUKI T, KAMBE T, SHIBATA A, et al. Conjugated EPA activatesmutant p53 via lipid peroxidation and induces p53-dependent apoptosis in DLD-1 colorectal adenocarcinoma human cells[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology ofLipids,2007,1771(1): 20-30.
[28]JIANG N H, HUANG R, ZHANG J H, et al. TIMP2 mediates endoplasmic reticulum stress contributing to sepsis-induced acute kidney injury[J].The FASEB Journal, 2022,36(4): e22228. oxygen species generation, mitochondrial dysfunction andcelldeath incancercells[J]. Biochemical Pharmacology, 2018,148: 155-162.
[30]DAS U N. Essential fatty acids,lipid peroxidation and apoptosis[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 1999, 61(3): 157-163.
[31] SHARMA R, SHARMA A, DWIVEDI S,et al. 4- hydroxynonenalself-limitsfas-mediatedDISCindependent apoptosis by promoting export of Daxx from the nucleus to the cytosol and its binding to Fas[J]. Biochemistry, 2008,47(1): 143-156.
[32]HILL B G, HABERZETTL P,AHMED Y, et al. Unsaturatedlipidperoxidation-derivedaldehydes activate autophagy in vascular smooth-muscle cels[J]. Biochemical Journal, 2008, 410(3): 525-534.
[33]CSALA M, KARDON T, LEGEZA B, et al. On the role of4-hydroxynonenalinhealthanddisease[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease,2015,1852(5): 826-838.
[34]SORICE M. Crosstalk of autophagy and apoptosis[J]. Cells, 2022, 11(9): 1479.
[35]KESSEL D, REINERS J J. Photodynamic therapy: autophagy and mitophagy, apoptosis and paraptosis[J]. Autophagy,2020,16(11): 2098-2101.
[36]MORISHITA H, MIZUSHIMA N. Diverse celllar roles ofautophagy[J]. AnnualReview ofCelland Developmental Biology,2019, 35: 453-475.
[37]DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell,2012,149(5): 1060-1072.
[38]LEE Y S,LEE D H, CHOUDRY H A, et al. Ferroptosisinduced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis[J]. Molecular Cancer Research, 2018, 16(7): 1073-1076.
[39] ZHENG J S, CONRAD M. The metabolic underpinnings offerroptosis[J]. CellMetabolism, 2020,32(6): 920-937.
[40]LV H H, ZHEN C X, LIU J Y, et al. Unraveling the potential role of glutathione in multiple forms of cell death in cancer therapy[J]. Oxidative Medicine and Cellular Longevity,2019, 2019: 3150145.
[41] JIANG X J, STOCKWELL B R, CONRAD M. Ferroptosis: mechanisms, biology and role in disease[J]. Nature Reviews Molecular Cell Biology, 2021, 22(4): 266-282.
[42]WINTERBOURN C C. Toxicity of iron and hydrogen peroxide: the Fenton reaction[J]. Toxicology Letters,
1995,82-83:969-974.
[43] SZEWCZYKOK,ROSZCZENKOP,CZARNOMYS R, et al. An overview of the importance of transitionmetal nanoparticles in cancer research[J]. International Journal of Molecular Sciences, 2022, 23(12): 6688.
[44]MAHAJAN A, AHUJA A, SABLE N, et al. Imaging in oral cancers: a comprehensive review[J]. Oral Oncology, 2020,104: 104658.
[45]XIE W S, GUO Z H, CAO Z B, et al. Manganese-based magnetic layered double hydroxide nanoparticle: a pHsensitive and concurrently enhanced T1/T2 -weighted dual-modemagneticresonanceimagingcontrast agent[J].ACs Biomaterials Science amp; Engineering, 2019,5(5): 2555-2562.
[46]CAPRIOTTI G, PICCARDO A, GIOVANNELLI E, et al. Targeting copper in cancer imaging and therapy:a new theragnostic agent[J]. Journal of Clinical Medicine, 2022, 12(1): 223.
[47]LEE H, SHIELDS A F, SIEGEL B A, et al. 64Cu-MM. 302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patientswith metastatic breast cancer[J]. Clinical Cancer Research, 2017, 23(15): 4190-4202.
[48]ZHOU M, ZHANG R, HUANG M, et al. A chelator-free multifunctional (64Cu)CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy[J]. Journal of the American Chemical Society,2010, 132(43): 15351-15358.
[49]PICCARDO A, PAPARO F, PUNTONI M, et al. (20 64CuCl2 PET/CTin prostate cancerrelapse[J].The Journal of Nuclear Medicine, 2018, 59(3): 444-451.
[50] KU G, ZHOU M, SONG S L, et al.Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at . ACS Nano, 2012, 6(8): 7489-7496.
[51]ANSELMO A C, MITRAGOTRI S. A review of clinical translation of inorganic nanoparticles[J]. The AAPS Journal, 2015,17(5): 1041-1054.
[52]SANTIESTEBAN D Y, DUMANI D S, PROFILI D, et al. Copper sulfide perfluorocarbon nanodropletsas clinicallyrelevant photoacoustic/ultrasoundimaging agents[J]. Nano Letters, 2017,17(10): 5984-5989.
[53]LIU Y, WU JD, JIN Y H, et al. Copper(I) phosphide nanocrystalsforinsituself-generationmagnetic resonanceimaging-guidedphotothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor[J]. Advanced Functional Materials, 2019, 29(50): 1904678.
[54]MOU J,LIU C B,LI P,et al.A facile synthesis of versatile Cu2-xS nanoprobe for enhanced MRI and infrared thermal/photoacoustic multimodal imaging[J]. Biomaterials,2015,57: 12-21.
[55]歐陽瑞鐲,張偉倫,繆煜清.有色金屬基材料在生物醫(yī) 學中的應用現(xiàn)狀[J].有色金屬材料與工程,2023, 44(2): 16-24.
[56]SEMISCH A, OHLE J, WITT B, et al. Cytotoxicity and genotoxicity of nano-and microparticulate copper oxide: roleof solubility and intracellular bioavailability[J]. Particle and Fibre Toxicology,2014,11(1): 10.
[57]CHUSUEI C C, WU C H, MALLAVARAPU S, et al. Cytotoxicity in the age of nano: the role of fourth period transition metal oxide nanoparticle physicochemical properties[J]. Chemico-Biological Interactions,2013, 206(2): 319-326.
[58]SHI X T, ZHANG C Y, GAO J, et al. Recent advances in photodynamictherapy forcancerand infectious diseases[J]. WIREs Nanomedicine and Nanobiotechnology,2019,11(5): e1560.
[59]YANG J, XU L, DING Y N, et al. NIR-II-triggered compositenanofiberstosimultaneouslyachieve intracranial hemostasis, kiling superbug and residual cancer cellsin brain tumor resection surgery[J]. Advanced Fiber Materials, 2023, 5(1): 209-222.
[60]RAMADAN S, GUO L R, LI Y J, et al. Hollow copper sulfidenanoparticle-mediatedtransdermaldrug delivery[J]. Small,2012,8(20): 3143-3150.
[61]ALLENSWORTH JL, EVANS M K, BERTUCCI F, et al.Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer[J]. Molecular Oncology, 2015, 9(6): 1155-1168.
[62]WU W C, YUL D, JIANG Q Z, et al. Enhanced tumorspecific disulfiram chemotherapy by insitu Cu2+ chelation-initiated nontoxicity-to-toxicity transition[J]. Journal of the American Chemical Society, 2019, 141(29): 11531-11539.
[63]FENG W,NIE W, CHENG Y H, et al. In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2015,11(4): 901-912.
[64]BAI H Y, WANG T,KONG F, et al. CXCR4 and CD44 dual-targetedprussianbluenanosystemwith daunorubicin loaded for acute myeloid leukemia therapy[J]. Chemical Engineering Journal, 2021,405: 126891.
[65] WANG W G, CASSIDY J, O'BRIEN V,et al. Mechanistic and predictive profiling of 5-Fluorouracil resistance in human cancer cells[J]. Cancer Research, 2004,64(22): 8167-8176.
[66]XU B, SHI P C,F(xiàn)OMBONI S, et al.Disulfiram/copper complex activated JNK/c-jun pathway and sensitized cytotoxicity of doxorubicin in doxorubicin resistant leukemia HL6O cells[J].Blood Cells, Molecules,and Diseases,2011, 47(4): 264-269.
[67]PANDIAN J, GANESAN K. Delineation of gastric tumors with activated ERK/MAPK signaling cascades forthedevelopmentoftargetedtherapeutics[J]. Experimental Cell Research, 2022, 410(1):112956.
[68] MORCELLISR,KANASHIROMM,CANDELAR S,et al. Synthesis,characterization and antitumoral activity of new di-iron(II) complexescontaining naphthyl groups: effect of the isomerism on the biological activity[J]. Inorganic Chemistry Communications,2016, 67: 22-24.
[69] FERNANDESC,HORNA,LOPESBF, etal.Induction of apoptosis in leukemia cell lines by new copper(II) complexes containing naphthyl groups via interaction with death receptors[J]. Journal ofInorganic Biochemistry, 2015,153: 68-87.
[70] GU Y Q, ZHONG Y J, HU M Q, et al. Terpyridine copper(II) complexes as potential anticancer agents by inhibiting cell proliferation,blocking the cell cycle and inducingapoptosisin BEL-7402 cells[J]. Dalton Transactions,2021,51(5):1968-1978.
[71] JIANGCY,CHENCJ,NIMW,et al.Molecular mechanisms of cisplatin resistance in ovarian cancer[J]. Genes amp; Diseases, 2024,11(6): 101063.
[72] RUPRECHTN,HOFMANNL,HUNGERBUHLER_M N,et al.Generation of stable cisPt resistant lung adenocarcinoma cells[J]. Pharmaceuticals, 202o, 13(6): 109.
[73] GANDIN V, PELLEI M, TISATO F, et al. A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling[J]. Journal of Cellular and Molecular Medicine, 2012,16(1):142-151.
(編輯:何代華)