中圖分類號:TG174.426 文獻(xiàn)標(biāo)志碼:A
文章編號:2096-2983(2025)03-0019-07
Abstract: Stainless steel is widely used in implant materials and medical devices, but it is susceptible to corosion in the human body environment, which can lead to device failure. To address this problem, a self-healing coating was designed. Core-shell microcapsules of tung oil-alcium alginate with medical tung oil as the core and calcium alginate as the shell material were prepared by in situ emulsion polymerization, and then the microcapsules were dispersed in modified silicone gel to form a wearresistant and corrosion-resistant coating. The microcapsules were characterized by scanning electron microscope, Fourier transform infrared spectrometer and thermogravimetric analyzer. The results show that when the mass fraction of microcapsule in the coating is 15% , the wear resistance is optimal, the friction coefficient is as low as 0.32, and the wear depth is only 0.35mm . After being immersed in the simulated body fluid for 20d , the low-frequency impedance was 7.0×105Ω?cm2 , which demonstrated that tung oil as the core has a self-healing effect on microcracks.
Keywords: calcium alginate; tung oil; friction and wear resistance performance; corrosion resistance
不銹鋼因其良好的力學(xué)性能、耐腐蝕性和生物相容性[1-2],被廣泛應(yīng)用于植人材料和醫(yī)療器械領(lǐng)域[3。然而,在人體生理環(huán)境中,CI的侵蝕[4]易誘發(fā)不銹鋼醫(yī)療器械局部點蝕[5,該過程不僅會加速金屬離子的釋放[,還會導(dǎo)致纖維組織壞死和過敏反應(yīng)發(fā)生[7-8],從而嚴(yán)重制約了不銹鋼作為醫(yī)用材料的長期應(yīng)用。
為了預(yù)防和減緩不銹鋼的腐蝕,向涂層體系中添加微/納米膠囊是一種有效的自修復(fù)方法[,該方法有助于修復(fù)微裂紋或機(jī)械損傷。微膠囊以成膜材料為殼材[1],以可分散的固體或液體為核芯[11],形成核殼結(jié)構(gòu)。一旦涂層中出現(xiàn)裂紋,外力作用下破裂的微膠囊可通過毛細(xì)作用[12]釋放核芯至損傷部位,實現(xiàn)微裂紋的修復(fù)和填充。桐油是一種環(huán)境友好型材料,其長鏈不飽和脂肪酸構(gòu)成的高度不飽和共軛體系可引發(fā)基團(tuán)的快速聚合[13],且無需添加催化劑[14-15],僅通過空氣中氧氣的氧化作用[]即可形成致密的固體膜[17]。此外,桐油熱穩(wěn)定性良好[18]且黏度低[19],滿足對核芯的技術(shù)要求。海藻酸鈉是一種天然的多糖分子聚合物,由不同數(shù)量的葡萄糖醛酸和甘露酸酯單體共聚而成。當(dāng)添加鈣離子時,葡萄糖醛酸上的鈉離子與鈣離子發(fā)生置換,同時醛酸基團(tuán)相互疊加,使氧原子發(fā)生螯合作用形成海藻酸鏈,鏈之間相互作用最終形成穩(wěn)定的三維網(wǎng)絡(luò)結(jié)構(gòu)[20]。海藻酸鈣憑借其不溶性網(wǎng)絡(luò)凝膠特性[21],可形成具有優(yōu)異穩(wěn)定性的薄膜[22],完全符合對殼材性能的要求。
本研究中,將桐油與海藻酸鈣制備成核殼結(jié)構(gòu),應(yīng)用到不銹鋼表面涂層中,制備具有良好耐磨損和長效耐腐蝕性能的涂層。通過摩擦磨損測試和電化學(xué)阻抗譜測試,評估該涂層的耐摩擦性能和耐腐蝕性能。
試驗方法
1.1 不銹鋼基體預(yù)處理
試驗選用的基體材料為1RK91馬氏體不銹鋼。使用DK7735線切割機(jī)將1RK91馬氏體不銹鋼板切成尺寸為 10mm×10mm×3mm 的樣品,隨后用不同型號金剛石砂紙逐級打磨至表面光亮,再將打磨好的不銹鋼樣品依次放人丙酮和酒精中超聲清洗 20min ,然后放入101-1A鼓風(fēng)干燥箱中,在 60°C 下干燥 20min 。
1.2 微膠囊的制備
微膠囊的制備采用原位乳液聚合法[23],該制備方法簡單、便捷,且可以控制膠囊的尺寸和殼的厚度。原位乳液聚合法步驟如下:首先,將 3g 醫(yī)用桐油加人 200mL 去離子水中后邊攪拌邊緩慢加人2% 質(zhì)量分?jǐn)?shù)的聚乙烯醇(polyvinylalcohol,PVA)作乳化劑,以 1000r/min 的轉(zhuǎn)速攪拌 30min ,形成均勻的水包油乳液;接著,在 20mL 水包油乳液中先加人 1% 質(zhì)量分?jǐn)?shù)的海藻酸鈉,再滴加 3% 質(zhì)量分?jǐn)?shù)的氯化鈣,并用磁力攪拌器攪拌均勻。殼材逐漸在核芯表面沉積并發(fā)生交聯(lián)反應(yīng),反應(yīng)完成后用去離子水清洗、過濾,并在 80°C 下干燥 24h ,得到微膠囊。其中,桐油和PVA購自阿拉丁,海藻酸鈉和氯化鈣購自國藥集團(tuán)化學(xué)試劑有限公司。
1.3 含微膠囊自修復(fù)涂層的制備
制備含微膠囊的自修復(fù)涂層分為兩步:(1)以3-甲基丙烯酸酯三甲氧基硅烷[3-(trimethoxysilyl)propylmethacrylate,TMSM]和正硅酸乙酯(tetraethoxysilane,TEOS)為原料,制備有機(jī)-無機(jī)復(fù)合硅凝膠基質(zhì)。將TMSM與 2% 質(zhì)量分?jǐn)?shù)的過氧化苯甲酰(benzoyl peroxide,BPO)混合均勻得混合溶液A后,按混合溶液A和TEOS物質(zhì)的量比為1:1 加人TEOS中,得混合溶液B。然后將混合溶液B加入到 5mL 濃度為 0.01mol/L 的鹽酸與 20mL 質(zhì)量分?jǐn)?shù)為 50% 的甲醇(methyl alcohol,MeOH)的混合溶液中,以 240r/min 的轉(zhuǎn)速攪拌1h,并逐漸加水促進(jìn)TMSM和TEOS水解、縮合,直至形成透明的均勻硅凝膠。(2)在室溫下將干燥后的微膠囊分別以 0%5%.15% 和 25% 的質(zhì)量分?jǐn)?shù)加人到步驟(1)制備的硅凝膠基質(zhì)中,以 240r/min 的轉(zhuǎn)速攪拌2min 。將預(yù)處理好的不銹鋼樣品浸入含微膠囊的硅凝膠中 1min ,然后以 2cm/min 的速率垂直提取。含涂層的不銹鋼樣品先在室溫下干燥 12h ,再在50% 下固化 24h TMSM購自泰坦科技有限公司,TEOS、BPO、鹽酸和 MeOH 均購自國藥集團(tuán)化學(xué)試劑有限公司。
1.4 納米微膠囊表征
通過傅里葉變換紅外光譜儀(Fouriertransforminfraredspectrometer,F(xiàn)T-IR)測試微膠囊結(jié)構(gòu)。FTIR測試時以KBr粉末壓片作為背景,掃描范圍為4000~400cm-1 。采用掃描電子顯微鏡(scanningelectronmicroscope,SEM)觀察不同微膠囊的表面形貌及涂層表面愈合情況。使用熱重分析儀(thermalgravimetric analyzer, TGA)在 50~600°C 內(nèi)測量桐油、海藻酸鈣和微膠囊的TGA曲線。
1.5 摩擦磨損性能測試
在室溫下用ZNW-500摩擦試驗機(jī)進(jìn)行摩擦磨損測試,分析添加微膠囊涂層的不銹鋼樣品的自潤滑性能,測試時間為 300s. ,載荷為 30Nc ,每次測試前,球狀摩擦副用乙醇(ethylalcohol,EtOH)清洗并用無塵紙擦干。
1.6 耐腐蝕性能測試
2.1 微膠囊表征
采用電化學(xué)工作站完成所有電化學(xué)實驗。電化學(xué)阻抗 譜(electrochemical impedance spectroscopy,EIS)測試在開路電壓(opencircuit potential,OCP)下進(jìn)行,交流信號振幅為 10mV ,頻率范圍為 10-2~ 105Hz 表面劃有長 1cm 寬 10μm 十字劃痕(深度至不銹鋼板表面)并在模擬體液中浸泡一定時間后的不銹鋼試樣用來測試并評估微膠囊涂層的自修復(fù)性能。
2 結(jié)果與討論
微膠囊的形貌如圖1所示。圖1(a)為微膠囊低倍形貌。由圖1(a)可知:微膠囊呈球形;微膠囊表面粗糙不平整,沒有明顯的缺陷和孔洞。球形形狀使微膠囊的儲存容量最優(yōu),且易于分散至涂層中;海藻酸鈣顆粒原位沉積使微膠囊表面粗糙不平整,粗糙表面的微膠囊與涂層之間具有良好的結(jié)合。圖1(b)為微膠囊高倍形貌。由圖1(b)可知,所制備的微膠囊呈核殼結(jié)構(gòu),殼層厚度約為 90nm ,殼層內(nèi)表面光滑致密。在無外界破環(huán)情況下,這種致密的殼層可作包覆屏障,以防止桐油與氧氣發(fā)生反應(yīng)。
為了更好地了解所制備的微膠囊的化學(xué)結(jié)構(gòu),對桐油、海藻酸鈣和微膠囊進(jìn)行了FT-IR測試,結(jié)果如圖2所示。海藻酸鈣在 3000~3700cm-1 出現(xiàn)寬峰是因為一OH與氫鍵的疊加作用, 3432cm-1 處為一OH的伸縮振動峰, 2928cm-1 處為飽和 C-H 的伸縮振動峰, 1630cm-1 和 1 420cm-1 處分別對應(yīng)-∞0- 基團(tuán)的不對稱和對稱伸縮振動峰,1090cm-1 處為吡喃環(huán)上 C-O 和 C-C 的伸縮振動峰, 1030cm-1 處為 C-OH 的伸縮振動峰。桐油在 3012cm-1 處為共軛雙鍵中 C-H 的伸縮振動峰, 2926cm-1 和 2855cm-1 處為甲基或亞甲基中C-H 的伸縮振動峰, 1745cm-1 處為酯基中C=0 的伸縮振動峰, 1466cm-1 處為亞甲基中C-H 的伸縮振動峰, 1376,991,846cm-1 處為共軛雙鍵中 C-H 的面內(nèi)彎曲振動峰。上述所有特征峰均能在微膠囊的光譜中得到全面反映,這有力地證實了桐油表面成功地包覆了海藻酸鈣
圖1微膠囊形貌
Fig.1Morphologies of the microcapsule
圖2桐油、海藻酸鈣及微膠囊的FT-IR圖
Fig.2 FT-IR spectra of the tung oil, calcium alginate and microcapsule
微膠囊的熱穩(wěn)定性對其實際應(yīng)用和保存有很大的影響。因此,采用TGA測定了桐油、海藻酸鈣和微膠囊的熱穩(wěn)定性,見圖3。桐油是一種熱穩(wěn)定性良好的材料,在 240°C 以下幾乎沒有質(zhì)量損失,質(zhì)量損失速率最高在 390°C 處,此時桐油中部分共軛雙鍵轉(zhuǎn)變?yōu)榉枪曹楇p鍵,易分解成二氧化碳和水,熱穩(wěn)定性降低[24]。海藻酸鈣質(zhì)量損失速率最高在 240°C 處,這歸因于海藻酸鈣多糖分子的熱分解和海藻酸鈣中大部分糖苷鍵發(fā)生斷裂。多糖分子單體發(fā)生分解時,隨著 C-O 和C-C鍵的破裂,最終形成多核芳香族和石墨碳結(jié)構(gòu)[25]。微膠囊和海藻酸鈣的質(zhì)量損失趨勢相似,質(zhì)量損失速率在 320% 處達(dá)到最高,表明微膠囊具有良好的熱穩(wěn)定性。本文通過丙酮萃取法測得微膠囊中桐油質(zhì)量分?jǐn)?shù)約為81.6% 。而桐油正是涂層實現(xiàn)良好自潤滑和自修復(fù)性能的關(guān)鍵。
2.2 微膠囊自修復(fù)涂層摩擦磨損性能
耐磨性是材料抵抗磨損的能力,通常通過磨損深度來衡量。本文研究了微膠囊涂層在 30N,300s 條件下的摩擦性能。從圖4(a)的摩擦因數(shù)和圖4(b)的磨損深度可以看出,加入微膠囊有效地減小了涂層的摩擦因數(shù)和磨損深度。當(dāng)微膠囊質(zhì)量分?jǐn)?shù)為15% 時,其摩擦因數(shù)和磨損深度均最小,依次為0.32和 0.35mm 。這是由于,在摩擦力作用下桐油從破裂的微膠囊中釋放,使磨擦表面逐漸形成了一層具有減摩、耐磨的潤滑層[2]。此外,海藻酸鈣殼體的磨屑也可以作為固體潤滑劑混入桐油中[27],從而提高涂層的耐磨性。
圖3桐油、海藻酸鈣及微膠囊的TGA曲線
Fig.3 TGA curves of the tung oil, calcium alginate and microcapsule
圖4不同質(zhì)量分?jǐn)?shù)微膠囊涂層的摩擦因數(shù)和磨損深度
Fig.4Friction coefficients and wear depths of the microcapsule coatings with different mass fractior
不同質(zhì)量分?jǐn)?shù)微膠囊涂層的摩擦磨損表面SEM圖如圖5所示。由圖5可知: 0% 質(zhì)量分?jǐn)?shù)微膠囊涂層摩擦磨損后表面較為粗糙, 5% 質(zhì)量分?jǐn)?shù)微膠囊涂層因所含桐油不足,摩擦磨損后表面出現(xiàn)粗糙磨屑和較深犁溝,自潤滑效果較差; 15% 質(zhì)量分?jǐn)?shù)微膠囊涂層因所含桐油相對充足,摩擦磨損后表面相對光滑; 25% 質(zhì)量分?jǐn)?shù)微膠囊涂層因微膠囊聚集形成微凸體,增加了表面摩擦力,同時過高質(zhì)量分?jǐn)?shù)的微膠囊也降低了涂層與基材的附著力,導(dǎo)致表面脫落和較大凹坑的出現(xiàn)。結(jié)果表明, 15% 質(zhì)量分?jǐn)?shù)微膠囊涂層的耐磨性最佳,
Fig.5SEM images of friction and wear surfaces of the microcapsule coatings with diferent mass fractiol
2.3 微膠囊自修復(fù)涂層耐腐蝕性能
圖6顯示了不同質(zhì)量分?jǐn)?shù)微膠囊涂層在模擬體液中浸泡 1,5,10,20d 后的Bode圖。由圖6可知:浸泡1d后, 0% 質(zhì)量分?jǐn)?shù)微膠囊涂層的低頻阻抗為 7.8×105Ω?cm2 ,隨著微膠囊質(zhì)量分?jǐn)?shù)增加到15% 時,其低頻阻抗為 4.3×106Ω?cm2 ,微膠囊的添加能有效抑制不銹鋼鋼的腐蝕;浸泡20d后, 0% )5%,15%,25% 質(zhì)量分?jǐn)?shù)微膠囊涂層的低頻阻抗依次為 3.0×105?2.6×105?7.0×105?4.8×105Ω?cm2 ,表明 15% 質(zhì)量分?jǐn)?shù)微膠囊涂層的耐腐蝕性能優(yōu)于其他涂層的。
使用SEM進(jìn)一步檢查了劃傷區(qū)域的形貌,如圖7所示。由圖7可知: 0% 質(zhì)量分?jǐn)?shù)微膠囊涂層劃傷區(qū)域為一道深溝槽,內(nèi)部無任何填充;添加15% 質(zhì)量分?jǐn)?shù)微膠囊涂層劃傷區(qū)域在桐油固化后明顯形成了一層桐油膜,且膜層結(jié)構(gòu)致密,沒有任何孔隙結(jié)構(gòu),在劃傷位置形成了一個能夠阻礙腐蝕介質(zhì)擴(kuò)散的完整屏障,能提高涂層的耐腐蝕性能,由此證實涂層具有自修復(fù)能力。
圖6不同質(zhì)量分?jǐn)?shù)微膠囊涂層的Bode圖
Fig.6Bode diagrams of the microcapsule coatings with different mass fraction
3結(jié)論
本研究采用原位乳液聚合法成功制備了核殼結(jié)構(gòu)的微膠囊,微膠囊直徑約為 450nm ,壁厚約為90nm ,微膠囊穩(wěn)定性良好,其中桐油質(zhì)量分?jǐn)?shù)約為81.6% 。將微膠囊添加到硅凝膠基質(zhì)中,制備了具有良好自潤滑和自修復(fù)的多功能涂層。摩擦磨損測試表明, 15% 質(zhì)量分?jǐn)?shù)微膠囊涂層磨損深度最小,耐磨性最好。電化學(xué)測試結(jié)果表明, 15% 質(zhì)量分?jǐn)?shù)微膠囊涂層在模擬體液中短期(1d)浸泡時,涂層的低頻阻抗為 4.3×106Ω?cm2 ,長期(20d)浸泡后微膠囊涂層的低頻阻抗仍保持 7.0×105Ω?cm2 。
參考文獻(xiàn):
[1]ALI S, ABDUL RANI A M, BAIG Z, etal. Biocompatibility and corrosion resistance of metalic biomaterials[J]. Corrosion Reviews, 2020, 38(5): 381-402.
[2]KANG C W, FANG F Z. State of the art of bioimplants manufacturing: part II[J]. Advances in Manufacturing, 2018,6(2): 137-154.
[3]ALI S, IRFAN M,NIAZI U M, et al. Microstructure and mechanical properties of modified 316L stainless steel alloyforbiomedicalapplicationsusingpowder metallurgy[J].Materials, 2022, 15(8): 2822.
[4]PLACKO HE,BROWN S A,PAYERJH.Effects of microstructure on the corrosion behavior of CoCr porous coatingsonorthopedicimplants[J].Journalof Biomedical Materials Research, 1998, 39(2):292-299.
[5]ALI S, ABDUL RANI A M,MUFTI R A, et al. The influence of nitrogen absorption on microstructure, properties and cytotoxicity assessment of 316L stainless steel alloy reinforced with boron and niobium[J]. Processes,2019,7(8): 506.
[6] FELLAH M, LABAIZ M, ASSALA O, et al. Tribologicalbehaviour of AISI 3l6L stainless steel for biomedical applications[J].Tribology-Materials, Surfaces amp; Interfaces,2013,7(3):135-149.
[7]LEI M K, ZHU X M. In vitro corrosion resistance of plasma source ion nitrided austenitic stainless steels[J]. Biomaterials,2001, 22(7): 641-647.
[8]Thomann UI, Uggowitzer P J.Wear-corrosion behavior ofbiocompatible austenitic stainless steels[J]: Wear, 2000,239(1): 48-58.
[9]GHOSH S K. Functional coatings and microencapsulation: ageneral perspective[M]//GHOSH SK. Functional Coatings: by Polymer Microencapsulation. Weinheim: Wiley-VCH Verlag GmbH amp; Co. KGaA,2006: 1-28.
[10]SUN JY,WANG Y M, LI N, et al. Tribological and anticorrosion behavior of self-healing coating containing nanocapsules[J]. Tribology International, 2019,136: 332-341.
[11] SHARMA P, SHUKLA S, LOCHAB B, et al. Microencapsulated cardanol derived benzoxazines for self-healing applications[J]. Materials Letters, 2014, 133: 266-268.
[12] WU D Y, MEURE S, SOLOMON D. Self-healing polymeric materials: a review of recent developments[J]. Progress in Polymer Science, 2008, 33(5): 479-522.
[13]LI H Y, CUI Y X, WANG H Y, et al. Preparation and application of polysulfone microcapsules containing tung oil in self-healing and self-lubricating epoxy coating[J]. ColloidsandSurfacesA: Physicochemicaland Engineering Aspects,2017, 518: 181-187.
[14]LI W X, GUO Z H, YANG J, et al. Advanced strategies for stabilizing single-atom catalysts for energy storage and conversion[J].Electrochemical Energy Reviews, 2022, 5(3): 9.
[15]LI J C, XU Y,LIANG L P,et al. Metal-organic frameworks-derivednitrogen-dopedcarbonwith anchoreddual-phasedphosphidesasefficient electrocatalyst for overall water splitting[J]. Sustainable Materials and Technologies, 2022,32: e00421.
[16]LI H Y,CUI Y X,LI Z K,et al. Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings[J]. Progress in Organic Coatings, 2018,115: 164-171.
[17]COMLEKCI G K, ULUTAN S. Acquired self-healing ability of an epoxy coating through microcapsules having linseed oil and its alkyd[J]. Progressin Organic Coatings, 2019,129:292-299.
[18]LI H Y, WANG Q, LI M L, et al. Preparation of high thermal stability polysulfone microcapsules containing lubricant oil and its tribological properties of epoxy composites[J]. Journal of Microencapsulation, 2016, 33(3): 286-291.
[19]GUO Q B,LAU K T, ZHENG B F, et al. Imparting ultra-low friction and wear rate to epoxy by the incorporationofmicroencapsulatedlubricant?[J]. MacromolecularMaterials and Engineering, 2009, 294(1): 20-24.
[20]SARMENTO B,MARTINS S, RIBEIRO A,et al. Developmentandcomparisonofdifferent nanoparticulate polyelectrolyte complexes as insulin carriers[J]. International Journal of Peptide Research and Therapeutics,2006,12(2): 131-138.
[21]HAGENA, SKJAK-BRAEK G, DORNISHM. Pharmacokineticsofsodium alginateinmice[J]. European Journal of Pharmaceutical Sciences,1996, 4(S1): S100.
[22] GOMBOTZ W R, WEE S F. Protein release from alginate matrices[J]. Advanced Drug Delivery Reviews, 2012, 64(S1): 194-205.
[23] CUI G, BI Z X, WANG S H, et al. A comprehensive review on smart anti-corrosive coatings[J]. Progress in Organic Coatings, 2020,148: 105821.
[24]ZHUANG Y W, REN Z Y, JIANG L, et al. Raman and FTIR spectroscopic studies on two hydroxylated tung oils(HTO) bearingconjugateddoublebonds[J]. SpectrochimicaActaPartA:Molecularand Biomolecular Spectroscopy, 2018, 199: 146-152.
[25]STOJANOVICR, BELSCAK-CVITANOVICA, MANOJLOVIC V, et al. Encapsulation of thyme (Thymus serpyllum L. ) aqueous extract in calcium alginate beads[J]. Journal of the Science of Food and Agriculture, 2012, 92(3): 685-696.
[26]YANG K,SHI X L,ZHENG D, et al. Tribological behavior of a TiAl matrix composite containing 10wt% Ag investigated at four wear stages[J]. RSC Advances, 2015,5(95): 77885-77896.
[27]SCHMID J, SIEBER V,REHMB.Bacterial exopolysaccharides:biosynthesispathwaysand engineering strategies[J].Frontiers in Microbiology, 2015, 6: 496.
(編輯:何代華)