中圖分類號:S666.1 文獻標志碼:A 文章編號:1009-9980(2025)07-1455-12
Abstract: 【Objective】 In the northern region, the ambient temperature rises faster in the early spring period,and the soil temperature changes are relatively lagging behind,resulting in the roots of Malus baccata Borkh. often being in sub-low temperature.“Sub-low temperature”refers to a low temperature that is above 0°C and lower than the optimal temperature for plant growth and development, but it does not cause plant death.The roots not only anchor the plant and absorb nutrients and water but also sense changes in the soil environment and transmit adverse signals to aboveground part to regulate plant growth and development. Currently,most of the researches on plant response to low temperature stress focus on the aboveground part of the plant, while the root is more sensitive to temperature changes. 1°C change in root zone temperature can cause significant changes in plant growth compared to air temperature. Sugar has an important role in plant metabolism and growth. And, sugar not only serves as structural material and an energy source but also has signaling functions to regulate the expression of relevant genes and activities of relevant enzymes. Sugar accumulation is considered as a defense response to various abiotic stresses. When plants are under stress, exogenous sugars can regulate ROS levels,secondary metabolism,gene expresson,and interactions among hormones.To explore the physiological roles of different exogenous sugars in regulating the response of M. baccata Borkh.roots to sublow temperature, in this study, we used LT treatments with exogenous sucrose, glucose and fructose to analyze the sugar metabolismand antioxidant systems in the rootsof M. baccataBorkh.,withaviewto providing theoretical references for the study on low temperature acclimatization of the apple roots. 【Methods】This experiment was carried out at the research base of Shenyang Agricultural University, and seedlings of M. baccata Borkh. were used as the test material. The seeds were stratified in sand to promote germination,and thereafter they were sown in cavity trays,and transplanted to 16cm×16cm plastic pots filled with sand for culture when the seedlings grew to 7-8 true leaves, and the Hoagland nutrient solution was applied every other day.When the true leaves had grown to 15,the robust seedlings with no pests and diseases were selected for conducting the experimental treatments.M. baccata Borkh. seedlings were pre-cultured in an artificial climate chamber with culture conditions set at 20°C (day)/ 10°C (night), 14h of light (300μmol?m-2?s-1 light intensity), and 70% relative humidity. In this study, five treatments were set up: control (CK),sub-low root zone temperature (I ),sub-low root zone temperature + sucrose (LS), sub-low root zone temperature + fructose (LF),and sub-low root zone temperature + glucose (LG), with 15 seedlings per treatment for three biological replicates. The sugar solution was applied in a volume of 250mL . After 48h treatment period, root samples were collected. 【Results】 After 48h of L treatment, the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS),acid invertase (AI),neutral invertase (NI),hexokinase (HK) and phosphofructokinase (PFK) were significantly elevated, and the contents of sucrose, glucose,and fructose significantly increased, while the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) significantly increased, and ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not significantly changed.The contents of GSH,DHA and GSSG significantly increased, the ratio of AsA/DHA significantly decreased, and the GSH/GSSG ratio was not significantly changed. Reactive oxygen species (ROS) level, malondialdehyde (MDA) contents and relative conductivity significantly increased. Compared with L treatment, all three exogenous sugar treatments increased the activities of key enzymes of sugar metabolism and antioxidant system in the roots of M. baccata Borkh. to varying degrees,simultaniously promoting the accumulation of antioxidant contents (AsA and GSH) and sugar contents in the roots under sub-low root zone temperature,which in turn reduced the ROS level, MDA contents and relative conductivity of the roots.The exogenous sucrose treatment was beter than fructose and glucose treatments in aleviating the oxidative damage in M. baccata Borkh.roots under sublow root zone temperature.【Conclusion】 This study provides new insights into the regulation of sugar in the roots of M. baccata Borkh. in response to the L treatment. Sub-low root zone temperature for 48h increased ROS level,MDA contents and relative conductivity in the roots of M. baccata Borkh., leading to membrane lipid peroxidation in the roots.Exogenous addition of sucrose could allviate the oxidative damage induced by reactive oxygen species in the roots by regulating the sugar metabolism and antioxidant system,and its effect was significantly better than that with glucose and fructose treatment and it may have the function of signaling molecules.The results of this study provide a scientific foundation for regulating root function in apple cultivation in cold climates.
Key words: Apple rootstock; Sub-low root-zone temperature; Sucrose metabolism; Antioxidant system
在中國北方冷涼氣候區(qū),早春氣溫變化劇烈,晝夜溫差大,由于土壤比熱容遠高于空氣,導致土溫上升明顯滯后于氣溫,使蘋果根系通常處于亞低溫下。亞低溫是指 0°C 以上但低于植株生長發(fā)育的最適溫度,影響植株的正常生長發(fā)育但不會使植株致死的溫度。根區(qū)亞低溫會導致蘋果根系生理功能紊亂和生長發(fā)育滯后,對地上部的生命活動影響顯著。根系是植物吸收水分和養(yǎng)分的主要器官,且其對低溫的響應要比地上部更敏感[2-3]。大量研究已發(fā)現(xiàn),根區(qū)低溫能夠直接影響根系發(fā)育、水分和礦質(zhì)元素的吸收、抗氧化系統(tǒng)和碳氮代謝等生理過程,同時影響地上部光合作用,進而抑制整個植株的生長4。蘋果根系生長最適宜的土壤溫度為 15~24°C 當土溫在 3~4°C 時新根開始生長5。當土溫為 5°C 時,根系處于亞低溫脅迫下,導致其氧化還原狀態(tài)、相關基因的表達、滲透物質(zhì)代謝以及生長狀態(tài)等多方面的改變。
糖在調(diào)節(jié)植物生理代謝與生長發(fā)育中具有重要作用。研究表明,葡萄糖預處理會誘導葉片酸性轉(zhuǎn)化酶(AI、中性轉(zhuǎn)化酶(NI)、可溶性總糖、葡萄糖和果糖含量增加,保護黃瓜幼苗免受脫水脅迫傷害。鹽脅迫下外源葡萄糖和果糖預處理可以提高小黑麥葉片磷酸果糖激酶(PFK)和己糖激酶(HK)活性,這表明外源糖可通過影響糖代謝,減輕鹽脅迫對小黑麥的傷害。植物中的蔗糖磷酸合成酶可以促進蔗糖合成,中性轉(zhuǎn)化酶和酸性轉(zhuǎn)化酶將部分蔗糖分解產(chǎn)生葡萄糖和果糖,蔗糖合成酶催化蔗糖可逆轉(zhuǎn)化為葡萄糖和果糖。外源糖可調(diào)節(jié)植物細胞內(nèi)碳水化合物代謝相關酶活性及基因表達,進而影響碳水化合物含量。外源葡萄糖與果糖處理可顯著提高紅地球葡萄試管苗葉片蔗糖合成酶(SS)、蔗糖磷酸合成酶(SPS)等酶活性,導致蔗糖含量增加,葉片的蔗糖供應能力也隨之提高,從而促進植株的生長[]。外源蔗糖處理可顯著提高大豆根系SPS、AI及NI活性,促進植株內(nèi)積累蔗糖和果糖,進而提高大豆的抗性,緩解低磷脅迫對大豆的損傷[]。
糖類物質(zhì)的增加可調(diào)節(jié)細胞滲透壓、保護生物膜系統(tǒng)、加快糖代謝產(chǎn)生更多能量和ATP。此外,糖被認為是調(diào)節(jié)氧化脅迫的重要化合物[2]。外源糖處理可以通過調(diào)節(jié)抗氧化酶活性,清除過量活性氧(ROS),從而提高細胞膜的穩(wěn)定性,緩解逆境脅迫[13-14]。在根區(qū)亞低溫脅迫下,外源蔗糖處理能夠提高山定子幼苗根系抗氧化酶(CAT、POD、SOD和APX)活性,減少植株ROS的積累量[15]。在擬南芥中蔗糖處理可以消除長時間黑暗中的活性氧應激,提高植株的耐缺氧能力[。小分子可溶性糖與其代謝途徑相關酶被廣泛認為與氧化應激和活性氧信號轉(zhuǎn)導有關,內(nèi)源性糖為還原型谷胱甘肽(GSH)的產(chǎn)生創(chuàng)造還原能力,有助于清除過氧化氫 (H2O2)[17] 。研究發(fā)現(xiàn)葡萄糖和蔗糖可通過磷酸戊糖途徑為抗壞血酸-谷胱甘肽(AsA-GSH)循環(huán)提供還原力,有效提高AsA和GSH的再生效率[18]。同時較高濃度的可溶性糖可以作為活性氧的清除劑。三氯蔗糖可以作為擬南芥羥自由基的清除劑,通過與羥自由基的非酶促反應清除ROS,促進細胞ROS動態(tài)平衡[9]。
山定子作為蘋果常用砧木,其根系在中國北方冷涼地區(qū)早春時期常處于亞低溫狀態(tài)下,易遭受氧化脅迫損傷[2]。為探索不同外源糖處理在調(diào)節(jié)山定子根系響應亞低溫中的生理作用,筆者在本研究中通過外源添加蔗糖、葡萄糖和果糖,研究根區(qū)亞低溫下不同外源糖對山定子幼苗根系抗氧化系統(tǒng)及糖代謝的影響,探討不同外源糖對根區(qū)亞低溫下山定子根系生理功能的調(diào)節(jié)作用,以期為蘋果根系低溫適應性調(diào)控研究提供理論參考。
1 材料和方法
1.1 試驗材料與處理
本試驗在沈陽農(nóng)業(yè)大學果樹科研基地進行,試材采用山定子(MalusbaccataBorkh.)實生幼苗。種子層積發(fā)芽后點播于穴盤中,待幼苗生長有7\~8片真葉時移栽到規(guī)格為 16cm×16cm 營養(yǎng)缽中進行沙培培養(yǎng),每隔1d澆灌1次Hoagland營養(yǎng)液,基于前期預試驗發(fā)現(xiàn),土施 90mmol?L-1 的蔗糖溶劑效果最好,為保證3種糖提供相同的能量(即相同碳分子含量),葡萄糖與果糖的濃度設置為 180mmol?L-1 0當山定子實生幼苗真葉長至15片時,選取長勢一致、無病蟲害的健壯幼苗進行試驗處理(表1)。
1.2葡萄糖、果糖和蔗糖含量測定
山定子根系蔗糖、葡萄糖、果糖含量采用液相色譜儀進行測定[21]。糖含量測定使用高效液相色譜儀型號為AngiLent-1260,示差折光檢測器為RID檢測器,進樣量 10μL ,柱溫 80°C ,流動相超純水。
山定子幼苗在人工氣候室中進行預培養(yǎng),培養(yǎng)溫度設定為 20°C (晝) /10°C (夜),光照 14h ,濕度
70% 。預培養(yǎng)2d后進行根區(qū)亞低溫處理,將幼苗放進恒溫低溫槽中,使根部處于 (5±0.2)°C 條件下。
采用灌根方式進行糖處理,每缽澆灌溶液體積約為 250mL 。試材預培養(yǎng)1d后分別澆灌不同糖溶劑,并在24h后放入低溫槽中進行根區(qū)亞低溫處理,具體參考永輝等2的處理方法。
處理48h時取樣,3次生物學重復,每次重復為5株。根系取樣:用自來水將根系表面土壤沖洗干凈,吸水紙擦干,剪取山定子幼苗根部的白色細根,用錫紙包好后于液氮中速凍,保存在 -80°C 冰箱備用。
1.3糖代謝相關酶活性測定
蔗糖代謝關鍵酶酶液的提取方法與測定方法:稱取 0.2g 山定子幼苗根系樣品,加入 3mL Hepes緩沖液,旋渦混勻后 4°C 過夜,次日于 13000r?min-1 、4°C 下離心 10min[22] 。
已糖激酶(HK)、磷酸果糖激酶(PFK)活性采用江蘇酶免實業(yè)有限公司生產(chǎn)的ELISA檢測試劑盒進行測定,測定方法參照各試劑盒的說明書。
樣品,加入 0.075g 交聯(lián)聚乙烯吡咯烷酮(pvpp)與1.5mL100mmol?L-1 磷酸鉀緩沖液 (pH7.8) (含0.5% 聚乙二醇對異辛基苯基),游渦混勻, 4°C 過夜,于 8000r?min-1.4°C 下離心 35min ,取上清液,即酶液。
SOD活性用硝基藍四唑(NBT)法測定[;POD活性采用愈創(chuàng)木酚法測定[28];CAT活性的測定:抗氧化酶提取液 0.1mL ,加入 1mL 50mmol?L-1 Tirs-HC1溶液 ?0.2mL200mmol?L-1 過氧化氫溶液與 1.7mL 在 A240 下,讀 3min ,每30s讀一次數(shù)[29];APX活性測定方法:抗氧化酶提取液 0.05mL ,分別加入0.1mL 0.5mol?L-1Kpp 緩沖液、 .0.1mL2mmol?L-1 AsA溶液 、0.1mL 過氧化氫溶液和 0.65mLH2O ,在A290 的條件下測定 5min 吸光值[30];GR活性測定:抗氧化酶提取液 0.05mL ,分別加入 0.55mLH2O,0.1mL 1mol-1 Hepes溶液 $\ 、 0 . 1 \mathrm { m L } 5 \mathrm { m m o l } \cdot \mathrm { L } ^ { \smash { - 1 } } \mathrm { E D T A }$ 溶液、0.1mL1mmol?L-1NADPH 溶液和 0.1mL5mmol?L-1 GSSG溶液,在 25°C 下反應 5min ,在 A340 條件下測定 5min 吸光值[1]。
1.4活性氧含量、丙二醛含量及抗氧化酶活性測定 1.5抗氧化物含量測定
H2O2 含量測定:稱取 0.06g 山定子幼苗根系樣品,加入 2mL 的TCA溶液,于 10000r?min-1.4°C 下離心 10min ,取 1mL 上清液,加入 0.1mL20% TiCl4溶液 ??0.2mL 濃氨水,于 5000r?min-1?25°C 下離心 10min 沉淀用 3mL 硫酸溶解,在A410下測定吸光值[23]。
超氧自由基 (O2??) 測定方法:參照FAROOQMA[24] 的試驗方法并稍作改動,稱取山定子根系 0.1g 加入 2mL 50mmol?L-1 的 Kpp(pH7.8) ,室溫振蕩20min ,于 1000r?min-1.25°C 下離心 10min ,取上清液,二次離心,加入 0.9mLKpp 與 0.1mL 鹽酸羥胺,充分混勻, 25°C 反應 20min ,然后依次加入 1mL 對氨基苯磺酸與 萘胺, 25°C 反應 20min ,在A530下測定吸光值。
丙二醛含量測定采用硫代巴比妥酸比色法[25]??寡趸敢禾崛》椒╗2]:稍作改動,稱取 0.075g
AsA、DHA、GSH和GSSG含量測定參考方法:稱取 0.2g 根系粉末加入 2mL5% 的TCA進行提取,于 13000r?min?1?4°C 下離心 15min ,取上清液用于測定[32-33]。
1.6 數(shù)據(jù)統(tǒng)計與分析
使用Excel2019軟件對試驗數(shù)據(jù)進行梳理分析和作圖,使用SPSSStatistics22.0軟件對數(shù)據(jù)進行差異顯著性檢驗 (plt;0.05 、統(tǒng)計分析、單因素方差分析(ANOVA)及多重比較(Duncan法)。
2 結(jié)果與分析
2.1外源糖對根區(qū)亞低溫下山定子根系糖代謝的 影響
2.1.1外源糖對根區(qū)亞低溫下山定子根系糖含量的影響如圖1所示,與CK相比,L處理下根系可溶性糖、蔗糖、葡萄糖和果糖含量顯著升高。與L處理相比,施用外源糖不同程度提高了可溶性糖、蔗糖、葡萄糖和果糖含量,LG處理的可溶性糖和葡萄糖含量顯著高于其他兩種糖處理;蔗糖含量在LF和LS與LS和LG處理之間無顯著差異;果糖含量在LF和LG處理之間無顯著差異,且LS處理的果糖含量顯著低于LF、LG處理。
2.1.2外源糖對根區(qū)亞低溫下根系糖代謝相關酶活性的影響 SPS催化尿苷二磷酸葡萄糖和6-磷酸果糖產(chǎn)生磷酸蔗糖,再發(fā)生脫磷酸反應生成蔗糖和磷酸;SS催化尿苷二磷酸葡萄糖和果糖產(chǎn)生蔗糖和尿苷二磷酸,反應可逆。如圖2所示,L處理后根系SPS活性和SS活性(合成方向)均顯著升高。與L處理相比,LF、LS、LG處理下SPS活性和SS活性(合成方向)均顯著提高,SPS活性分別提高了47.51%.56.09% 和 51.60% ,但各處理間無顯著差異;SS活性(合成方向)分別提高了 22.51%,33.36% 和23.26% ,其中LS處理下SS活性顯著高丁LF和LG處理。
酸性轉(zhuǎn)化酶、中性轉(zhuǎn)化酶能將蔗糖水解成葡萄糖和果糖。SS催化蔗糖和尿苷二磷酸產(chǎn)生尿苷二磷酸葡萄糖和果糖,反應可逆。如圖3所示,L處理后根系AI、NI和SS活性(分解方向)顯著升高。與L處理相比,LF、LS和LG處理均顯著提高了AI、NI和SS活性(分解方向),其中AI活性分別提高了33.82%.42.64% 和 34.94% ,AI活性在LF、LS和LG處理之間無顯著變化;NI活性分別提高了 35.52% 、93.30% 和 38.33% ,LS處理的NI活性顯著高于LF、LG處理;SS活性(分解方向)分別提高了 28.02% 、
48.16% 和 40.58% ,SS活性(分解方向)在LS和LG、LF和LG處理之間無顯著差異。
如圖4所示,L處理后根系HK、PFK活性顯著升高。與L處理相比,LF、LS和LG處理均顯著提高了HK、PFK活性,其中HK活性分別提高了 21.28% 、21.36% 和 25.04% ,且HK活性在LF、LS和LG處理之間無顯著變化;PFK活性分別提高了 26.71% 、35.83% 和 17.83% ,且LF與LS處理之間無顯著差異。
2.2外源糖對根區(qū)亞低溫下山定子根系抗氧化系統(tǒng)的影響
2.2.1外源糖對根區(qū)亞低溫下山定子根系丙二醛含量、相對電導率和活性氧含量的影響如圖5所示,L處理根系MDA含量與相對電導率顯著提高。與L處理相比,LF、LS、LG處理MDA含量與相對電導率顯著降低,MDA含量分別降低 15.12%.20.41% 和16.99% ,LS處理的MDA含量要顯著低于其他兩種糖處理;相對電導率分別降低了 23.15%.36.05% 和27.82% ,其中相對電導率在LS和LG、LF和LG處理
之間無顯著差異。
如圖6所示,與CK相比,L處理根系 O2???H2O2 含量顯著增加。與L處理相比,LF、LS、LG處理0÷… 、 H2O2 含量顯著降低, 0÷… 含量分別降低了
13.98%.22.47% 和 16.05% 在LS和LG、LF和LG處理之間無顯著差異; H2O2 含量分別降低了10.83%.15.19% 和 11.96% ,LS處理的 H2O2 含量顯著低丁LF、LG處理。
2.2.2外源糖對根區(qū)亞低溫下山定子根系抗氧化酶活性的影響如圖7所示,L處理誘導根系SOD、POD、CAT活性顯著升高。與L處理相比,LF、LS、LG處理根系SOD、POD、CAT活性顯著升高,SOD活性分別升高了 12.19%.23.28% 和 15.12% ;POD活性分別升高了 15.30% F 28.14% 和 19.51% ;CAT活性分別升高了 26.12%.29.92% 和 25.57% ,LS處理的酶活性顯著高丁其他兩種糖的處理。
APX屬丁過氧化物酶家族,通過催化 H2O2 的還原來維持細胞中的氧化還原平衡。GR催化GSSG還原生成GSH,維持植物體內(nèi)的GSH含量和GSH庫的氧化還原狀態(tài),并清除ROS。如圖8所示,與CK相比,L處理后根系APX活性無顯著變化,GR活性有所下降但變化不顯著。與L處理相比,不同糖處理后APX和GR活性均顯著提高,APX活性分別提高了 30.50% 、 44.65% 和39.95% ,GR活性分別提高了 37.15% / 49.31% 和41.92% 。山定子根系APX、GR活性從高到低依次是 LSgt;LGgt;LF 。
2.2.3外源糖對根區(qū)亞低溫下山定子根系抗氧化劑含量的影響在AsA-GSH循環(huán)中,AsA和GSH也參與了ROS解毒過程,低溫脅迫嚴重影響了植物氧化還原平衡,導致DHA和GSSG的過度積累。如圖9所示,L處理的AsA含量無顯著變化,DHA、GSH和GSSG含量顯著升高,AsA/DHA顯著降低,GSH/GSSG無顯著變化;與L處理相比,不同糖處
理后,AsA與DHA含量顯著增加,AsA/DHA顯著升高,且在LF、LS、LG處理之間無顯著變化;GSH含量顯著升高,GSSG含量顯著降低,GSH/GSSG顯著升高,且LS處理的GSH/GSSG顯著高于LF和LG處理。
3討論
糖是光合、呼吸作用的底物,能為植物的生長發(fā)育提供碳骨架和能量,也能增強植株的抗逆性[34]。逆境脅迫會誘導植物積累不同可溶性糖(如蔗糖、葡萄糖、果糖和海藻糖)和多元醇(如水楊醇、甘露醇和山梨醇)[35]。蔗糖代謝與植物低溫適應性密切相關。研究表明,低溫脅迫會導致麻瘋樹幼苗SPS和轉(zhuǎn)化酶活性升高,可溶性糖含量增加[3。蔗糖、葡萄糖和果糖等可溶性糖可作為滲透分子和信號分子,參與植物對環(huán)境脅迫的響應38。在本試驗中,根區(qū)亞低溫顯著提高了根系中蔗糖代謝酶SPS、SS(合成和分解方向)和AI活性,促進根系中蔗糖、葡萄糖和果糖積累量增加,這與前人的研究結(jié)果相一致[39。而在低溫下可溶性糖的積累可提高細胞的滲透調(diào)節(jié)能力,在根系響應低溫逆境時起到積極作用[4]。在本試驗中,根區(qū)亞低溫處理下山定子根系HK和PFK活性顯著升高,這有利于將己糖磷酸化,誘導糖信號,產(chǎn)生更多能量,可為糖的合成代謝提供足夠的還原力和能量[4]。
糖類作為安全無毒的天然物質(zhì),在生產(chǎn)中可應用于增強園藝作物抗低溫能力、提高作物品質(zhì)與產(chǎn)量等方面[42。植物對不同糖及不同糖濃度所產(chǎn)生的響應不同。研究表明,外源葡萄糖處理會誘導葉片AI、NI活性及可溶性總糖、葡萄糖和果糖含量提高,保護黃瓜幼苗免受脫水脅迫傷害。外源蔗糖顯著提高了葉用萵苣中可溶性糖、蔗糖含量,提高了SS、SPS活性,并隨著生長時間的延長而逐漸提高[43]。在本試驗中,根區(qū)亞低溫下添加蔗糖、葡萄糖和果糖均能使山定子幼苗根系中可溶性糖含量升高,且與SS、SPS、AI和NI活性的增強相對應。同時,根系中O2???H2O2.MDA 含量和相對電導率降低,說明外源糖處理在一定程度上可激活糖代謝酶,促進可溶性糖積累,從而降低ROS含量,緩解脂質(zhì)過氧化,保護山定子幼苗免受低溫脅迫損傷。
ROS的過量積累導致細胞膜脂質(zhì)過氧化,表現(xiàn)為MDA含量的增加[445]。在本試驗中,根區(qū)亞低溫引起山定子根系 O2 和 H2O2 的積累與相對電導率的提高,ROS含量升高加劇根系膜脂過氧化,表現(xiàn)為MDA積累,同時由于應激反應,SOD、POD和CAT活性在短期亞低溫下升高,但筆者課題組前期研究發(fā)現(xiàn),長時間的根區(qū)亞低溫會抑制抗氧化酶活性。APX和GR作為AsA-GSH循環(huán)中重要的酶,主要通過參與AsA和GSH再生以及維持AsA-GSH循環(huán)來清除 ROS[46-47] 。外源糖通過誘導保護性酶活性升高成為其有效緩解逆境脅迫的重要機制之一[48]。本研究結(jié)果表明,外源添加果糖、蔗糖、葡萄糖可以提高山定子幼苗根系中SOD、POD、CAT、APX和GR活性,與AsA、GSH抗氧化劑、糖組分含量,AsA/DHA和GSH/GSSG水平升高的趨勢相一致??寡趸富钚?、抗氧化劑和糖組分含量的升高導致 O2…,H2O2 MDA含量和相對電導率降低。說明外源糖處理導致根區(qū)亞低溫下山定子幼苗根系中蔗糖等含量升高,維持較高的AsA/DHA和GSH/GSSG,使AsA和GSH能夠在低溫脅迫下AsA-GSH循環(huán)中發(fā)揮作用,同時誘導抗氧化酶清除ROS,進而減輕根系的氧化損傷。
不同園藝作物在不同低溫條件下所適宜的糖種類和糖濃度存在差異。在本研究中,外源添加蔗糖、果糖、葡萄糖均可通過促進糖代謝,積累可溶性糖等滲透物質(zhì),調(diào)節(jié)抗氧化系統(tǒng),減輕根系活性氧誘導的氧化損傷,進而提高山定子幼苗對根區(qū)亞低溫脅迫的耐受性。且3種糖處理中蔗糖的處理效果最好,分析原因可能是:糖作為碳源為植物提供能量來源,蔗糖較葡萄糖能更好地調(diào)節(jié)基質(zhì)(培養(yǎng)基)的滲透壓;蔗糖也是一種重要的信號物質(zhì),參與調(diào)控植物的多種生理過程[42];研究表明,蔗糖對氧化脅迫的保護作用是由于其信號轉(zhuǎn)導作用,從而完成對ROS的清除[4]。此外,蔗糖可通過轉(zhuǎn)化酶或蔗糖合成酶分解成己糖進一步參與調(diào)節(jié)相關生理代謝。研究結(jié)果可為從糖調(diào)控角度改良蘋果低溫抗性提供理論參考,對冷涼氣候區(qū)蘋果生產(chǎn)中糖的施用具有指導意義。
4結(jié)論
根區(qū)亞低溫處理 48h 會誘導山定子根系SS、SPS等糖代謝關鍵酶活性升高,糖含量增加,SOD、POD等抗氧化酶活性和AsA、GSH等抗氧化物含量升高,同時山定子根系中ROS、MDA含量和相對電導率升高,導致根系膜脂過氧化程度加劇。外源添加果糖、蔗糖、葡萄糖可通過調(diào)節(jié)糖代謝、抗氧化系統(tǒng)減輕根系氧化損傷,且外源蔗糖處理對根區(qū)亞低溫脅迫下山定子幼苗的氧化損傷緩解效果要好于果糖和葡萄糖處理。
參考文獻References:
[1]ZHANG MZ,WANG LL,YE D,CHEN X,WU ZY,LIN X J, CHENWJ,BIANHW,HANN,ZHU MY. Sucrose treatment alters floral induction and development in vitro in gloxinia[J]. In Vitro Cellularamp; Developmental Biology-Plant,2012,48(2): 167-171.
[2]GHOSH D,XU J. Abiotic stress responses in plant roots :A proteomics perspective[J].Frontiers in Plant Science,2014,5:6.
[3] 趙鵬,常濤,張玉鑫.根區(qū)溫度對甜瓜幼苗生長的影響[J].北 方園藝,2008(12):88-90. ZHAO Peng,CHANG Tao,ZHANG Yuxin. Effects of root zone temperature on growth of muskmelon seedlings[J]. Northern Horticulture,2008(12):88-90.
[4]ANWAR A,LIY S,HECX,YU X C.24-Epibrassinolide promotes NO3- and NH4+ ionflux rate and NRTl gene expression in cucumber under suboptimal root zone temperature[J].BMC Plant Biology,2019,19(1):225.
[5] 楊洪強,束懷瑞.蘋果根系研究[M].北京:科學出版社,2007. YANG Hongqiang,SHU Huairui. Studies on apple roots[M]. Beijing:Science Press,2007.
[6]JAN N,MAJEED U,ANDRABI KI, JOHN R. Cold stress modulatesosmolytesand antioxidant system in Calendulaofficinalis[J].ActaPhysiologiaePlantarum,2018,40(4):73.
[7]HUANGYW,NIEY X,WANYY,CHEN SY,SUN Y, WANG X J,BAI JG. Exogenous glucose regulates activities of antioxidant enzyme,soluble acid invertase and neutral invertase and alleviates dehydration stress of cucumber seedlings[J].Scientia Horticulturae,2013,162:20-30.
[8]李改玲.外源糖調(diào)控鹽脅迫下小黑麥糖代謝及光合特性的研 究[D].哈爾濱:東北農(nóng)業(yè)大學,2016. LI Gailing. Exogenous sugar alleviate effects of salt stress on thesugar metabolism and photosynthetic characteristicsof triticale[D].Harbin:Northeast Agricultural University,2016.
[9]HO S,CHAO Y,TONG W,YU S.Sugar coordinately and differentially regulates growth-and stress-related gene expression via a complex signal transduction network and multiple control mechanisms[J].Plant Physiology,2001,125(2):877-890.
[10]米寶琴.外源糖對葡萄試管苗糖代謝的分子調(diào)控機理研究[D]. 蘭州:甘肅農(nóng)業(yè)大學,2016. MI Baoqin. The study of molecular regulation mechanism on exogenous sugar effect sugar metabolism of grape plantletsin vitro[D].Lanzhou:GansuAgricultural University,2016.
[11]孔令劍.蔗糖處理下大豆苗期根系對低磷脅迫的響應[D].沈 陽:沈陽農(nóng)業(yè)大學,2018. KONG Lingjian. Responses of soybean sedlings root system to low phosphorus stress under sucrose treatment[D]. Shenyang: Shenyang Agricultural University,2018.
[12]VAN DEN ENDE W,VALLURU R. Sucrose,sucrosyl oligosaccharides,and oxidative stress:Scavenging and salvaging[J]. Journal ofExperimental Botany,2009,60(1):9-18.
[13]BAQUE MA,ELGIRBAN A,LEE EJ,PAEK K Y. Sucrose regulated enhanced induction of anthraquinone,phenolics,flavonoids biosynthesis and activities of antioxidant enzymes in adventitious root suspension cultures of Morinda citrifolia (L.)[J]. ActaPhysiologiae Plantarum,2012,34(2):405-415.
[14]BAI LQ,DENG HH,ZHANG XC,YUXC,LIY S.Gibberellin is involved in inhibition ofcucumber growth and nitrogen uptake at suboptimal root-zone temperatures[J].PLoS One,2016, 11(5):e0156188.
[15] ZHAO X P,LIU HY,YONG H,LI L J,LYU D G. Effects of exogenous sucrose on root physiology and transcriptome of Malus baccata Borkh.under sub-low root-zone temperature[J]. Scientia Horticulturae,2024,337:113474.
[16]ROSENWASSER S,ROT I,SOLLNER E,MEYER A J, SMITHY,LEVIATAN N,F(xiàn)LUHR R,F(xiàn)RIEDMAN H. Organelles contribute differentially to reactive oxygen species-related events during extended darkness[J].Plant Physiology,2O11,156 (1):185-201.
[17]BOLOURI-MOGHADDAM MR,LE ROY K,XIANG L,ROLLANDF,VAN DEN ENDE W. Sugar signalling and antioxidant network connections in plant cels[J]. The FEBS Journal, 2010,277(9):2022-2037.
[18]XIANG L,LI Y,ROLLAND F, VAN DEN ENDE W. Neutral invertase,hexokinase and mitochondrial ROShomeostasis: Emerging links between sugar metabolism,sugar signalingand ascorbate synthesis[J].Plant Signalingamp; Behavior,2011,6(10): 1567-1573.
[19]MATROSA,PESHEV D,PEUKERTM,MOCK HP,VAN DEN ENDE W. Sugars as hydroxyl radical scavengers: Proof-ofconcept by studying the fate of sucraloseinArabidopsis[J].The Plant Journal,2015,82(5):822-839.
[20]永輝,王鵬,覃壯志,呂德國,李麗杰.不同外源糖對根區(qū)亞低 溫下山定子生長和養(yǎng)分吸收的影響[J].應用生態(tài)學報,2024, 35(7):1825-1832. YONG Hui, WANG Peng,QIN Zhuangzhi,LU Deguo,LI Lijie. Effct of different exogenous sugars on the growth and nutrient uptake of Malusbaccata Borkh.under sub-low root zone temperature[J]. Chinese Journal of Applied Ecology,2024,35(7): 1825-1832.
[21]陸曉晨.根域亞低溫脅迫下山定子根系GABA代謝特征及其 生理效應研究[D].沈陽:沈陽農(nóng)業(yè)大學,2017. LU Xiaochen. The metabolic characteristics and physiological reguiaton oI GABA in Malus baccata Borkn. roots unaer sublow temperature of root-Zone[D]. Shenyang:Shenyang Agricultural University,2017.
[22] 田紅梅,方凌,王艷,王明霞,江海坤,嚴從生,張其安.越瓜果 實發(fā)育過程中糖的變化與相關酶活性的關系[J].中國蔬菜, 2013(8):66-70. TIAN Hongmei,F(xiàn)ANG Ling,WANG Yan,WANG Mingxia, JIANG Haikun,YAN Congsheng,ZHANG Qi'an.Relationship between sugar content change and interrelated enzyme activity in crisp melon fruit development process[J].China Vegetables, 2013(8):66-70.
[23]LILJ,LUXC,MA HY,LYU DG.Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malusbaccata[J]. Journal of Plant Research,2018,131(5): 865-878.
[24]FAROOQ MA,LI L,ALI B,GILL R A, WANG J,ALI S,GILL MB,ZHOU WJ. Oxidative injuryand antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars[J]. Environmental Science and Pollution Research, 2015,22(14):10699-10712.
[25]DUF,XUJN,LID,WANG XY. The identification of novel and differentially expressed apple-tree genes under low-temperature stress using high-throughput Ilumina sequencing[J]. Molecular Biology Reports,2015,42(3):569-580.
[26]LI L J,LU X C,MA HY,LU D G. Comparative proteomic analysis reveals the roots response to low root-zone temperature in Malusbaccata[J]. Journal ofPlant Research,2018,131:865- 878.
[27]AFZALJ,HU C,IMTIAZ M,ELYAMINE A M,RANA M S, IMRAN M,F(xiàn)ARAG MA. Cadmium tolerance in rice cultivars associated with antioxidant enzymes activities andFe/Zn concentrations[J]. International Journal of Environmental Science and Technology,2019,16(8):4241-4252.
[28]ZHANG S S,ZHANG HM,QINR,JIANG W S,LIU D H. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia fabaL.[J].Ecotoxicology,2009,18(7):814-823.
[29]EMAMVERDIAN A, DING Y L,MOKHBERDORAN F, XIE YF,ZHENG X,WANG Y J. Silicon dioxide nanoparticles improveplant growth by enhancing antioxidant enzyme capacity in bamboo (Pleioblastus pygmaeus) under lead toxicity[J].Tres, 2020,34(2):469-481.
[30]MAKSIMOVIC JD,ZHANG JY,ZENG F R,ZIVANOVIC B D,SHABALAL,ZHOU M X,SHABALA S.Linking oxidative and salinity stress tolerance in barley: Can root antioxidant enzyme activity be used as a measure of stress tolerance?[J].Plant and Soil,2013,365(1):141-155.
[31]WANGJL,ZENG Q,ZHUJG,LIUG,TANG HY. Dissimilarity of ascorbate-glutathione (AsA-GSH) cycle mechanism in two rice (Oryza sativa L.) cultivars under experimental free- air ozone exposure[J].Agriculture,Ecosystems amp; Environment, 2013,165:39-49.
[32]YUJ,CANGJ,LIYP,HUANGR,LUQW,WANGXT,LIUL J,XU QH,ZHANG K J.Salicylic acid-induced antioxidant protection against low temperature in cold-hardywinterwheat[J]. Acta Physiologiae Plantarum,2016,38(11):261.
[33]LIL J,LUXC,MA HY,LYU DG.Jasmonic acid regulates theascorbate-glutathione cycle in Malus baccata Borkh.roots under low root- Zone temperature[J].Acta Physiologiae Plantarum,2017,39(8):174.
[34]羅玉.植物中的糖代謝及其相關酶[J].文山師范高等??茖W 校學報,2004,17(2):155-159. LUO Yu. The sugar metabolism and the relational enzymes in plants[J].Journal of Wenshan Teachers’College,2004,17(2): 155-159.
[35]ZULFIQAR F,AKRAM NA,ASHRAF M. Osmoprotection in plantsunder abiotic stresses:New insights into a classical phenomenon[J].Planta,2019,251(1):3.
[36]JIANGHY,LIW,HE BJ,GAO Y H,LUJX. Sucrose metabolism in grape (Vitis vinifera L.) branches under low temperature during overwintering covered with soil[J].Plant Growth Regulation,2014,72(3):229-238.
[37]WANG HB,GONG M,XIN H,TANGL Z,DAI DQ,GAO Y, LIU C.Effects of chilling stress on the accumulation of soluble sugars and their key enzymes in Jatropha curcas seedlings[J]. PhysiologyandMolecularBiologyofPlants,2018,24(5):857- 865.
[38]LIC,LIUY,TIAN J,ZHUY S,F(xiàn)ANJJ.Changes in sucrose metabolismin maize varietieswith different cadmium sensitivities under cadmium stress[J].PLoS One,2020,15(12):e0243835.
[39]JIANG HY,GAO Y H,WANGWT,HE B J.Evaluation of cold resistance in grapevines via photosynthetic characteristics, carbohydrate metabolism and gene expression levels[J].Acta Physiologiae Plantarum,2016,38(10):251.
[40]SULMON C,GOUESBET G,BINETF,MARTIN-LAURENT F,EL AMRANI A,COUEE I. Sucrose amendment enhances phytoaccumulation of the herbicide atrazine inArabidopsis thaliana[J]. Environmental Pollution,2007,145(2):507-515.
[41]孫永梅,劉麗杰,馮明芳,王軍虹,蒼晶,李速,包雨卓,王秀 田.植物在低溫脅迫下的糖代謝研究進展[J].東北農(nóng)業(yè)大學 學報,2015,46(7):95-102. SUNYongmei,LIU Lijie,F(xiàn)ENG Mingfang,WANG Junhong, CANG Jing,LI Su,BAO Yuzhuo,WANG Xiutian. Research progress of sugar metabolism of plants under cold stressJ]. Journal ofNortheast Agricultural University,2015,46(7):95- 102.
[42]YOON J,CHO LH,TUNW,JEON J S,AN G.Sucrose signalinginhigher plants[J].Plant Science,2021,302:110703.
[43]常麗麗,廖宗文,陳日遠,劉厚誠,宋世威,孫光聞.外源蔗糖對 NO3? 脅迫下葉用萵苣碳氮代謝的影響[J].北方園藝,2016(1): 10-15. CHANG Lili,LIAO Zongwen,CHEN Riyuan,LIU Houcheng, SONG Shiwei,SUN Guangwen. Effect of exogenous sucrose on nitrogen and carbon metabolism of lettuce under NO3- stress[J]. Northern Horticulture,2016(1):10-15.
[44]HUNG KT,CHENG DG,HSU Y T,KAO C H.Abscisic acidinduced hydrogen peroxideisrequired for anthocyanin accumulation inleavesofrice seedlings[J].Journalof PlantPhysiology, 2008,165(12):1280-1287.
[45]BHATTACHARJEE S.Heat and chilling induced disruption of redoxhomeostasis and its regulation by hydrogen peroxide in germinating riceseeds(Oryza sativaL.,Cultivar Ratna)[J].PhysiologyandMolecularBiologyofPlants,2013,19(2):199-207.
[46]ZHANGQ,ZHANGJ Z,CHOWW S,SUNLL,CHENJW, CHEN Y J,PENG C L. The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars[J].Photosynthetica,2011, 49(2):201-208.
[47]MIR A R,SIDDIQUI H,ALAM P,HAYAT S.Foliar spray of Auxin/IAA modulatesphotosynthesis,elemental composition, ROS localization and antioxidant machinery to promote growth ofBrassica juncea[J].Physiology and Molecular Biology of Plants,2020,26(12):2503-2520.
[48]趙瑩,楊克軍,趙長江,李佐同,王玉鳳,付健,郭亮,李文勝.外 源糖調(diào)控玉米光合系統(tǒng)和活性氧代謝緩解鹽脅迫[J].中國農(nóng) 業(yè)科學,2014,47(20):3962-3972. ZHAO Ying,YANG Kejun, ZHAO Changjiang,LI Zuotong, WANG Yufeng,F(xiàn)U Jian,GUO Liang,LI Wensheng.Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings[J]. Scientia Agricultura Sinica,2014,47(20):3962-3972.
[49]RAMELF,SULMON C,BOGARD M,COUEE I,GOUESBET G.Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance inArabidopsis thaliana plantlets[J].BMCPlantBiology, 2009,9:28.