Abstract: 【Objective】Phenotypic evaluation of green peach aphid (Myzus persicae Sulzer) infestation was conducted during the peak occurrence period in spring. The developed molecular markers for aphid resistance were validated on a large scale within the population. Highly accurate molecular markers were employed to screen out aphid-resistant peach individuals,followed by genotyping to identify their resistance-associated alleles.This study provides valuable support for selecting aphid-resistant parental lines in peach breeding programs.【Methods】 Using hybrid progeny derived from resistant sources of Prunus davidiana, P. persica var. densa,and cultivated peach P. persica),along with their parental lines and developed aphid-resistant ornamental peach cultivars, we monitored green peach aphid (M. persicae) infestations from March to May,with weekly surveys.For each plant in the surveyed population,tender leaves were sampled,and genomic DNA was extracted via the Cetyltrimethylammonium Bromide (CTAB) method. Four molecular markers linked to aphid resistance (InDel24, InDel23, P62, and QMR) were selected for PCR amplification using the extracted DNA as a template.The amplification products were separated by polyacrylamide gel electrophoresis, visualized,and analyzed.The uniinfestation periods.Validated markers were then applied to aphid-resistant ornamental peach cultivars. Additionally, from June to July, fruit maturity was assessed weekly. Six fruits at 80% maturity, uniformly distributed on the outer canopy, were sampled per tree to measure single-fruit weight and soluble solid content (SSC).These data were combined to screen for elite aphid-resistant individuals with desirable fruit quality traits.【Results】(1) The InDel24 molecular marker originated from the Zhou Xing Shan Tao (ZXST), demonstrated strong universality in hybrid populations derived from ZXST with aphid resistance. In progeny populations from the cross between ZXST and Nan Yi Qu Xi 29-13, the marker achieved accuracy rates of 100% 99.21% 100% ,and 100% in populations 1, 2,3 and 4,respectively,confirming its utility for genotyping these hybrids. However, this marker showed no applicability in other resistant populations.The P62 marker exhibited 99.21% accuracy in hybrid populations with P. persica var. densa ancestry (population 4),but proved ineffective in other genetic backgrounds.Notably, neither InDel24 nor P62 could amplify polymorphic fragments in resistant P. persica progeny (population 5), rendering them unsuitable for genotyping aphid-resistant genotypes in this population. Although derived from P. persica resistance,the InDel23 marker similarly failed to diferentiate genotypes in population 5. In contrast, the QMR marker produced distinct bands enabling genotype discrimination,albeit with a modest accuracy rate of 62.61% . It is noteworthy that while the P62 marker successfully amplified homologous genes in both ZXST and Nan Yi Qu Xi 29-13, validation experiments confirmed its inability to discriminate genotypes in their hybrid progeny. (2) In the F3 progeny population derived from ZXST hybrids, fruit maturation was concentrated between late June and mid-July.The fruit size predominantly fell into the small-fruit category ( 50glt; average single fruit weight ?100g ), with four individuals reaching the medium-fruit standard ( 100glt; average single fruit weight ?150g ) All evaluated individuals exhibited high soluble solid content (SSC) levels ( (12%?SSClt;14%) ,with nine plants achieving the extremely high standard SSC?14% ).Based on these comprehensive evaluations,we identified 12 aphid-resistant individuals with superior agronomic traits that were suitable for direct selection in breeding programs. (3) Using the above molecular markers,the genotypes of the bred peach aphid-resistant ornamental peach varieties were identified and their resistance sources were traced.It was found that the resistance band of Bao Chun could only be detected in the peach aphid-resistant marker from ZXST,and the genotype was AAbb; the resistance bands of Zhong Bi Zhi Chun Shou Xing, Zhong Bi Hong Long Zhu and Zhong Bi Fen Chong Long Zhu could only be detected in the peach aphid-resistant marker from Shou Xing Tao,and the genotypes were all aaBB. Notably, only three cultivars Yuan Chun,Yin Chun,and Hua Chun Shou Xing possessed dual-origin resistance. We hypothesized that in single-resistant cultivars, heterozygous parental genotypes during hybridization led to segregation and subsequent loss of resistance alleles from one origin in the progeny.【Conclusion】 The populations and molecular markers employed in this study encompassed three distinct sources of green peach aphid resistance.Among these, InDel24 and P62 demonstrated high accuracy rates for aphid-resistant plants and their hybrid progenies derived from P. davidiana and P. persica var. densa, respectively, indicating significant potential for breeding applications.However, in aphid-resistant progeny originating from P. persica sources, none of the three markers (InDel24, InDel23,or P62) could effectively discriminate resistant genotypes, with the exception of QMR. Notably, the QMR marker exhibited only moderate accuracy (62.61% ), suggesting that further research is required to develop more reliable molecular markers for identifying aphid resistance in cultivated peach germplasm.
Key Words: Peach; Resistance to green peach aphid; Genotype identification; Molecular markers
桃[Prunuspersica(L.)Batsch]是薔薇科李屬核果類落葉果樹,原產(chǎn)于中國西部,是中國重要的經(jīng)濟(jì)樹種之一。桃蚜(Myzus persicae Sulzer)危害是造成桃樹減產(chǎn)和桃果實(shí)品質(zhì)降低的一個(gè)重要因素,不僅是直接取食造成危害,還間接導(dǎo)致光合效率下降以及蚜蟲取食造成病毒傳播等,對(duì)桃農(nóng)造成的損失更大。自20世紀(jì)90年代以來,國內(nèi)外研究機(jī)構(gòu)鑒定了多份抗性種質(zhì)資源,包括法國農(nóng)科院鑒定了3份抗桃蚜種質(zhì),分別是Rubra、Weepingflowerpeach(后文簡寫為WFP)和山桃 Pl908[2-4] ;王力榮等2001年對(duì)國內(nèi)419份資源進(jìn)行抗桃蚜鑒定,發(fā)現(xiàn)山桃( ?P davidiana)和壽星桃(P.persicavar.densa)類抗桃蚜性較強(qiáng),篩選出了帚形山桃、紅壽星、粉壽星等抗桃蚜種質(zhì)。但目前產(chǎn)業(yè)中抗性品種嚴(yán)重匱乏,抗性種質(zhì)中帚形山桃和山桃P1908為野生近緣種,Rubira主要作為砧木,而WFP( P. persica var.weeping)和壽星桃類主要作為觀賞桃品種,在鮮食桃中直接利用較為困難。目前主要報(bào)道的抗桃蚜普通桃只有毛桃種質(zhì)2013-04-20R和栽培桃來源的09南3-30等,無法滿足桃抗桃蚜育種的需求。在生產(chǎn)中,桃蚜主要利用農(nóng)藥進(jìn)行防治,不僅影響桃產(chǎn)業(yè)綠色健康發(fā)展,而且污染環(huán)境。因此,挖掘利用抗性種質(zhì)資源,開發(fā)抗性育種分子標(biāo)記,培育抗桃蚜桃品種是解決桃蚜危害的根本途徑。
目前已挖掘到了多個(gè)抗桃蚜位點(diǎn)。1994年,Monet等鑒定出WFP的抗桃蚜性狀是由Rm1單基因顯性控制的,并由Pascal等在2017年將Rm1定位到1號(hào)染色體底部;Sauge等推測Rubira抗桃蚜性由Rm2單基因顯性控制,Lambert等[1o-1]將Rm2也定位到了1號(hào)染色體末端,隨后又將Rm2定位區(qū)間進(jìn)一步縮小至SNP_ICA131130和SNP_ICA126668之間,包含6個(gè)共分離的SNP。牛良等發(fā)現(xiàn)壽星桃抗性基因Rm3,該基因也為單基因顯性控制,張南南等[13在2017年對(duì)Rm3基因進(jìn)行了定位,Pan等[4]確定了Rm3區(qū)間內(nèi)的抗桃蚜候選基因NLR1。山桃的抗桃蚜性被認(rèn)為是多基因控制的數(shù)量性狀,Sauge等[發(fā)現(xiàn)控制山桃P1908抗性的8個(gè)QTL位點(diǎn)分布在7個(gè)連鎖群上,并確定了主效位點(diǎn)位于3號(hào)染色體上分子標(biāo)記AG106附近。王君秀等[16-7利用BSA和關(guān)聯(lián)分析,將山桃抗桃蚜主效QTL定位到3號(hào)染色體上950kb的區(qū)間,并通過以山桃的兩個(gè)單倍型基因組作為參考基因組,進(jìn)一步縮小了山桃的抗桃蚜區(qū)間,結(jié)合轉(zhuǎn)錄組分析,確定了山桃抗桃蚜的主效基因PdaWRKY4。
王新衛(wèi)等8基于山桃抗桃蚜主效QTLqGPAR-3-1緊密連鎖的InDel位點(diǎn),開發(fā)了山桃InDel24分子標(biāo)記,該標(biāo)記對(duì)高抗(HR)、抗(R)和中抗(MR)3種不同等級(jí)的抗性鑒定準(zhǔn)確率在 95% 以上,同時(shí),王新衛(wèi)等根據(jù)多年田間調(diào)查,發(fā)現(xiàn)了一個(gè)抗桃蚜的毛桃種質(zhì)2013-04-20R,并根據(jù)該毛桃種質(zhì)抗桃蚜性狀緊密連鎖的InDel位點(diǎn)開發(fā)了Pp-InDel-23分子標(biāo)記(后簡稱InDel23)。潘磊等[1]在進(jìn)行Rm3定位的過程中,發(fā)現(xiàn)了一個(gè)與其緊密連鎖的20 bp的特異性插入片段,從而開發(fā)了P62分子標(biāo)記,并對(duì)該分子標(biāo)記進(jìn)行了通用性驗(yàn)證,結(jié)果表明,該標(biāo)記不僅在壽星桃類抗桃蚜分離群體中適用,在栽培種毛桃和野生近緣種中均能進(jìn)行抗桃蚜性狀區(qū)分。此外,潘磊等發(fā)現(xiàn)了一種栽培種來源的抗桃蚜新種質(zhì)09南3-30,該材料對(duì)桃蚜表現(xiàn)為強(qiáng)烈的趨避型抗性,隨后將該種質(zhì)抗性位點(diǎn)定位在了3號(hào)染色體上的 5.44Mb 候選區(qū)段內(nèi),并由此開發(fā)出QMR分子標(biāo)記[20]。
為驗(yàn)證抗桃蚜分子標(biāo)記的準(zhǔn)確性,促進(jìn)分子標(biāo)記在育種中的應(yīng)用,筆者在本研究中對(duì)4個(gè)雜交群體及1個(gè)實(shí)生群體進(jìn)行了抗桃蚜表型評(píng)價(jià),結(jié)合群體表型及育成抗桃蚜品種對(duì)4個(gè)不同來源的抗桃蚜分子標(biāo)記進(jìn)行了有效性驗(yàn)證,確認(rèn)了抗蚜觀賞桃品種的抗性來源,并在抗桃蚜群體中選出了12個(gè)抗桃蚜且農(nóng)藝性狀優(yōu)良的種質(zhì),為后期抗桃蚜品種的選育提供了支撐。
1材料和方法
1.1材料
以育成的8個(gè)抗桃蚜觀賞桃品種、一個(gè)抗桃蚜栽培桃品種以及4個(gè)雜交群體和1個(gè)實(shí)生群體及其親本為試驗(yàn)材料。其中,滿天紅為[2-7(白鳳 × 紅壽星)]自然實(shí)生,白花山碧桃為(山桃 .× 碧桃)自然雜交,南一區(qū)西29-13為[(橡皮油桃姊妹系 帚形山桃)F1自然實(shí)生。所有試驗(yàn)材料均來自中國農(nóng)業(yè)科學(xué)院鄭州果樹研究所新鄉(xiāng)育種基地及國家葡萄桃種質(zhì)資源圃(鄭州),材料信息如表1。
1.2 方法
1.2.1農(nóng)藝性狀評(píng)價(jià)為篩選優(yōu)異抗性資源,對(duì)試驗(yàn)材料進(jìn)行基本農(nóng)藝性狀評(píng)價(jià)。對(duì)目標(biāo)群體成熟期
進(jìn)行初步確定,在八至九成熟時(shí)進(jìn)行采樣,選取樹冠中部外圍6個(gè)果實(shí),每株均在相近位置選取,測量其果實(shí)質(zhì)量、可溶性固形物含量,并對(duì)其風(fēng)味進(jìn)行評(píng)價(jià),具體方法及評(píng)價(jià)標(biāo)準(zhǔn)參考王力榮等編著的《桃種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)》。
1.2.2抗/感桃蚜表型鑒定在桃蚜盛發(fā)期對(duì)未經(jīng)農(nóng)藥處理自然感蚜的目標(biāo)群體進(jìn)行表型鑒定,選取靠上部位的嫩稍進(jìn)行觀察,根據(jù)嫩梢上桃蚜的有無、卷曲程度對(duì)每個(gè)單株進(jìn)行表型鑒定,具體方法及評(píng)價(jià)標(biāo)準(zhǔn)參考王力榮等2編著的《桃種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)》。
1.2.3基因組DNA提取每份材料取適量嫩葉,分別裝入 2.0mL 的離心管中,加入鋼珠,在液氮中研磨后用CTAB試劑盒(艾德萊生物公司)進(jìn)行基因組DNA提取,提取后用NanoDropl000 spectropho-tometer(ThemoScientific)紫外分光光度計(jì)對(duì)DNA濃度和純度進(jìn)行測定,然后用無菌水將DNA稀釋到 20ng?μL 保存至 -20°C 備用。
1.2.4分子標(biāo)記檢測利用前人開發(fā)的4個(gè)分子標(biāo)記 InDel24[17] 、 P62[19] 、 InDel23[6] 、QMR[2]對(duì)雜交后代群體單株進(jìn)行檢測,引物由北京普樂海生物科技有限公司合成,引物序列見表2,4個(gè)標(biāo)記的PCR擴(kuò)增體系均為 20μL ,包括 2×Mix 混合液 10μL (南京諾唯贊生物科技股份有限公司,南京),模板DNA 1μL (20ng?μL-1) ,上、下游引物各 1μL(10μmol?μL-1) , ;反應(yīng)程序?yàn)椋?95°C 預(yù)變性
變性 1min,58°C 退火 1min,72°C 延伸 10s,35 個(gè)循環(huán); 72°C 延伸 5min 。反應(yīng)產(chǎn)物用 6% 聚丙烯酰胺凝膠電泳進(jìn)行檢測。
1.3 數(shù)據(jù)分析
使用MicrosoftExcel2019進(jìn)行數(shù)據(jù)處理。群體抗桃蚜率 A0= 抗桃蚜植株數(shù)量/群體總株數(shù) ×100 ,分子標(biāo)記準(zhǔn)確率 %= 表型與分子標(biāo)記一致的株數(shù)/群體總株數(shù) ×100 。
2 結(jié)果與分析
2.1表型鑒定結(jié)果
抗桃蚜植株嫩葉舒展,未見蚜蟲或者有零星幾只,未對(duì)植株造成任何影響,而不抗桃蚜的植株嫩葉甚至整個(gè)枝頭葉片均卷曲,嚴(yán)重影響植株生長,如圖1。雜交群體田間調(diào)查結(jié)果見表3,組合1、組合3、組合4所有單株均為抗桃蚜植株,抗桃蚜等級(jí)為高抗;組合2抗桃蚜率為 99.21% ,126株抗桃蚜植株均為高抗,1株感蚜植株為高感;組合5抗桃蚜率為63.48% ,其中抗桃蚜植株與感蚜植株分別為73株和42株 (χe2=8.37gt;χυ.052=3.84,plt;0.05) ,不符合孟德爾遺傳1:1的分離規(guī)律。雜交組合的親本中,南一區(qū)西29-13、滿天紅、帚形山桃、農(nóng)神蟠桃為抗蚜親本,而中農(nóng)金輝、中油16號(hào)、平頂油蟠桃為感蚜親本。報(bào)春、元春、銀春、滿天紅、畫春壽星、中碧早香春、中碧知春壽星、中碧紅龍柱、中碧粉重龍珠、紅壽星、白花山碧桃、狹葉蟠桃均為抗蚜種質(zhì)。
2.2分子標(biāo)記InDel24的檢測結(jié)果
育成品種中,報(bào)春、元春、銀春、畫春壽星及親本中白花山碧桃、帚形山桃、南一區(qū)西29-13具有山桃來源的抗桃蚜性,其中,南一區(qū)西29-13為純合抗性,如圖2。利用InDe1分子標(biāo)記InDel24對(duì)帚形山桃后代進(jìn)行基因型檢測。結(jié)果顯示,在組合1(圖3)、組合2、組合3(圖4)和組合4中分子標(biāo)記的準(zhǔn)確率分別達(dá)到了 100%.99.21%.100 100% 和 100% 。其中,
從左到右不同泳道分別為Marker、報(bào)春、元春、銀春、滿天紅、畫春壽星、中碧早香春、中碧知春壽星、中碧紅龍柱、中碧粉重龍珠、紅壽星、白花山碧桃、帚型山桃、29-13(南一區(qū)西)、中農(nóng)金輝、中油16 號(hào)、農(nóng)神蟠桃、平頂油蟠桃、狹葉蟠桃。圖5、7、9 與此相同。
在組合1、組合2和組合4中,聚丙烯酰胺凝膠電泳均能擴(kuò)增出兩條清晰的條帶,將抗性條帶記為A,感蚜條帶記為a,則在這3個(gè)雜交組合里所有的植株的抗桃蚜基因型均為Aa。在組合3中,36株單株僅有一條抗桃蚜條帶,基因型為AA,為純合抗性,其余8株基因型為Aa,為雜合抗性。結(jié)合其親本情況,組合1和組合4均為母本感桃蚜父本抗桃蚜雜交組合,父本在該位點(diǎn)為純合抗性,故后代均為雜合抗桃蚜植株,組合2母本具有壽星桃來源的抗性,但認(rèn)為其不具備山桃來源抗性,因此后代在該位點(diǎn)均為雜合抗性。組合3為純合抗性植株實(shí)生后代,推測全部為純合抗性,可能由于非嚴(yán)格的自花授粉,出現(xiàn)了個(gè)別單株為雜合抗性的情況。
2.3分子標(biāo)記InDel23的檢測結(jié)果
分子標(biāo)記Indel23對(duì)部分育成品種及雜交群體親本進(jìn)行檢驗(yàn)(圖5),發(fā)現(xiàn)育成品種中元春、銀春、滿天紅、畫春壽星、中碧早香春、中碧知春壽星、中碧紅龍柱、中碧粉重龍柱均含有抗性條帶且與表型相符合,其中,元春、中碧早香春、中碧紅龍柱為純合抗性。結(jié)合親本關(guān)系及擴(kuò)增結(jié)果來看,Indel23可能可以用來區(qū)分滿天紅的抗性,如圖6,推測可能擴(kuò)增的是同源基因,于是用Indel23鑒定組合2中的96份材料,有26份未擴(kuò)增出有效條帶,70份為抗性雜合條帶,分子標(biāo)記準(zhǔn)確率為 72.92% 。由于分子標(biāo)記In-del23來自毛桃,因此分子標(biāo)記InDel23鑒定組合5,所有單株均擴(kuò)增出了約 100bp 的條帶,無法區(qū)分抗感單株,此分子標(biāo)記不適用于該群體及其后代的抗桃蚜植株鑒定。
2.4分子標(biāo)記P62的檢測結(jié)果
分子標(biāo)記P62檢測育成品種結(jié)果顯示(圖7),育成品種中,元春、銀春、畫春壽星、中碧早香春、中碧知春壽星、中碧紅龍柱、中碧粉紅龍柱具有壽星桃來源的抗性;親本中,除紅壽星外,白花山碧桃、帚形山桃、南一區(qū)西29-13也能擴(kuò)增出抗性條帶,其中,中碧早香春、中碧知春壽星、中碧紅龍柱、中碧粉重龍柱為純合抗性。用該分子標(biāo)記檢測組合1、組合2(圖8)和組合3,結(jié)果顯示,P62在組合1和組合3中均無法有效區(qū)分抗桃蚜植株。對(duì)于組合2,分子標(biāo)記鑒定準(zhǔn)確率為 99.21% ,所有植株均為雜合抗性,滿天紅雜交群體后代可用該分子標(biāo)記進(jìn)行區(qū)分。該分子標(biāo)記鑒定組合5,所有單株均擴(kuò)增出了約200 bp的條帶,無法區(qū)分抗感單株,此分子標(biāo)記不適用于該栽培桃群體及其后代的抗桃蚜植株鑒定。
2.5分子標(biāo)記QMR的檢測結(jié)果
分子標(biāo)記QMR鑒定結(jié)果顯示(圖9),育成品種中,中碧知春壽星和狹葉蟠桃為抗性植株,且均為雜合抗性。鑒定組合5的結(jié)果顯示(圖10),在115份材料中,分子標(biāo)記鑒定結(jié)果與表型相符的有72份,準(zhǔn)確率為 62.61% 。在表型與基因型相符的72份材料中,有6株為純合感桃蚜植株,66株為雜合抗桃蚜植株。
2.6 抗桃蚜優(yōu)株篩選
結(jié)合抗桃蚜表型鑒定及分子標(biāo)記驗(yàn)證結(jié)果,從抗桃蚜單株中根據(jù)果實(shí)質(zhì)量、可溶性固形物含量以及風(fēng)味出發(fā),在組合1中篩選出了12個(gè)抗桃蚜優(yōu)株,見表5、圖11。在所挑選的優(yōu)株中,以小果型為主( 50glt; 平均單果質(zhì)量 ≤100g ,其中,ZCC-1707-95等4株平均單果質(zhì)量達(dá)到了中果型水平( ?100glt; 平均單果質(zhì)量 ≤150gz ;可溶性固形物含量有8株達(dá)到了極高[可溶性固形物含量 (w)≥14% 的標(biāo)準(zhǔn),其余4株也均達(dá)到了高( 12%≤ 可溶性固形物含量lt;14% 標(biāo)準(zhǔn)。
3討論
桃對(duì)桃蚜的抗性主要有3種,一是以山桃類為代表的抗生性,二是以壽星桃類為代表的趨避性,三是在栽培桃里發(fā)現(xiàn)的與壽星桃抗性相似但無過敏反應(yīng)的趨避性抗性。文中選用的4個(gè)分子標(biāo)記來自以上3種抗性。Indel24來源于山桃抗性[],在山桃雜交后代中進(jìn)行驗(yàn)證時(shí)準(zhǔn)確率高,可直接用于新品種選育。王力榮等22推測白花山碧桃為山桃與普通桃、碧桃的雜交后代。利用山桃標(biāo)記對(duì)白花山碧桃及其后代進(jìn)行驗(yàn)證,其中報(bào)春、元春、銀春、畫春壽星均能擴(kuò)增出抗性條帶,驗(yàn)證了白花山碧桃抗性來源于帚形山桃。InDel23分子標(biāo)記來源于栽培桃種質(zhì)2013-04-20R,且標(biāo)記僅在該種質(zhì)的群體中進(jìn)行了驗(yàn)證,需要對(duì)通用性進(jìn)行進(jìn)一步檢驗(yàn),文中檢測該標(biāo)記在其他栽培桃中適用性的同時(shí),發(fā)現(xiàn)該標(biāo)記還可以對(duì)滿天紅的后代進(jìn)行抗桃蚜性狀的區(qū)分,擴(kuò)增片段是否為同源基因有待進(jìn)一步驗(yàn)證。P62分子標(biāo)記能夠有效地區(qū)分壽星桃群體,同時(shí),潘磊等[發(fā)現(xiàn)在桃屬近緣種中,P62也能進(jìn)行抗桃蚜性狀的區(qū)分,并在后續(xù)研究中表明Rm3基因引物在野生近緣種中擴(kuò)增到的基因只是其同源基因而非Rm3基因本身,筆者在本研究中用該標(biāo)記鑒定帚形山桃、南一區(qū)西29-13及其雜交后代時(shí)發(fā)現(xiàn),在帚形山桃和南一區(qū)西29-13中能夠擴(kuò)增到該分子標(biāo)記,但對(duì)其雜交群體進(jìn)行鑒定時(shí),發(fā)現(xiàn)準(zhǔn)確性較差。QMR分子標(biāo)記開發(fā)過程中利用的抗桃蚜親本的抗性來源于從美國引進(jìn)的品種農(nóng)神蟠桃[20],筆者課題組在農(nóng)神蟠桃的雜交后代中發(fā)現(xiàn)了抗桃蚜性極強(qiáng)的狹葉蟠桃,在調(diào)查過程中發(fā)現(xiàn)以農(nóng)神蟠桃為母本的雜交群體(組合5)在田間表現(xiàn)出了抗桃蚜性,并出現(xiàn)了表型分離,該分離比不符孟德爾遺傳規(guī)律,推測其抗桃蚜基因可能不是單基因顯性遺傳。QMR分子標(biāo)記在鑒別農(nóng)神蟠桃后代單株狹葉蟠桃時(shí)結(jié)果準(zhǔn)確,而在農(nóng)神蟠桃 × 平頂油蟠桃雜交群體中準(zhǔn)確率僅有 62.61% ,因此,適用于該類型的抗桃蚜標(biāo)記有待進(jìn)一步開發(fā)。
8個(gè)育成品種中,除中碧早香春僅有壽星桃來源抗性外,其余7個(gè)品種的親本均為兩種不同來源的抗性植株,分別將山桃來源的抗/感基因型記為A/a ,壽星桃來源的抗/感基因型記為 B/b ,在鑒定過程中發(fā)現(xiàn),元春、銀春、畫春壽星同時(shí)可被山桃和壽星桃來源的抗桃蚜標(biāo)記中檢測,基因型分別為AaBb、AABb、AaBb;而報(bào)春只能在山桃來源的抗桃蚜標(biāo)記檢測出抗性條帶,基因型為AAbb;中碧早香春、中碧知春壽星、中碧紅龍柱、中碧粉重龍柱僅能在壽星桃來源的抗桃蚜標(biāo)記檢測出抗性條帶,基因型均為aaBB。推測單抗品種在雜交過程中親本基因型為雜合,后代出現(xiàn)了分離導(dǎo)致該來源的抗性基因丟失。
在上述的遺傳機(jī)制中,山桃對(duì)桃蚜的抗性是多基因控制的數(shù)量性狀,抗桃蚜機(jī)制相對(duì)于單基因(RmI,Rm2,Rm3) 控制的抗性而言較為復(fù)雜,抗性效果較為持久[23],正是這一復(fù)雜性,為雜交過程中優(yōu)株的篩選創(chuàng)造了更多的可能性。山桃除了在抗桃蚜上有優(yōu)異表現(xiàn)外,在抗寒方面也勝于普通桃,Cao等[24]研究發(fā)現(xiàn),山桃抗性基因數(shù)目在進(jìn)化過程中顯著增加,揭示了山桃綜合抗性強(qiáng)的分子機(jī)制。雖然山桃綜合抗性強(qiáng),但是農(nóng)藝性狀差,不易利用,因此需要進(jìn)行多代雜交選育,結(jié)合其復(fù)雜的抗性機(jī)制,選育出的抗桃蚜植株可能具有豐富的表型差異,符合多樣性育種目標(biāo)[25]。綜上所述,在主要的抗桃蚜類型中對(duì)已開發(fā)的分子標(biāo)記進(jìn)行適用性驗(yàn)證,具有較強(qiáng)的實(shí)用意義。
4結(jié)論
筆者在本研究中明確了8個(gè)育成品種的抗性來源,進(jìn)一步確認(rèn)了分子標(biāo)記InDel24在帚形山桃雜交群體中的高準(zhǔn)確率,P62分子標(biāo)記可以用于準(zhǔn)確鑒別壽星桃及其雜交后代的抗桃蚜性狀,而對(duì)于栽培桃中的農(nóng)神蟠桃群體,InDel23和P62無法對(duì)其鑒別,QMR標(biāo)記準(zhǔn)確率不高,仍然需要進(jìn)一步研究。
參考文獻(xiàn)References:
[1]PASCAL T,PFEIFFERF,KERVELLAJ,LACROZE JP,SAUGEMH,WEBER WE. Inheritance of green peach aphid resistance in the peach cultivar‘Rubira'[J].Plant Breeding,2002, 121(5):459-461.
[2]SAUGE MH,KERVELLA J,PASCAL T. Settling behaviour and reproductive potential of the green peach aphid Myzus persicae on peach varieties and a related wild Prunus[J].EntomologiaExperimentalis et Applicata,1998,89(3):233-242.
[3]MASSONIE G,MAISON P,MONET R,GRASSELLY C. Résistance au puceron vert du pecher,Myzus persicae Sulzer (Homoptera Aphididae) chez Prunus persica (L.) Batsch etd'autres especes de Prunus[J].Agronomie,1982,2(1):63-70.
[4]MONETR,MASSONIE G.Determinisme génetique de la résistanceau puceronvert(Myzuspersicae) chezlepécher.Résultats complementaires[J]. Agronomie,1994,14(3):177-182.
[5]王力榮,朱更瑞,方偉超,左覃元,韓立新.桃種質(zhì)資源對(duì)桃蚜 的抗性評(píng)價(jià)[J].果樹學(xué)報(bào),2001,18(3):145-147. WANG Lirong,ZHU Gengrui,F(xiàn)ANG Weichao, ZUO Qinyuan, HANLixin. Studyontheresistance to peach aphid(MyzuspersicaeSulzer) of peach germplasm[J].Journal ofFruit Science, 2001,18(3):145-147.
[6]王新衛(wèi),王力榮,曹珂,陳昌文,方偉超,朱更瑞,薛梅真.一個(gè) 與毛桃種質(zhì)抗綠色桃蚜性狀緊密連鎖的InDel標(biāo)記及其應(yīng) 用:CN20171111942.7[P].2021-11-30. WANG Xinwei, WANG Lirong,CAO Ke, CHEN Changwen, FANGWeichao,ZHUGengrui,XUEMeizhen.AnInDel marker closelylinked totheresistance trait ofgreenpeachaphid inhairy peach germplasm and its application:CN20171111942.7[P]. 2021-11-30.
[7]潘磊,閆樂樂,魯振華,曾文芳,崔國朝,牛良,王志強(qiáng).一類桃樹 桃蚜抗性新種質(zhì)09南3-30[J].果樹學(xué)報(bào),2021,38(6):895-900. PANLei,YAN Lele,LU Zhenhua,ZENG Wenfang,CUI Guochao,NIU Liang,WANG Zhiqiang.09N3-30,a new peach germplasm with green peach aphid resistance[J]. Journal of Fruit Science,2021,38(6):895-900.
[8]PASCAL T,ABERLENC R,CONFOLENT C,HOERTER M, LECERF E,TUERO C,LAMBERT P. Mapping of new resistance(Vr2,Rm1) andornamental (Di2,pl) Mendelian trait loci in peach[J]. Euphytica,2017,213(6):132.
[9] SAUGEMH,MUSF,LACROZEJP,PASCALT,KERVELLA J,POESSEL JL. Genotypic variation in induced resistance andinduced susceptibilityinthepeach-Myzuspersicaeaphid system[J]. Oikos,2006,113(2):305-313.
[10]LAMBERTP,PASCAL T.Mapping Rm2 gene conferringresistanceto thegreenpeachaphid(MyzuspersicaeSulzer) in the peach cultivar“Rubira@\"[J]. Tree Genetics amp; Genomes,2011,7 (5):1057-1068.
[11]LAMBERT P,CAMPOY JA,PACHECO I,MAUROUX JB, DASILVA LINGE C,MICHELETTI D,BASSID,ROSSINI L, DIRLEWANGERE,PASCALT,TROGGIOM,ARANZANA MJ,PATOCCHI A,ARUS P. Identifying SNP markers tightly associatedwith six major genes in peach [Prunuspersica (L.) Batsch] using a high-density SNP array with an objective of marker-assisted selection (MAS)[J]. Tree Genetics amp; Genomes, 2016,12(6):121.
[12]牛良,魯振華,曾文芳,崔國朝,潘磊,徐強(qiáng),李國懷,王志強(qiáng). ‘粉壽星'對(duì)桃綠蚜抗性的遺傳分析[J].果樹學(xué)報(bào),2016,33 (5):578-584. NIU Liang,LU Zhenhua, ZENG Wenfang,CUI Guochao,PAN Lei,XU Qiang,LI Guohuai,WANG Zhiqiang. Inheritance analysis of resistance to green peach aphids (Myzus persicae Sulzer) for peach cultivar‘Fen Shouxing'(Prunus persica var. densa)[J].Journal ofFruit Science,2016,33(5):578-584.
[13]張南南,魯振華,崔國朝,潘磊,曾文芳,牛良,王志強(qiáng).基于 SNP 標(biāo)記桃抗蚜性狀的基因定位[J].中國農(nóng)業(yè)科學(xué),2017,50 (23):4613-4621. ZHANGNannan,LUZhenhua,CUIGuochao,PANLei,ZENG Wenfang,NIU Liang,WANG Zhiqiang. Gene mapping of aphidresistant forpeachusing SNPmarkers[J].Scientia Agricultura Sinica,2017,50(23):4613-4621.
[14]PAN L,LU Z H,YAN L L,ZENG WF,SHEN ZJ,YU M L, BU L L,CUI G C,NIU L, WANG Z Q. NLR1 is a strong candidate for the Rm3 dominant green peach aphid (Myzus persicae) resistance trait in peach[J]. Journal of Experimental Botany, 2022,73(5):1357-1369.
[15]SAUGE M H,LAMBERT P,PASCAL T. Co- localisation of hostplant resistance QTLsaffecting the performance and feeding behaviour of the aphid Myzus persicae in the peach tree[J]. Heredity,2011,108(3):292-301.
[16]王君秀.山桃抗蚜基因的發(fā)掘及抗性機(jī)制解析[D].武漢:華中 農(nóng)業(yè)大學(xué),2023. WANG Junxiu. Identification of genes and resistance mechanism of Prunus davidiana against aphid[D]. Wuhan: Huazhong Agricultural University,2019.
[17]WANGJX,LIY,WANG XW,CAO K,CHENCW,WU JL, FANG WC,ZHUG R,CHEN XJ,GUO DD,WANG J, ZHAOYL,F(xiàn)ANJQ,LIU SN,LIWQ,BIEHL,XUQ, WANG L R. Haplotype-resolved genome of a heterozygous wild peach reveals the PdaWRKY4-PdaCYP716A1 module mediates resistance to aphids by regulating betulin biosynthesis[J]. Journal ofIntegrative Plant Biology,2024,66(12):2716-2735.
[18]王新衛(wèi),白翠營,王力榮,朱更瑞,方偉超,曹珂,陳昌文,李勇, 郭健,丁體玉,關(guān)利平,張倩.一組與山桃抗蚜主效QTLqGPAR-3-1緊密連鎖的InDel位點(diǎn)及其應(yīng)用:CN201610804468. 5[P]. 2020-10-09. WANG Xinwei,BAI Cuiying,WANG Lirong,ZHU Gengrui, FANGWeichao,CAOKe,CHENChangwen,LI Yong,GUO Jian, DING Tiyu,GUAN Liping,ZHANG Qian. A group of InDel loci closely linked to the main QTL qGPAR-3-1 of mountain peach anti-aphid and their applications :CN201610804468.5[P]. 2020-10-09.
[19]潘磊,牛良,樊美麗,王志強(qiáng),魯振華,曾文芳,崔國朝.與桃抗 蚜性狀緊密連鎖的分子標(biāo)記,用于檢測桃抗蚜性狀的引物、試 劑盒、方法及其應(yīng)用:CN201910266708.4[P].2022-12-13. PANLei,NIU Liang,F(xiàn)ANMeili,WANG Zhiqiang,LU Zhenhua,ZENGWenfang,CUIGuochao.Molecularmarkersclosely linked to peach aphid resistance traits,primers,kits,methods and applications for detecting peach aphid resistance traits: CN201910266708. 4[P].2022-12-13.
[20]潘磊,王志強(qiáng),牛良,魯振華,曾文芳,崔國朝,閆樂樂.與栽培 種來源抗桃綠蚜性狀緊密連鎖的分子標(biāo)記、引物、應(yīng)用及品種 選育方法:CN202011231906.6[P].2022-08-19. PANLei,WANG Zhiqiang,NIU Liang,LU Zhenhua,ZENG Wenfang,CUI Guochao,YANLele.Molecular markers,primers,applications and variety breeding methods closely linked to the resistance traits of peach green aphids from cultivated varieties:CN202011231906.6[P]. 2022-08-19.
[21]王力榮,朱更瑞.桃種質(zhì)資源描述規(guī)范和數(shù)據(jù)標(biāo)準(zhǔn)[M].北京: 中國農(nóng)業(yè)出版社,2005. WANG Lirong,ZHU Gengrui. Descriptors and data standard for peach (Prunus persica L.)[M]. Beijing:China Agriculture Press, 2005.
[22]王力榮,朱更瑞,方偉超.中國桃遺傳資源[M].北京:中國農(nóng) 業(yè)出版社,2012. WANG Lirong,ZHU Gengrui,F(xiàn)ANG Weichao.Peach genetic resource in China[M]. Beijing:China Agriculture Press,2012.
[23]PALLOIX A,AYMEV,MOURY B.Durability of plant major resistance genes to pathogens depends on the genetic background,experimental evidence and consequences for breeding strategies[J].New Phytologist,2009,183(1):190-199.
[24]CAO K,PENG Z,ZHAO X,LIY,LIUK Z,ARUSP,F(xiàn)ANG W C,CHENCW,WANG XW,WU JL,F(xiàn)EI ZJ,WANG L R. Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance[J].BMC Biology,2022,20(1):139.
[25]王力榮.中國桃品種改良?xì)v史回顧與展望[J].果樹學(xué)報(bào), 2021,38(12):2178-2195. WANGLirong.Historyand prospectofpeachbreeding inChina[J]. Journal ofFruit Science,2021,38(12):2178-2195.