[中圖分類號(hào)] G623.5 [文獻(xiàn)標(biāo)識(shí)碼]A [文章編號(hào)] 1007-9068(2025)20-0047-04
隨著《義務(wù)教育課程方案(2022年版)》和《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(2022年版)》(以下簡稱《課程標(biāo)準(zhǔn)》)的發(fā)布,課堂教學(xué)與作業(yè)設(shè)計(jì)有了新的方向。作業(yè)是對(duì)學(xué)生的一種過程性評(píng)價(jià),同時(shí)是課堂延伸至課外的學(xué)習(xí),是課堂學(xué)習(xí)的補(bǔ)充與拓展。作業(yè)的目的絕對(duì)不是難倒學(xué)生,而是讓學(xué)生能自我發(fā)展、自我成長。紙筆作業(yè)是小學(xué)數(shù)學(xué)作業(yè)的主要類型,是落實(shí)新課程與新教材相結(jié)合的雙新理念的關(guān)鍵載體。基于這樣的思考,筆者對(duì)滬教版教材五年級(jí)下冊(cè)第四單元“幾何小實(shí)踐”的紙筆作業(yè)進(jìn)行了深入的分析,提出作業(yè)設(shè)計(jì)的策略。
一、現(xiàn)狀與誤區(qū)
分析“幾何小實(shí)踐”單元的紙筆作業(yè),筆者認(rèn)為當(dāng)前紙筆作業(yè)主要存在以下三方面的問題
(一)“雙基”練習(xí)效果差
在現(xiàn)有紙筆作業(yè)中,“雙基”練習(xí)(基礎(chǔ)知識(shí)和基本技能)的占比依然較大,比如體積單位的換算、組合體的體積計(jì)算等。對(duì)此,筆者對(duì)一些教師進(jìn)行了訪談。有教師表示有些內(nèi)容即使進(jìn)行了多次“雙基”練習(xí),學(xué)生的錯(cuò)誤率仍然較高,比如體積單位的換算這一知識(shí)點(diǎn)。
(二)情境設(shè)置生硬
除了“雙基”練習(xí),大部分習(xí)題均含有情境,特別是問題解決類的習(xí)題,從原來的一兩句話變?yōu)橐淮蠖卧?,題目非常長,但是情境的作用不大,去除情境對(duì)解決問題沒有絲毫影響。
(三)以怪、難為創(chuàng)新
有一些題目在文字表述上晦澀難懂、題意含糊不清。即使是數(shù)學(xué)教師,理解時(shí)也會(huì)產(chǎn)生偏差。對(duì)于這樣的問題,筆者訪談相關(guān)教師后發(fā)現(xiàn)有些教師認(rèn)為素養(yǎng)就是要看學(xué)生的遷移能力,所以將這種學(xué)生沒見過的、讓學(xué)生摸不著北的問題當(dāng)成有水平的題。
二、改變與突破
基于上述問題,筆者對(duì)“幾何小實(shí)踐”的紙筆作業(yè)進(jìn)行了優(yōu)化設(shè)計(jì),并從中歸納提煉出了四個(gè)優(yōu)化策略。
(一)挖掘背后素養(yǎng),改變呈現(xiàn)形式,讓素養(yǎng)融入“雙基”
1.從題目設(shè)計(jì)意圖出發(fā)
【原問題】如圖1所示。
下列長方體或正方體是用幾塊1立方厘米的小正方體積木搭出的?體積是多少?
這道題目非常簡潔,就是讓學(xué)生進(jìn)行填空。但由于形式太過簡單,無法凸顯設(shè)計(jì)者的意圖,且學(xué)生二年級(jí)的時(shí)候已經(jīng)學(xué)過長方體、正方體,這道題對(duì)五年級(jí)的學(xué)生來說沒有難度,難以引起學(xué)生的興趣。
筆者認(rèn)為這道題的設(shè)計(jì)意圖是讓學(xué)生感受“求長方體的體積,本質(zhì)就是看它含有多少個(gè)體積單位”,因此從題目設(shè)計(jì)意圖出發(fā)對(duì)這道題做了一些調(diào)整,以四格漫畫的形式,將關(guān)鍵的設(shè)計(jì)意圖用語言表示出來。
【改編題】如圖2所示。
【原問題】
一塊橡皮的體積約是8( );一個(gè)蘋果的體積約是0.6( );一塊蛋糕的體積約是600( )。(填寫適當(dāng)?shù)捏w積單位,“立方厘米”“立方分米”或“立方米”)
2.從作業(yè)目標(biāo)出發(fā)
“體積與體積單位認(rèn)識(shí)\"這節(jié)課作業(yè)的目標(biāo)包括能進(jìn)行單位換算,能選擇合適的單位描述實(shí)際問題。這些目標(biāo)指向?qū)W生的量感培養(yǎng),原問題就是根據(jù)這些目標(biāo)進(jìn)行設(shè)計(jì)的。但是學(xué)生做題的錯(cuò)誤率較高,因?yàn)閷W(xué)生現(xiàn)有的參照體系不足以支撐他們靈活應(yīng)用。因此,筆者從作業(yè)目標(biāo)出發(fā),將三樣實(shí)際物品放在一起拍攝在一張照片上,讓學(xué)生在這三個(gè)物品的比較中形成一個(gè)直觀的大小感受,建立一個(gè)豐富的參照體系。
【改編題】
小明從家里找出了三樣物品,如圖3所示。
如果這塊橡皮的體積約是8立方厘米,那么這個(gè)蘋果的體積約是0.6( ),這塊切片蛋糕的體積約是600( )。(填“立方厘米”“立方分米”或“立方米”)
(二)剖析內(nèi)在邏輯,匹配適度情境,讓情境發(fā)展素養(yǎng)
1.符合事實(shí)邏輯
在對(duì)題目進(jìn)行情境設(shè)計(jì)時(shí),首先要注意所設(shè)計(jì)的情境是否符合事實(shí)邏輯。
【原問題】
一根鐵絲長48厘米,把它折成一個(gè)長方體模型架,折好后的長方體模型架長為6厘米,寬為4厘米,那么高為( )厘米。
這道題主要考查長方體的長、寬、高的概念,以及“長方體中互相平行的棱長度相等”這一知識(shí)點(diǎn)。情境要具有科學(xué)性,這道題中的情境是不符合事實(shí)邏輯的,因?yàn)橐桓F絲沒有辦法不重復(fù)、不剪斷地折成一個(gè)長方體模型,且生活中細(xì)鐵絲并不是筆直存放的。筆者想到學(xué)生在勞動(dòng)課上接觸過鐵絲,于是以此創(chuàng)設(shè)情境。
【改編題】
勞動(dòng)課上,老師給同學(xué)們布置了一個(gè)任務(wù):制作一個(gè)長方體模型架。
材料:一卷鐵絲
O工具:鉗子電烙鐵
小明一共用了48厘米的鐵絲,他做的長方體模型架的長是6厘米,寬是4厘米,那么這個(gè)長方體模型架的高是多少厘米?寫出你的計(jì)算過程。
(選做)在制作過程中,小明至少用了幾次鉗子來把鐵絲夾斷?用了幾次電烙鐵來焊鐵絲?畫一畫、寫一寫,展示你的思考過程。
2.聯(lián)系現(xiàn)實(shí)生活
教師要留意生活中的細(xì)節(jié),可能一個(gè)不經(jīng)意間就會(huì)找到用來設(shè)計(jì)作業(yè)的好素材。
【原問題】
密閉的長方體容器中裝有4厘米深的水(如圖4)。如果把這個(gè)容器的右側(cè)面作為底面,將容器豎起來,這時(shí)水深多少厘米?如果把這個(gè)容器的前面作為底面,這時(shí)水深又是多少厘米?
這道題是典型的利用液體特點(diǎn)考查長方體的體積的問題,而解決這個(gè)問題可以培養(yǎng)學(xué)生的空間觀念和量感。筆者聯(lián)想到液體漂浮裝飾品,于是根據(jù)這種流行的裝飾品創(chuàng)設(shè)情境,能使學(xué)生的想象有著力點(diǎn),也能解釋為什么要將容器翻轉(zhuǎn)來放。此外,筆者還對(duì)這道題進(jìn)行了拓展,在原有的計(jì)算基礎(chǔ)上增加了數(shù)學(xué)猜想,讓學(xué)生嘗試通過兩個(gè)現(xiàn)實(shí)現(xiàn)象進(jìn)行一定的數(shù)學(xué)猜想,培養(yǎng)學(xué)生的數(shù)學(xué)眼光。
【改編題】
小明在網(wǎng)上看到了一款液體漂浮裝飾品(如圖5),裝飾品中的帆船可以隨著長方體容器的位置調(diào)整而發(fā)生變化。小明準(zhǔn)備自己親手做一個(gè)長為25厘米,寬為12厘米,高為8厘米的容器。
(1)完成制作后,小明往容器里注入了1升水。他將最大的面作為底面,這時(shí)水面的高度是多少厘米?(玻璃厚度不計(jì))
(2)小明又把這個(gè)容器最小的面作為底面,將容器豎起來放置,這時(shí)水面的高度是多少厘米?(玻璃厚度不計(jì))
(3)小明通過觀察不同放置方式的長方體玻璃容器中水面的高度和底面的大小,提出了一個(gè)與長方體有關(guān)的數(shù)學(xué)猜想。如果你是小明,你的猜想是什么?
(4)你能舉一個(gè)例子來驗(yàn)證你的猜想嗎?
(三)審視內(nèi)在一致,勾連相關(guān)內(nèi)容,讓知識(shí)結(jié)構(gòu)呈現(xiàn)
1.知識(shí)內(nèi)在一致性的體會(huì)
教學(xué)“體積與體積單位”一課時(shí),課后作業(yè)不能僅從體積單位的角度進(jìn)行鞏固練習(xí),還需要從圖形測量的角度去歸納、梳理長方體、正方體體積內(nèi)在的一致性,從而讓學(xué)生感受到,不論是一維圖形還是二維圖形、三維圖形,測量時(shí)都是數(shù)有多少個(gè)計(jì)量單位(如圖6),這也體現(xiàn)了《課程標(biāo)準(zhǔn)》強(qiáng)調(diào)的知識(shí)的結(jié)構(gòu)化和一致性。
2.課內(nèi)方法的進(jìn)一步延伸與遷移
教學(xué)“長方體、正方體的體積”一課時(shí),學(xué)生研究并得出了長方體的體積還可以通過“底面積 × 高”來計(jì)算。在課后作業(yè)中,可以讓學(xué)生進(jìn)一步探索“底面積 × 高”(如圖7)。這樣的遷移,開拓了學(xué)生的思路,為學(xué)生后續(xù)學(xué)習(xí)立體圖形做了鋪墊,更重要的是給予了學(xué)生充分的空間想象環(huán)境,從而促進(jìn)學(xué)生空間觀念的有效發(fā)展。
(四)還原思考過程,增加開放回答,讓思維直觀可視
1.展示對(duì)關(guān)鍵概念的理解
在數(shù)學(xué)學(xué)習(xí)中一定會(huì)遇到重要的關(guān)鍵概念,比如在本單元中,對(duì)長方體、正方體的正確認(rèn)識(shí),建立正確的表象,就是后續(xù)學(xué)習(xí)的基礎(chǔ)。但是現(xiàn)有的題目中,相關(guān)內(nèi)容無法體現(xiàn)學(xué)生是否真的理解了相關(guān)概念。
【原問題】
長方體是由( )個(gè)長方形的面圍成的立體圖形。在一個(gè)長方體中,相對(duì)的面的形狀( ),大?。?),互相平行的棱的長度( )。
這道題考查學(xué)生對(duì)長方體基本特征的理解。
筆者發(fā)現(xiàn)對(duì)學(xué)習(xí)能力比較弱的學(xué)生來說,這只是在背誦答案,因?yàn)樗麄儗?duì)其中相對(duì)的面、互相平行的棱等知識(shí)沒有足夠的理解。因此,筆者對(duì)這道題做了修改,讓學(xué)生想象一個(gè)長方體,并嘗試畫出草圖,將關(guān)鍵概念可視化,這樣可以了解學(xué)生是否形成了正確的空間觀念、是否理解了相關(guān)知識(shí)。
【改編題】
請(qǐng)你想象一個(gè)長方體,并畫出來。這個(gè)長方體由( )個(gè)長方形的面圍成。
(1)在這個(gè)長方體中,相對(duì)的面的形狀( ),大小( )。試著在你畫出的長方體中找出一組相對(duì)的面,并涂色。
(2)互相平行的棱的長度( )。試著在你畫出的長方體中找出一組互相平行的棱,并描出來。
2.展示對(duì)關(guān)鍵步驟的思考
設(shè)計(jì)作業(yè)時(shí)要判定題目是否能培育學(xué)生數(shù)學(xué)素養(yǎng),并增加思考過程的展示。
【原問題】
有足夠多的10厘米、8厘米、6厘米長的小棒,也有足夠多的小球。從中選擇部分小棒和小球搭一個(gè)長方體框架,最多可以搭出( )種不同形狀的長方體框架。(形狀相同、大小相等但位置不同的算一種)
A.1 B.4 C.7 D.10
這道題具備一定難度,但形式卻是選擇題,這樣無法展示學(xué)生的思維過程。因此,可以補(bǔ)充一道比較基礎(chǔ)的題目,并在此基礎(chǔ)上繼續(xù)提問。這樣可以考查學(xué)生是否能有序思考,是否能做到無遺漏、無重復(fù)。如果學(xué)生答錯(cuò)了,教師也可以看出問題出現(xiàn)在哪里。
【改編題】
小巧在家里找到足夠多的10厘米、8厘米、6厘米長的小棒,還有足夠多的小球。
(1)下面選法中,( )可以成功搭一個(gè)長方體框架。
(2)最多可以搭出( )種不同形狀的長方體
框架,畫出這些框架的草圖。(形狀相同、大小相等但位置不同的算一種)
三、總結(jié)與啟示
(一)布置紙筆作業(yè)的目的
數(shù)學(xué)是一門需要不斷練習(xí)和復(fù)習(xí)的學(xué)科,而紙筆作業(yè)可以幫助學(xué)生鞏固在課堂上學(xué)習(xí)到的知識(shí)點(diǎn),是數(shù)學(xué)學(xué)習(xí)過程中不可或缺的一環(huán)。
作業(yè)的設(shè)計(jì)應(yīng)當(dāng)巧妙地融人數(shù)學(xué)思維訓(xùn)練的元素,使學(xué)生在完成作業(yè)的過程中逐漸內(nèi)化這些數(shù)學(xué)思想和方法,從而提升他們的思維能力。
遷移能力對(duì)學(xué)生來說非常重要,是學(xué)生學(xué)會(huì)學(xué)習(xí)的一個(gè)重要標(biāo)志。因此在作業(yè)設(shè)計(jì)中引人一些課堂上未曾涉及的新情境,可以激發(fā)學(xué)生的探索欲望,促使他們運(yùn)用已有知識(shí)去解決新問題,進(jìn)而培養(yǎng)他們的遷移能力。這是作業(yè)區(qū)別于課堂、作為課堂延伸的重要標(biāo)志。
(二)對(duì)作業(yè)設(shè)計(jì)的啟示
筆者認(rèn)為雙新理念下的作業(yè)設(shè)計(jì),需要把握素養(yǎng)導(dǎo)向、單元視角、“教一學(xué)一評(píng)”一致性、兒童立場四個(gè)原則。
在進(jìn)行作業(yè)設(shè)計(jì)時(shí),要抓住單元的主要核心素養(yǎng)表現(xiàn)?!皫缀涡?shí)踐”單元涉及幾何直觀、空間觀念、量感、推理意識(shí)等數(shù)學(xué)核心素養(yǎng),在進(jìn)行作業(yè)設(shè)計(jì)時(shí)要始終考慮所設(shè)計(jì)的作業(yè)如何對(duì)這幾個(gè)素養(yǎng)的發(fā)展起到作用。
教師需要從整個(gè)單元的角度出發(fā),而不是孤立地看待每一節(jié)課或每一次作業(yè)?!皫缀涡?shí)踐”單元最主要的內(nèi)容載體是長方體、正方體,而這兩個(gè)基本立體圖形的特征直接影響著它們的測量,測量的過程和結(jié)果又會(huì)加深學(xué)生對(duì)它們的認(rèn)識(shí)。因此在設(shè)計(jì)作業(yè)時(shí),要整體把握這兩個(gè)圖形的認(rèn)識(shí)與測量。
作業(yè)最終的受益人應(yīng)是學(xué)生,因此,在進(jìn)行作業(yè)設(shè)計(jì)時(shí)要考慮兒童的生活經(jīng)驗(yàn)和興趣,并且尊重兒童的個(gè)體差異??梢愿鶕?jù)學(xué)生的不同能力和興趣設(shè)計(jì)分層次的作業(yè),允許學(xué)生根據(jù)自己的能力完成任務(wù)。
(責(zé)編 楊傯培)