[摘要]皮膚衰老是不可避免的生理過程,隨著生活經(jīng)濟水平的提高和人口老齡化的加劇,皮膚抗衰活性物質(zhì)成為研究熱點。肌肽是一種生物活性肽,可有效延緩皮膚衰老,但是其抗衰老的機制尚缺乏系統(tǒng)總結(jié)。本綜述通過檢索相關(guān)文獻,詳細總結(jié)了皮膚衰老的機制、肌肽皮膚抗衰的作用機制,以及肌肽在皮膚抗衰中的臨床應(yīng)用,并展望了未來的研究方向。肌肽可能通過減緩端粒縮短速度、抗氧化、抗糖基化、調(diào)節(jié)衰老細胞自噬等機制實現(xiàn)皮膚抗衰。肌肽與其他活性成分的聯(lián)合應(yīng)用可以發(fā)揮協(xié)同增效作用,從而更好地預(yù)防和改善皮膚衰老。
[關(guān)鍵詞]肌肽;皮膚衰老;抗氧化;抗糖基化;肌肽應(yīng)用
[中圖分類號]R339.3+8" " [文獻標志碼]A" " [文章編號]1008-6455(2025)08-0174-04
The Role of Carnosine in Skin Anti-aging and Its Research Progress
LIANG Chun1,2, HE Tong3, LIU Xiaowen3, LUO Libo1,2, LIU Hui1,2, WEI Yuzhan1, ZHANG Guangliang1, HUA Tianzhen1, WANG Shiwei3, CHEN Youbai1,2
( 1.Department of Plastic and Reconstructive Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China; 2.Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China; 3.Medical Department, Imeik Technology Development Co., Ltd., Beijing 100022, China )
Abstract: Skin aging is an inevitable physiological process. With the improvement of living standards and the aggravation of population aging, skin anti-aging active substances have become a research hotspot. Carnosine is a type of bioactive peptide that can effectively delay skin aging, but systematic review of its anti-aging mechanism is still lacking. This literature review summarizes the mechanism of skin aging, the mechanism of carnosine for skin anti-aging, and the clinical application of carnosine in skin anti-aging. Carnosine may achieve skin anti-aging by slowing down telomere shortening rate, antioxidation, anti-glycosylation, and regulating senescent cell autophagy. The combined application of carnosine with other active ingredients can exert a synergistic effect, thereby better preventing and alleviating skin aging.
Key words: carnosine; skin aging; antioxidant; antiglycosylation; carnosine application
衰老是一個復(fù)雜的生物學(xué)過程,表現(xiàn)為隨時間推移而發(fā)生的功能漸進性退化和內(nèi)環(huán)境穩(wěn)態(tài)失衡。這一過程具有系統(tǒng)性特征,涉及人體各個層級的組織結(jié)構(gòu),包括細胞、組織和器官等。作為人體最大且最引人關(guān)注的器官,皮膚的衰老現(xiàn)象尤為顯著。皮膚衰老主要表現(xiàn)為皮膚變薄、粗糙、干燥、皺紋、松弛下垂、失去彈性、色素沉著等。隨著人口老齡化的不斷加劇,皮膚抗衰化妝品、器械和藥物展示出巨大的潛力,成為美容醫(yī)學(xué)的研究熱點[1]。
肌肽是由β-丙氨酸和L-組氨酸組成的一種生物活性二肽,廣泛存在于骨骼肌、心肌及大腦的某些特定區(qū)域[2]。1994年,McFarland GA等[3]將20 mmol/L的肌肽加入培養(yǎng)基中,發(fā)現(xiàn)成纖維細胞的平均群體倍增數(shù)和持續(xù)分裂時間顯著增加,而50 mmol/L的肌肽使衰老的成纖維細胞年輕化,去除后又恢復(fù)衰老表型。由于其抗衰老作用和安全性,肌肽被廣泛用于化妝品中。盡管效果顯著,但肌肽延緩皮膚衰老的機制尚不明確,且缺乏系統(tǒng)總結(jié)。本文總結(jié)了肌肽在皮膚抗衰中的潛在機制以及相關(guān)臨床應(yīng)用,并展望了肌肽應(yīng)用于皮膚抗衰的發(fā)展前景。
1" 皮膚衰老的機制
皮膚衰老是一種由多因素共同導(dǎo)致的結(jié)果,主要可分為細胞分子因素、內(nèi)源性因素和外源性因素三大類[4]。
1.1 細胞分子因素:端粒是染色體末端重復(fù)的DNA序列和蛋白質(zhì)的復(fù)合體,可保護染色體免于降解和融合,維持染色體的穩(wěn)定[5]。成纖維細胞是構(gòu)成皮膚的主要細胞之一,通過分泌膠原蛋白等多種細胞外基質(zhì)(Extracellular matrix,ECM),維持皮膚的厚度和彈性。成纖維細胞的端??s短導(dǎo)致基因組不穩(wěn)定,從而誘發(fā)細胞功能障礙[6],是引起皮膚衰老的主要細胞分子因素。Son N等[7]對423 999名歐洲人的面部皮膚數(shù)據(jù)進行雙樣本孟德爾隨機化分析,發(fā)現(xiàn)皮膚成纖維細胞的端??s短會顯著加速皮膚老化。
1.2 內(nèi)源性因素:皮膚老化的內(nèi)源性因素包括遺傳、生物鐘、激素失衡、氧化應(yīng)激和糖基化等,其中占主導(dǎo)地位的是氧化應(yīng)激和糖基化。
1.2.1 氧化應(yīng)激:皮膚的氧化應(yīng)激是由于細胞內(nèi)的氧自由基(Reactive oxygen species,ROS)的產(chǎn)生和清除失衡導(dǎo)致。ROS積累增多會進一步加劇線粒體DNA發(fā)生突變,電子傳遞障礙,線粒體膜電位降低,氧化磷酸化過程受阻,減少三磷酸腺苷生成,引起細胞供能不足[8]。直接減少ROS的清除,從而形成一個惡性循環(huán),不斷提高細胞內(nèi)氧化應(yīng)激水平,加速細胞衰老[9]。ROS還能夠直接激活體內(nèi)的絲裂原活化蛋白激酶/c-Jun氨基末端激酶通路(MAPK/JNK),刺激活化蛋白-1,進而增加基質(zhì)金屬蛋白酶(Matrix metalloproteinases,MMPs)的表達[10]。MMPs可以降解膠原蛋白、彈性蛋白、波形蛋白等ECM成分,使皮膚松弛、產(chǎn)生皺紋。ROS還可以使透明質(zhì)酸等多糖氧化降解,使皮膚喪失水分。此外,皮膚脂質(zhì)里有大量的不飽和脂肪酸,ROS與這些脂質(zhì)發(fā)生過氧化反應(yīng),產(chǎn)生4-羥基壬烯醛、丙烯醛或丙二醛、甲基乙二醛、乙二醛等活性羰基產(chǎn)物,這些羰基產(chǎn)物與ECM蛋白發(fā)生氧化反應(yīng),發(fā)生蛋白質(zhì)的羰基化,羰基化蛋白很難被溶解,進而在細胞積聚,形成大量的脂褐素和黑色素,導(dǎo)致皮膚色斑、暗沉和粗糙[11,12]。
1.2.2 糖基化:皮膚的糖基化是指葡萄糖等還原糖與皮膚中的蛋白質(zhì)(如膠原蛋白和彈性蛋白)通過美拉德反應(yīng)形成初級糖基化產(chǎn)物,再與蛋白質(zhì)的游離氨基反應(yīng)通過環(huán)化作用、氧化作用及脫水形成更為穩(wěn)定的晚期糖基化終產(chǎn)物(Advanced glycation end products,AGEs)[13]。皮膚中常見的AGEs包括羧甲基賴氨酸、戊糖素等。AGEs的過度累積,可以與皮膚中的膠原蛋白、彈性纖維、波形蛋白等ECM成分大量結(jié)合,蛋白質(zhì)的交聯(lián)和結(jié)構(gòu)發(fā)生改變,使其變脆、斷裂且溶解度降低,使組織的通透性和彈性降低,最終導(dǎo)致皮膚松弛、皺紋形成[14]。
1.2.3 外源性因素:引起皮膚老化的外源性因素主要是紫外線。紫外線(UV)主要可分為UVA、UVB以及UVC,其中UVC幾乎完全被臭氧層所吸收,引起皮膚老化的主要是UVA和UVB。UVB(280~320 nm)的能量較高,穿透能力相對較弱,只能穿透表皮,主要影響皮膚角質(zhì)形成細胞和黑素細胞,導(dǎo)致皮膚色素沉著[15]。而 UVA(320~400 nm)可以穿透更深至真皮層,并通過增加ROS破壞脂質(zhì)、膠原蛋白和彈力纖維,導(dǎo)致皮膚干燥、松弛下垂以及皺紋[16]。此外,UV還可以激活花生四烯酸途徑,刺激皮膚炎癥反應(yīng),破壞膠原蛋白和彈性蛋白,增加皮膚ECM降解,加速皮膚的衰老進程[17]。
2" 肌肽在皮膚抗衰老中的作用機制
2.1 調(diào)節(jié)端粒長度:肌肽具有激活端粒酶以及調(diào)節(jié)端粒蛋白復(fù)合體的功能,可減緩端??s短的速度,延長端粒長度,這有助于延緩皮膚細胞的衰老過程。Shao L等[18]將20 mmol/L的肌肽加入成纖維細胞培養(yǎng)基中,通過端粒特異性探針及Southern印跡法檢測端??s短速率和端粒片段的數(shù)量,發(fā)現(xiàn)肌肽顯著減緩端??s短速率,減少端粒片段的產(chǎn)生。Ait-Ghezala G等[29]發(fā)現(xiàn)應(yīng)用肌肽的人成纖維細胞的端粒酶活性增強,端粒長度增長,證實肌肽可以通過激活端粒酶而延長端粒長度。Sivasangari K等[20]給予懷孕大鼠口服肌肽,發(fā)現(xiàn)可有效抑制母體應(yīng)激對端粒的縮短作用,使端粒酶活性和端粒蛋白復(fù)合體的表達增加,維持端粒長度。
2.2 抗氧化
2.2.1 調(diào)控線粒體功能,減少ROS產(chǎn)生:Radrezza S等[21]將肌肽應(yīng)用于由UVA照射構(gòu)建的裸鼠皮膚光老化模型,蛋白組學(xué)檢測顯示肌肽可以調(diào)節(jié)氧化應(yīng)激相關(guān)蛋白、細胞色素C氧化酶亞基(如COX6B1)和煙酰胺腺嘌呤二核苷酸泛醌氧化還原酶S8等與線粒體功能相關(guān)指標的表達,增強線粒體活性,減少ROS產(chǎn)生。Nrf2可通過調(diào)節(jié)谷胱甘肽、硫氧還蛋白和還原型煙酰胺腺嘌呤二核苷酸磷酸的生物合成、利用和再生,進而調(diào)控線粒體功能和還原型煙酰胺腺嘌呤二核苷酸磷酸氧化酶,維持細胞氧化還原穩(wěn)態(tài)[22]。Aiello G等[23]將肌肽用于50歲供體的原代真皮成纖維細胞,蛋白組學(xué)分析顯示谷胱甘肽S-轉(zhuǎn)移酶、硫氧還蛋白和超氧化物歧化酶1等與Nrf2抗氧化應(yīng)激信號通路相關(guān)的蛋白發(fā)生了上調(diào),絲裂原活化蛋白激酶表達下降,證實了肌肽可通過調(diào)節(jié)Nrf2信號通路,調(diào)控線粒體功能,減少ROS的產(chǎn)生。
2.2.2 螯合金屬離子,減少ROS產(chǎn)生:肌肽的咪唑環(huán)能夠螯合Fe2+、Cu2+、Zn2+等游離的金屬離子,形成絡(luò)合物并限制其反應(yīng)活性,阻止其催化產(chǎn)生羥基自由基,起到間接抗氧化的作用。楊國宇等[24]發(fā)現(xiàn),肌肽可通過與Fe2+形成金屬螯合物,切斷ROS產(chǎn)生的源頭,對ROS產(chǎn)生過多所導(dǎo)致的DNA氧化損傷有明顯的保護作用。Ooi TC等[25]將肌肽與Zn2+進行螯合,發(fā)現(xiàn)肌肽與Zn2+螯合后可提升細胞中的金屬硫蛋白和超氧化物歧化酶1的表達,進而減少細胞中的ROS含量。
2.2.3 清除已經(jīng)產(chǎn)生的ROS:肌肽側(cè)鏈上的組氨酸殘基的咪唑環(huán)存在共軛大π鍵,使其羧基端電子云向咪唑環(huán)移動,作為電子供體捕捉羥基自由基、單質(zhì)氧和過氧化自由基,減輕氧化應(yīng)激[26]。Decker EA等[27]的研究發(fā)現(xiàn),經(jīng)過ROS氧化后的β-藻紅蛋白熒光強度減弱,加入不同濃度(0.25 mM和0.5 mM)的肌肽后,熒光強度較ROS氧化后顯著增強,說明肌肽具有良好的ROS清除能力。
2.2.4 競爭性結(jié)合氧化應(yīng)激中間產(chǎn)物,保護ECM:肌肽能夠與4-羥基壬烯醛、丙二醛等氧化應(yīng)激的中間產(chǎn)物活性羰基物質(zhì)結(jié)合,阻止其對ECM的破壞[28]。Aydin AF等[29]將肌肽給予D-半乳糖誘導(dǎo)的衰老小鼠,發(fā)現(xiàn)蛋白質(zhì)羰基含量下降明顯。Swiader A等[30]將肌肽應(yīng)用于經(jīng)UVA照射的光老化小鼠,發(fā)現(xiàn)肌肽可以顯著降低被4-羥基壬烯醛等羰基化的波形蛋白含量、衰老細胞數(shù)量以及γH2AX細胞衰老標志物的表達,證實肌肽可通過與活性羰基產(chǎn)物4-羥基壬烯醛競爭性結(jié)合,阻止其與ECM的結(jié)合,減少脂褐素和黑色素的產(chǎn)生。Hipkiss AR等[31]的研究顯示,20 mmol/L的肌肽能保護血管內(nèi)皮細胞免受活性羰基產(chǎn)物丙二醛所誘導(dǎo)的氧化毒性,提高細胞存活率。Hipkiss AR等[32]的后續(xù)研究又進一步證實肌肽能顯著降低由丙二醛和次氯酸鹽導(dǎo)致的蛋白質(zhì)羰基化和交聯(lián)蛋白質(zhì)的生成,從而延長細胞壽命。
2.3 抗糖基化:蛋白質(zhì)的非酶糖基化的位點是靠近咪唑的氨基基團和羰基基團,肌肽擁有這些基團,可以競爭性地與游離糖的醛基或酮基結(jié)合,保護蛋白不被糖基化。其次,肌肽可通過競爭性結(jié)合丙二醛等活性羰基物質(zhì),減少糖化中間產(chǎn)物向AGEs的氧化轉(zhuǎn)化,阻止糖基化蛋白質(zhì)的進一步交聯(lián),減少AGEs的產(chǎn)生[33]。在一項雙盲隨機對照的臨床試驗中,Houjeghani S等[34]發(fā)現(xiàn),口服肌肽能顯著降低血清中羧甲基賴氨酸、戊糖素等AGEs的水平。Girardi C等[35]構(gòu)建了模擬日光輻射的離體人體皮膚模型并局部應(yīng)用0.2%和2%濃度的肌肽,免疫組化染色發(fā)現(xiàn)AGEs的含量分別下降46%和73%,證實肌肽可以顯著減少AGEs含量,發(fā)揮抗糖基化作用。Narda M等[36]將含肌肽的面霜應(yīng)用于甲基乙二醛誘導(dǎo)的人類皮膚糖基化模型,發(fā)現(xiàn)肌肽可以顯著降低羧甲基賴氨酸和戊糖素等AGEs水平,并且抑制甲基乙二醛與皮膚彈性蛋白及波形蛋白的結(jié)合,減輕ECM羰基化,改善皮膚的彈性和色素沉著。
2.4 調(diào)節(jié)脂質(zhì)代謝:皮膚的脂質(zhì)如磷脂、脂肪酸、甘油三酯、膽固醇酯、神經(jīng)酰胺和鞘磷脂等與皮膚屏障功能、炎癥反應(yīng)、抗氧化能力以及衰老密切相關(guān)[37]。肌肽可通過調(diào)節(jié)上述脂質(zhì)的代謝,延緩皮膚衰老。Yan S等[38]的研究發(fā)現(xiàn)肌肽具有類似超氧化物歧化酶的作用,可以抑制不同的脂質(zhì)氧化劑,顯著地減緩了脂質(zhì)的氧化。Zoanni B等[39]將肌肽應(yīng)用于經(jīng)UVA照射的裸鼠光老化皮膚模型,脂質(zhì)組學(xué)分析發(fā)現(xiàn)神經(jīng)酰胺的含量增加,皮膚可塑性、水合作用和屏障功能增強;而膽固醇、甘油三酯和脂肪酸(花生四烯酸)含量下降,TNF信號通路下調(diào),從而調(diào)節(jié)脂質(zhì)代謝,減輕皮膚的慢性炎癥狀態(tài),改善皮膚的屏障功能,延緩皮膚衰老。
2.5 促進衰老細胞清除
2.5.1 增強巨噬細胞清除衰老細胞的能力:衰老的成纖維細胞可能會加速皮膚老化的過程[40]。巨噬細胞是清除衰老細胞的關(guān)鍵,但是巨噬細胞識別和清除衰老細胞的能力隨著年齡的增長而下降,導(dǎo)致衰老細胞在組織中積聚,進而加劇周圍細胞的衰老速度[41]。因此,增強巨噬細胞對衰老細胞的吞噬能力可能是皮膚年輕化的有效策略。Caruso G等[42]將肌肽應(yīng)用于PAM誘導(dǎo)的巨噬細胞,發(fā)現(xiàn)肌肽可以提高巨噬細胞活性、能量代謝、抗氧化應(yīng)激等功能。Li X等[43]將不同濃度(5/10/30 mM)的肌肽分別應(yīng)用于過氧化氫誘導(dǎo)的衰老人包皮成纖維細胞及人角質(zhì)形成細胞與巨噬細胞的共培養(yǎng)模型中,發(fā)現(xiàn)巨噬細胞的吞噬作用增強,且共培養(yǎng)的衰老細胞數(shù)量發(fā)生顯著下降,證實肌肽可通過CD36和RAGE激活A(yù)KT2信號通路刺激巨噬細胞清除衰老的皮膚細胞。
2.5.2 調(diào)節(jié)衰老細胞自噬:肌肽可通過調(diào)節(jié)細胞中的自噬平衡而避免細胞發(fā)生過早的衰老。自噬是細胞內(nèi)的一種自我調(diào)節(jié)機制,通過溶酶體介導(dǎo)異常修飾蛋白的降解、蛋白質(zhì)聚合物的分解以及損壞的細胞器的清除[44]。這一過程可以幫助細胞清除積累的有害物質(zhì),維持細胞內(nèi)環(huán)境穩(wěn)態(tài)。衰老細胞的自噬減少,上調(diào)衰老細胞自噬后,衰老延緩。然而,過度的自噬反而會加速衰老,所以調(diào)控自噬平衡至關(guān)重要[45]。肌肽可以通過調(diào)節(jié)自噬相關(guān)信號通路的表達而調(diào)節(jié)自噬平衡,減少衰老過程中的異常自噬。任毅等[46]將肌肽應(yīng)用于鏈脲佐菌素誘導(dǎo)的糖尿病大鼠模型,對大鼠腎臟組織樣本的AKT和mTOR的表達、微管相關(guān)輕鏈蛋白3及自噬受體蛋白的數(shù)量進行檢測,證實肌肽可以通過Akt/mTOR信號通路調(diào)節(jié)細胞的自噬。
2.6 其他可能的抗衰老機制
2.6.1 通過上調(diào)SIRT1的表達抗衰老:沉默信息調(diào)節(jié)因子(Sirtuins)是一種煙酰胺二核苷酸(NAD+)依賴性的脫酰酶,其中的SIRT1是哺乳動物細胞中最具特征性的表型,通過穩(wěn)定染色質(zhì)結(jié)構(gòu)和去乙?;M蛋白、轉(zhuǎn)錄因子和DNA修復(fù)蛋白,在預(yù)防衰老中起著至關(guān)重要的作用[47]。SIRT1可通過對FOXO3a的脫乙?;钚詮亩种瞥衫w維細胞的氧化應(yīng)激,延緩成纖維細胞的衰老[48]。SIRT1還可通過促進溶酶體形成而激活自噬功能,從而加速對細胞內(nèi)代謝產(chǎn)物的清除過程。此外,SIRT1可減輕MMP的活性和轉(zhuǎn)錄表達,減少膠原蛋白的降解,使皮膚的彈性、緊致度上升[49]。Radrezza S[50]和Swiader A等[51]對UVA照射的光老化小鼠模型的SIRT1的含量進行了檢測,發(fā)現(xiàn)衰老的成纖維細胞中SIRT1的表達降低,應(yīng)用肌肽后SIRT1的含量顯著上調(diào)。
2.6.2 通過抑制mTORC1的表達抗衰老:雷帕霉素可以通過抑制mTORC1,增加自噬體形成的關(guān)鍵調(diào)節(jié)因子的表達,誘導(dǎo)衰老線粒體自噬[52]。此外,雷帕霉素還可以間接上調(diào)4E-BP的表達,上調(diào)線粒體電子傳遞鏈蛋白的表達和線粒體活性相關(guān)mRNA的表達[53]。肌肽在胃癌細胞模型、腸上皮細胞等表現(xiàn)出與雷帕霉素相似的mTOR抑制作用[54]。有研究認為,肌肽可能有著和雷帕霉素相似的功能,通過調(diào)節(jié)mTORC1發(fā)揮抗衰老作用[55]。
3" 肌肽在皮膚抗衰老中的臨床應(yīng)用
3.1 含肌肽化妝品:肌肽與其他生物活性物質(zhì)混合,可以實現(xiàn)保濕、抗氧化、除皺、改善色素沉著等多種功能,是目前抗衰化妝品的重要方向。Garre A等[56]開發(fā)了一種含有0.2% L-肌肽、三肽、交替單胞菌發(fā)酵提取物、透明質(zhì)酸的新型面霜,對33名45~65歲女性每天使用面霜兩次,外用8周后發(fā)現(xiàn)皮膚彈性增加20%、水合作用增加12%、緊致度增加29%、皮膚紋理減少12%、皮膚色斑減少6%、下頜線下垂減輕7%,患者自身感受及滿意度顯著提升。Granger C等[57]將肌肽與煙酰胺、透明質(zhì)酸、褪黑激素和蠟菊提取物混合形成一種乳液面霜,外用于不同類型皮膚后,發(fā)現(xiàn)其水合作用、皺紋程度和皮膚緊致度及彈性均有改善。唐巧等[58]對80例光老化Glogau評分Ⅱ~Ⅲ級的女性進行了隨機、雙盲、安慰劑平行對照試驗,分別應(yīng)用于含肌肽、棕櫚酰五肽-4、乙酰基六肽-8的復(fù)合肽面霜和不含復(fù)合肽的基質(zhì)霜,8周后皮膚鏡光老化量表顯示復(fù)合肽面霜組可顯著改善光老化和粉刺。
3.2 含肌肽填充劑:含有肌肽的填充劑可有效實現(xiàn)快速的外觀改善作用與持續(xù)的抗衰老作用。Wang S等[59]使用含有肌肽的注射用透明質(zhì)酸鈉復(fù)合溶液治療頸紋,平行注射入頸紋處,術(shù)后1個月時WAS評分顯著改善,證實注射填充劑1~1.5 ml可以立即撫平頸部褶皺,而肌肽可促進膠原蛋白再生,恢復(fù)皮膚彈性。
4" 小結(jié)
皮膚衰老是多種機制共同作用的復(fù)雜過程,肌肽可通過減緩端粒縮短速度、抗氧化、抗糖基化、調(diào)節(jié)衰老細胞自噬等機制實現(xiàn)皮膚抗衰。目前,關(guān)于肌肽上調(diào)SIRT1的表達而發(fā)揮成纖維細胞的抗衰老作用已經(jīng)在光老化小鼠模型上被證實,但對于肌肽調(diào)控SIRT1表達的上游機制缺乏深入探究。其次,對于肌肽可能抑制mTORC1而調(diào)節(jié)下游4EBP及S6K改善線粒體功能和自噬實現(xiàn)皮膚抗衰老的機制,仍需要證據(jù)證實。臨床應(yīng)用提示,肌肽與其他活性成分的聯(lián)合應(yīng)用可以發(fā)揮協(xié)同增效作用,從而更好地預(yù)防和改善皮膚衰老。未來的研究方向可能集中于肌肽抗衰老機制的探索,肌肽的負載、緩釋和靶向遞送,或結(jié)合其他聚合物或生物材料以增強其抗衰效果。此外,還需要整形外科、皮膚科醫(yī)師牽頭開展更多的臨床實驗,為肌肽皮膚抗衰的臨床有效性和安全性提供更有力的證據(jù)。
[參考文獻]
[1]Buondonno I, Sassi F, Cattaneo F, et al.Association between immunosenescence, mitochondrial dysfunction and frailty syndrome in older adults[J]. Cells, 2022,12(1):44.
[2]Müller L, Di Benedetto S. Aging brain: exploring the interplay between bone marrow aging, immunosenescence, and neuroinflammation[J]. Front Immunol, 2024,15:1393324.
[3]McFarland G A, Holliday R. Retardation of the senescence of cultured human diploid fibroblasts by carnosine[J]. Exp Cell Res, 1994,212(2):167-175.
[4]Pham T L, Thi T T, Nguyen H T, et al. Anti-aging effects of a serum based on coconut oil combined with deer antler stem cell extract on a mouse model of skin aging[J]. Cells, 2022,11(4):597.
[5]Lu D, Palmer J R, Rosenberg L, et al. Perceived racism in relation to telomere length among African American women in the black women's health study[J]. Ann Epidemiol, 2019,36:33-39.
[6]徐一鳳,王淳,張梓菁,等.成纖維細胞老化分子機制與皮膚衰老的關(guān)系及研究進展[J].中國美容醫(yī)學(xué),2023,32(7):199-202.
[7]Son N, Cui Y, Xi W. Association between telomere length and skin cancer and aging: a mendelian randomization analysis[J]. Front Genet, 2022,13:931785.
[8]Chen Q, Li Z H, Song W Q, et al. Association between single nucleotide polymorphism of rs1937 in TFAM gene and longevity among the elderly Chinese population: based on the CLHLS study[J]. BMC Geriatr, 2022,22(1):16.
[9]Yuan X, Li H, Lee JS, Lee DH. Role of Mitochondrial Dysfunction in UV-Induced Photoaging and Skin Cancers. Exp Dermatol. 2025 May;34(5):e70114.
[10]Liu W H, Chen Y J, Chien J H, et al. Amsacrine suppresses matrix metalloproteinase-2 (MMP-2)/MMP-9 expression in human leukemia cells[J]. J Cell Physiol, 2014,229(5):588-598.
[11]Petkovic I, Bresgen N, Gilardoni E, et al. In vitro aging of human skin fibroblasts: age-dependent changes in 4-hydroxynonenal metabolism[J]. Antioxidants (Basel), 2020,9(2):150.
[12]Gu Y, Han J, Jiang C, et al. Biomarkers, oxidative stress and autophagy in skin aging[J]. Ageing Res Rev, 2020,59:101036.
[13]Shigeta T, Sasamoto K, Yamamoto T. Glyceraldehyde-derived advanced glycation end-products having pyrrolopyridinium-based crosslinks[J]. Biochem Biophys Rep, 2021,26:100963.
[14]Zheng W, Li H, Go Y, et al. Research advances on the damage mechanism of skin glycation and related inhibitors[J]. Nutrients, 2022,14(21):4588.
[15]Park G, Qian W, Zhang M J, et al. Platelet-rich plasma regulating the repair of ultraviolet B-induced acute tissue inflammation: adjusting macrophage polarization through the activin receptor-follistatin system[J]. Bioengineered, 2021,12(1):3125-3136.
[16]Negre-Salvayre A, Salvayre R. Post-translational modifications evoked by reactive carbonyl species in ultraviolet-a-exposed skin: implication in fibroblast senescence and skin photoaging[J]. Antioxidants (Basel), 2022,11(11):2281.
[17]Ansary T M, Hossain M R, Kamiya K, et al. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging[J]. Int J Mol Sci, 2021,22(8):3974.
[18]Shao L, Li QH, Tan Z. L-carnosine reduces telomere damage and shortening rate in cultured normal ffbroblasts[J]. Biochem Biophys Res Commun, 2004,324(2):931-936.
[19]Ait-Ghezala G, Hassan S, Tweed M, et al. Identification of telomerase-activating blends from naturally occurring compounds[J]. Altern Ther Health Med, 2016,22(Suppl 2):6-14.
[20]Sivasangari K, Sivamaruthi B S, Chaiyasut C, et al. Maternal stress-induced changes in adolescent and adult offspring: Neurobehavioural improvement and telomere maintenance[J]. Heliyon, 2023,9(10):e20385.
[21]Radrezza S, Carini M, Baron G, et al. Study of Carnosine's effect on nude mice skin to prevent UV-A damage[J]. Free Radic Biol Med, 2021,173:97-103.
[22]Yu C, Xiao J H. The Keap1-Nrf2 system: a mediator between oxidative stress and aging[J]. Oxid Med Cell Longev, 2021,2021:6635460.
[23]Aiello G, Rescigno F, Meloni M, et al. The effect of carnosine on uva-induced changes in intracellular signaling of human skin fibroblast spheroids[J]. Antioxidants (Basel), 2023,12(2):300.
[24]楊國宇,黃進,李宏基.肌肽在維生素C-亞鐵離子系統(tǒng)中對DNA損傷的保護作用[J].中國生化藥物雜志,2005,26(4):218-220.
[25]Ooi T C, Chan K M, Sharif R. Zinc L-carnosine protects CCD-18co cells from L-Buthionine sulfoximine-induced oxidative stress via the induction of metallothionein and superoxide dismutase 1 expression[J]. Biol Trace Elem Res, 2020,198(2):464-471.
[26]Turner M D, Sale C, Garner A C, et al. Anti-cancer actions of carnosine and the restoration of normal cellular homeostasis[J]. Biochim Biophys Acta Mol Cell Res, 2021,1868(11):119117.
[27]Decker E A, Livisay S A, Zhou S. A re-evaluation of the antioxidant activity of purified carnosine[J]. Biochemistry (Mosc), 2000,65(7):766-770.
[28]Scuto M, Trovato Salinaro A, Modafferi S, et al. Carnosine activates cellular stress response in podocytes and reduces glycative and lipoperoxidative stress[J]. Biomedicines, 2020,8(6):177.
[29]Ayd?n A F, Kü?ükgergin C, ?oban J, et al. Carnosine prevents testicular oxidative stress and advanced glycation end product formation in D-galactose-induced aged rats[J]. Andrologia, 2018,50(3):12939.
[30]Swiader A, Camaré C, Guerby P, et al. 4-Hydroxynonenal contributes to fibroblast senescence in skin photoaging evoked by UV-A radiation[J]. Antioxidants (Basel), 2021,10(3):365.
[31]Hipkiss A R, Chana H. Carnosine protects proteins against methylglyoxal-mediated modifications[J]. Biochem Biophys Res Commun, 1998,248(1):28-32.
[32]Hipkiss A R, Cartwright S P, Bromley C, et al. Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential?[J]. Chem Cent J, 2013,7(1):38.
[33]Aldini G, de Courten B, Regazzoni L, et al. Understanding the antioxidant and carbonyl sequestering activity of carnosine: direct and indirect mechanisms[J]. Free Radic Res, 2021,55(4):321-330.
[34]Houjeghani S, Kheirouri S, Faraji E,et al. l-Carnosine supplementation attenuated fasting glucose, triglycerides, advanced glycation end products, and tumor necrosis factor-α levels in patients with type 2 diabetes: a double-blind placebo-controlled randomized clinical trial[J]. Nutr Res, 2018,49:96-106.
[35]Girardi C, Benato F, Massironi M, et al. Evaluation of human skin response to solar-simulated radiation in an ex vivo model: Effects and photoprotection of L-Carnosine[J]. Photochem Photobiol, 2023,100(3):733-745.
[36]Narda M, Peno-Mazzarino L, Krutmann J, et al. Novel facial cream containing carnosine inhibits formation of advanced glycation end-products in human skin[J]. Skin Pharmacol Physiol, 2018,31(6):324-331.
[37]Gruber F, Marchetti-Deschmann M, Kremslehner C, et al. The skin epilipidome in stress, aging, and inflammation[J]. Front Endocrinol (Lausanne), 2021,11:607076.
[38]Yan S, Wu B, Lin Z, et al. Metabonomic characterization of aging and investigation on the anti-aging effects of total flavones of Epimedium[J]. Mol Biosyst, 2009,5(10):1204-1213.
[39]Zoanni B, Aiello G, Negre-Salvayre A, et al. Lipidome investigation of carnosine effect on nude mice skin to prevent UV-A damage[J]. Int J Mol Sci, 2023,24(12):10009.
[40]Chin T, Lee X E, Ng P Y, et al. The role of cellular senescence in skin aging and age-related skin pathologies[J]. Front Physiol, 2023,14:1297637.
[41]Wallis Z K, Williams K C. Monocytes in HIV and SIV infection and aging: implications for inflamm-aging and accelerated aging[J]. Viruses, 2022,14(2):409.
[42]Caruso G, Fresta C G, Fidilio A, et al. Carnosine decreases PMA-induced oxidative stress and inflammation in murine macrophages[J]. Antioxidants (Basel), 2019,8(8):281.
[43]Li X, Yang K, Gao S, et al. Carnosine stimulates macrophage-mediated clearance of senescent skin cells through activation of the AKT2 signaling pathway by CD36 and RAGE[J]. Front Pharmacol, 2020,11:593832.
[44]Cheng A, Zhang H, Chen B, et al. Modulation of autophagy as a therapeutic strategy for Toxoplasma gondii infection[J]. Front Cell Infect Microbiol, 2022,12:902428.
[45]Liu W, Wang Z, Xia Y, et al. The balance of apoptosis and autophagy via regulation of the AMPK signal pathway in aging rat striatum during regular aerobic exercise[J]. Exp Gerontol, 2019,124:110647.
[46]任毅,盧金瑩,于露,等.肌肽對糖尿病腎病大鼠腎組織AKT/mTOR通路及自噬的影響[J].南方醫(yī)科大學(xué)學(xué)報,2023,43(11):1965-1970.
[47]Lee S H, Lee J H, Lee H Y, et al. Sirtuin signaling in cellular senescence and aging[J]. BMB Rep, 2019,52(1):24-34.
[48]Gilbert M M, Mathes S C, Mahajan A S, et al. The role of sirtuins in dermal fibroblast function[J]. Front Med (Lausanne), 2023,10:1021908.
[49]Negre-Salvayre A, Salvayre R. Post-translational modifications evoked by reactive carbonyl species in Ultraviolet-A-exposed skin: implication in fibroblast senescence and skin photoaging[J]. Antioxidants (Basel), 2022,11(11):2281.
[50]Radrezza S, Carini M, Baron G, et al. Study of Carnosine's effect on nude mice skin to prevent UV-A damage[J]. Free Radic Biol Med, 2021,173:97-103.
[51]Swiader A, Camaré C, Guerby P, et al. 4-hydroxynonenal contributes to fibroblast senescence in skin photoaging evoked by UV-A radiation[J]. Antioxidants (Basel), 2021,10(3):365.
[52]Wang J, Eming S A, Ding X. Role of mTOR signaling cascade in epidermal morphogenesis and skin barrier formation[J]. Biology (Basel), 2022,11(6):931.
[53]Tang Y, Yang S, Qiu Z, et al. Rapamycin attenuates H2O2-induced oxidative stress-related senescence in human skin fibroblasts[J]. Tissue Eng Regen Med, 2024,21(7):1049-1059.
[54]Zhang Z, Miao L, Wu X, et al. Carnosine inhibits the proliferation of human gastric carcinoma cells by retarding Akt/mTOR/p70S6K signaling[J]. J Cancer, 2014,5(5):382-389.
[55]Lerner C, Bitto A, Pulliam D, et al. Reduced mammalian target of rapamycin activity facilitates mitochondrial retrograde signaling and increases life span in normal human fibroblasts[J]. Aging Cell, 2013,12(6):966-977.
[56]Garre A, Martinez-Masana G, Piquero-Casals J, et al. Redefining face contour with a novel anti-aging cosmetic product: an open-label, prospective clinical study[J]. Clin Cosmet Investig Dermatol, 2017,10:473-482.
[57]Granger C, Brown A, Aladren S, et al. Night cream containing melatonin, carnosine and helichrysum italicum extract helps reduce skin reactivity and signs of photodamage: Ex vivo and clinical studies[J]. Dermatol Ther (Heidelb), 2020,10(6):1315-1329.
[58]唐巧.一項隨機、雙盲、安慰劑、平行對照復(fù)合肽面霜改善皮膚光老化的臨床實驗[D].昆明:昆明醫(yī)科大學(xué),2023.
[59]Wang S, Niu H, Liu Y, et al. Clinical efficacy and safety of non-cross-linked hyaluronic acid combined with l-carnosine for horizontal neck wrinkles treatment[J]. Aesthetic Plast Surg, 2021,45(6):2912-2917.
[收稿日期]2024-07-17
本文引用格式:梁純,赫童,劉曉雯,等.肌肽在皮膚抗衰老中的作用及其研究進展[J].中國美容醫(yī)學(xué),2025,34(8):174-179.