[摘要] 骨質(zhì)疏松癥是一個被低估的公共衛(wèi)生問題。目前,中國骨密度檢測率依然較低,醫(yī)護人員和患者對骨質(zhì)疏松癥的重視程度均不足。骨質(zhì)疏松癥和骨折給患者和社會均帶來極大負擔。隨著中國人口老齡化的日益嚴重,老年人群骨質(zhì)疏松癥問題愈發(fā)凸顯。本文綜述老年人群骨質(zhì)疏松癥的流行病學特征、發(fā)病機制、診斷方法、臨床表現(xiàn)、預防和治療方面的研究進展。
[關鍵詞] 老年人;骨質(zhì)疏松癥;骨質(zhì)疏松性骨折;脆性骨折
[中圖分類號] R592" """"[文獻標識碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.18.031
骨質(zhì)疏松癥(osteoporosis,OP)是一種以骨骼強度減弱為特征的常見疾病,多發(fā)于50歲以上人群,可增加骨折風險?,F(xiàn)階段,中國老年人口規(guī)模越來越大,人口占比越來越大,OP患病率持續(xù)升高,所致骨折患者人數(shù)增加,嚴重威脅老年人群身心健康,給醫(yī)療乃至全社會帶來巨大負擔。
1" 老年人群OP的流行病學特征
一項Meta分析研究顯示,中國60歲及以上老年人群OP患病率為37.70%,其中女性OP患病率約為男性的2倍[1]。老年人群OP最嚴重的并發(fā)癥是以髖部骨折和椎體骨折為主的脆性骨折。研究顯示中國髖部骨折發(fā)病率較穩(wěn)定,且有緩慢下降趨勢;而椎體骨折發(fā)病率卻快速上升,且女性椎體骨折發(fā)病率顯著高于男性[2]。中國男性70~79歲、女性60~69歲是椎體骨折的好發(fā)年齡,椎體骨折老年患者發(fā)生二次骨折的可能性更大[3]。髖部骨折是最嚴重的脆性骨折,致死率較高。研究顯示全球范圍內(nèi)髖部骨折后1年死亡率較高,其中位數(shù)為22.40%,且男性死亡率高于女性[4]。與普通人群相比,脆性髖部骨折患者的死亡率約高9倍[5]。老年人群椎體骨折的死亡率亦不低。研究顯示韓國50歲以上患者椎體骨折后1年死亡率為3.10%~10.04%[6];老年患者椎體骨折3年后死亡率為46.00%[7]。
2" 老年人群OP的發(fā)病機制
骨骼是一個不斷經(jīng)歷再生的極其專業(yè)和動態(tài)的器官系統(tǒng),其再生方式是在相同位置以新骨定期替換舊骨,此過程稱作骨重塑,包括骨吸收和骨形成。對維持骨量和全身礦物質(zhì)穩(wěn)態(tài)而言,二者之間的動態(tài)平衡發(fā)揮關鍵作用[8]。骨重塑過程由各種全身性和局部性因素控制,包括甲狀旁腺激素和性激素等全身性激素及轉(zhuǎn)化生長因子-β(transforming growth factor-β,TGF-β)、Wnt信號蛋白、骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)和胰島素樣生長因子(insulin-like growth factor,IGF)等局部性生長因子,這些因素在維持骨重塑動態(tài)平衡中起關鍵作用[9-12]。
年齡增長也是老年人群發(fā)生OP的重要原因之一。隨著年齡的增長,尤其是衰老,成骨細胞分化受損,細胞凋亡增加,細胞增殖減少,間充質(zhì)干細胞則更多地分化為脂肪細胞,骨形成減少,導致骨小梁數(shù)量減少、間距增加、皮質(zhì)骨變薄、骨髓腔擴張,進而增加骨折風險[13-15]。年齡增長帶來的影響還有氧化應激的增加及性激素的減少。氧化應激可促進成骨細胞凋亡,抑制成骨細胞分化,同時增加破骨細胞的生成和分化,使得骨吸收增加,進而導致OP[16]。性激素的減少使得成骨細胞的生長和增殖減少,凋亡增加,抑制破骨細胞發(fā)育的能力減弱,脂肪細胞分化增多,骨吸收增加,骨量下降,進而導致OP[17]。此外,隨著年齡的不斷增長,內(nèi)源性糖皮質(zhì)激素的產(chǎn)生過量,且敏感度增加,使骨骼液的流動減少,骨骼脈管系統(tǒng)體積縮小,骨骼水合作用降低,骨骼脆性增加,最終導致骨骼退化[18]。與年齡增長相關的因素還有腎單位流失、鈣吸收不良、維生素D缺乏、肌肉減少等,這些因素同樣可導致骨質(zhì)流失,加速OP的發(fā)生發(fā)展[19-22]。
老年人群常合并高血壓、糖尿病、腦梗死等多種疾病,相關藥物治療可加速OP的發(fā)生與進展。高血壓患者腎素–血管緊張素系統(tǒng)的過度活化可促進骨吸收,進而導致OP[23]。研究顯示高血壓患者的OP患病率是非高血壓患者的2.69倍[24]。糖尿病可影響骨髓微觀結構,導致骨穩(wěn)態(tài)受損,增加骨脆性和骨折風險,加速OP進展[25]。研究顯示腦梗死后3~4個月骨質(zhì)加速下降[26]。噻嗪類利尿劑和袢利尿劑均可增加椎體骨折的風險[27];盡管骨密度正?;蜉^高,胰島素的使用亦會增加嚴重骨質(zhì)疏松性骨折的風險[28];口服糖皮質(zhì)激素治療可造成骨質(zhì)快速流失,椎體骨折和非椎體骨折的發(fā)生率隨之提高[29]。
3" 老年人群OP的診斷
老年人群OP的診斷基于骨密度和脆性骨折。雙能X線吸收法(dual energy X-ray absorptiometry,DXA)被用于中軸骨或橈骨遠端1/3骨密度的測量,并將測定結果轉(zhuǎn)換為T-值,根據(jù)T-值大小判斷是否患有OP(T-值≤–2.5)。髖部骨折或椎體骨折可直接診斷為OP;X線和CT常用于檢查脆性骨折。骨盆、肱骨近端或前臂遠端脆性骨折,且骨量減少(–2.5lt;T-值lt;–1.0),亦可診斷為OP[30]。
4" 老年人群OP的臨床表現(xiàn)
大多數(shù)老年OP患者的早期臨床表現(xiàn)并不明顯。隨著病情的加重,可出現(xiàn)疼痛、脆性骨折、脊柱后凸、身高下降等臨床表現(xiàn)。其中,以疼痛癥狀最為常見,約占臨床癥狀的58%;大部分患者表現(xiàn)為腰背痛,這可能與年齡增長相關椎骨退行性改變、脊神經(jīng)壓迫、神經(jīng)根病、椎骨壓縮性骨折等有關[31-34]。
脆性骨折是導致老年人群生存質(zhì)量下降的重要原因之一,通常發(fā)生在髖部和椎體。髖部骨折通常與外力有關,尤其跌倒,表現(xiàn)為活動能力立即喪失,急需住院和手術治療。椎體骨折一般發(fā)生于日?;顒又校掖蠖鄶?shù)無明顯癥狀,可能無法被發(fā)現(xiàn)。研究顯示許多髖部骨折患者檢查過程中意外發(fā)現(xiàn)有陳舊性椎體骨折[35]。
脊柱后凸和身高下降也是老年人群常見OP臨床表現(xiàn)。外觀上,脊柱后凸患者有明顯的后凸駝背畸形,不能直立、抬頭和后仰,無法目視前方?;螄乐卣呖捎绊懞粑?,且更易發(fā)生跌倒,嚴重影響患者日常生活。身高下降主要由椎體骨折、脊柱后凸及年齡增長相關的姿勢變化和椎間盤退化引起。老年人群身高下降可視為OP的標志,還可預測脆性骨折的風險。一項前瞻性隊列研究顯示,老年男性身高減少≥3cm與髖部骨折后續(xù)風險較高相關;身高減少≥3cm男性的髖部骨折風險較身高減少lt;1cm的男性高出近2倍[36]。
5" 老年人群OP的預防重點
均衡營養(yǎng)、攝入足夠的鈣和維生素D、減少碳酸飲料的攝入、規(guī)律運動、戒煙、限酒等均可有預防OP的作用。老年人群避免脆性骨折或再次骨折是預防OP的重中之重。研究表明每年有近1/3的老年人跌倒[37];適當運動有助于防止老年人跌倒。研究表明運動可使老年人跌倒發(fā)生率降低23%,平衡和功能練習組老年人跌倒率相比對照組下降24%,平衡和功能練習加阻力練習組老年人跌倒率相比對照組下降28%,太極拳組老年人跌倒率相比對照組下降23%;平衡和功能鍛煉組老年人每周運動總時長超過3h,其跌倒率可減少42%[38]。老年人群運動側重點在于保持日常活動中的平衡,可根據(jù)個人生活方式、家庭環(huán)境、身體機能等制定個體化方案。
6" 老年人群OP的治療
老年人群OP的治療手段有非藥物治療、藥物治療和手術治療等多種方式。老年人群OP非藥物治療包括針灸療法、按摩療法、物理療法、電刺激療法、運動療法和認知療法等。尤其是長期臥床老年患者可選擇握力訓練和阻力訓練等運動療法緩解骨量丟失,降低骨折風險[39]。
常見的治療老年人群OP藥物有骨健康補充劑、鎮(zhèn)痛藥物、抗OP藥物等。骨健康補充劑在老年人群OP中的應用較多,鈣劑聯(lián)合維生素D制劑治療老年人群OP可明顯降低骨折風險[40]。常用鎮(zhèn)痛藥物包括非甾體抗炎藥物,但長期使用會出現(xiàn)胃腸道出血、肝腎功能損傷、白細胞減低等不良反應,OP老年患者慎用。抗OP藥物眾多,常見的有抑制骨吸收藥物、促進骨形成藥物及既可抑制骨吸收藥物又可促進骨形成的藥物,均可降低脆性骨折的風險。雙膦酸鹽類和雌激素等抑制骨吸收藥物可導致非典型股骨骨折、頜骨壞死、癌變風險等不良反應,且長期療效存疑,故臨床應用相對較少[41-44]。對存在多種慢性疾病的患者來說,不僅需慎重選擇OP治療藥物,還需盡量避免使用加快骨量流失和增加骨折風險的藥物。
外科手術和植入材料的發(fā)展和推廣使老年骨折患者手術治療治愈率明顯提高,接受手術治療的老年OP骨折患者越來越多。選擇手術治療,除要面臨術后并發(fā)癥問題,老年骨折患者還需要面臨合并疾病多、營養(yǎng)狀況差、長期臥床、愈合時間長、康復時間久等問題。因此老年骨折患者是否選擇手術治療,應視具體情況而定。
此外,一些新興的治療方法如基因治療、細胞治療等正在研發(fā)階段,尚未用于臨床。Jin等[45]發(fā)現(xiàn)長鏈非編碼RNA功能元件Nron可抑制骨吸收增加骨量。Lee等[46]研究發(fā)現(xiàn)脂肪組織來源的干細胞外囊泡可有效緩解小鼠的骨質(zhì)流失。Liang等[47]發(fā)現(xiàn)皮膚角質(zhì)形成細胞可分泌胱抑素-A促進骨形成,緩解OP。
7" 展望
老年人群OP發(fā)病率高,發(fā)病機制較復雜,對老年患者健康危害大,需重點預防骨折,謹慎選擇治療方法。目前,老年人群OP的療效評估和長期管理相關研究較少,脆性骨折風險預測工具不盡相同,其可行性和科學性還有待驗證。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1]"" 朱潔云, 高敏, 宋秋韻, 等. 中國老年人骨質(zhì)疏松癥患病率的Meta分析[J]. 中國全科醫(yī)學, 2022, 25(3): 346–353.
[2]"" 宋純理. 中國老年髖部及椎體骨折大數(shù)據(jù)分析報告[J]. 中華骨質(zhì)疏松和骨礦鹽疾病雜志, 2024, 17(4): 303–307.
[3]"" 姜效韋, 朱冬梅, 王明宇, 等. 2887例老年骨質(zhì)疏松性脊柱壓縮性骨折流行病學特點分析[J]. 醫(yī)藥前沿, 2024, 14(15): 8–11, 15.
[4]"" SING C W, LIN T C, BARTHOLOMEW S, et al. Global epidemiology of hip fractures: Secular trends in incidence rate, post-fracture treatment, and all-cause mortality[J]. J Bone Miner Res, 2023, 38(8): 1064–1075.
[5]"" HUA Y, LI Y, ZHOU J, et al. Mortality following fragility hip fracture in China: A record linkage study[J]. Arch Osteoporos, 2023, 18(1): 105.
[6]"" PARK S M, AHN S H, KIM H Y, et al. Incidence and mortality of subsequent vertebral fractures: Analysis of claims data of the Korea national health insurance service from 2007 to 2016[J]. Spine J, 2020, 20(2): 225–233.
[7]"" VAN DER JAGT-WILLEMS H C, VIS M, TULNER C R, et al. Mortality and incident vertebral fractures after 3 years of follow-up among geriatric patients[J]. Osteoporos Int, 2013, 24(5): 1713–1719.
[8]nbsp;" SIDDIQUI J A, PARTRIDGE N C. Physiological bone remodeling: Systemic regulation and growth factor involvement[J]. Physiology (Bethesda), 2016, 31(3): 233–245.
[9]"" WEIN M N, KRONENBERG H M. Regulation of bone remodeling by parathyroid hormone[J]. Cold Spring Harb Perspect Med, 2018, 8(8): a031237.
[10] FISCHER V, HAFFNER-LUNTZER M. Interaction between bone and immune cells: Implications for postmenopausal osteoporosis[J]. Semin Cell Dev Biol, 2022, 123: 14–21.
[11] KIM R, KIM S W, KIM H, et al. The impact of sex steroids on osteonecrosis of the jaw[J]. Osteoporos Sarcopenia, 2022, 8(2): 58–67.
[12] XIAO W, WANG Y, PACIOS S, et al. Cellular and molecular aspects of bone remodeling[J]. Front Oral Biol, 2016, 18: 9–16.
[13] CHANDRA A, RAJAWAT J. Skeletal aging and osteoporosis: Mechanisms and therapeutics[J]. Int J Mol Sci, 2021, 22(7): 3553.
[14] SINGH L, BRENNAN T A, RUSSELL E, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage[J]. Bone, 2016, 85: 29–36.
[15] MILOVANOVIC P, ZIMMERMANN E A, RIEDEL C, et al. Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone[J]. Biomaterials, 2015, 45: 46–55.
[16] ZHANG C, LI H, LI J, et al. Oxidative stress: A common pathological state in a high-risk population for osteoporosis[J]. Biomed Pharmacother, 2023, 163: 114834.
[17] KHOSLA S. Pathogenesis of age-related bone loss in humans[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(10): 1226–1235.
[18] WEINSTEIN R S, WAN C, LIU Q, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice[J]. Aging Cell, 2010, 9(2): 147–161.
[19] COHEN C, LE GOFF O, SOYSOUVANH F, et al. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1[J]. EMBO Mol Med, 2021, 13(11): e14146.
[20] BUFORD T W. (Dis)Trust your gut: The gut microbiome in age-related inflammation, health, and disease[J]. Microbiome, 2017, 5(1): 80.
[21] FLEET J C. The role of vitamin D in the endocrinology controlling calcium homeostasis[J]. Mol Cell Endocrinol, 2017, 453: 36–45.
[22] LIU C, LIU N, XIA Y, et al. Osteoporosis and sarcopenia-related traits: A bi-directional Mendelian randomization study[J]. Front Endocrinol (Lausanne), 2022, 13: 975647.
[23] ZHAO J, YANG H, CHEN B, et al. The skeletal renin-angiotensin system: A potential therapeutic target for the treatment of osteoarticular diseases[J]. Int Immunopharmacol, 2019, 72: 258–263.
[24] HUANG Y, YE J. Association between hypertension and osteoporosis: A population-based cross-sectional study[J]. BMC Musculoskelet Disord, 2024, 25(1): 434.
[25] ALI D, TENCEROVA M, FIGEAC F, et al. The pathophysiology of osteoporosis in obesity and type 2 diabetes in aging women and men: The mechanisms and roles of increased bone marrow adiposity[J]. Front Endocrinol (Lausanne), 2022, 13: 981487.
[26] KIM H D, KIM S H, KIM D K, et al. Change of bone mineral density and relationship to clinical parameters in male stroke patients[J]. Ann Rehabil Med, 2016, 40(6): 981–988.
[27] PAIK J M, ROSEN H N, GORDON C M, et al. Diuretic use and risk of vertebral fracture in women[J]. Am J Med, 2016, 129(12): 1299–1306.
[28] LOSADA-GRANDE E, HAWLEY S, SOLDEVILA B, et al. Insulin use and excess fracture risk in patients with type 2 diabetes: A propensity-matched cohort analysis[J]. Sci Rep, 2017, 7(1): 3781.
[29] COMPSTON J. Glucocorticoid-induced osteoporosis: An update[J]. Endocrine, 2018, 61(1): 7–16.
[30] 中華醫(yī)學會骨質(zhì)疏松和骨礦鹽疾病分會. 原發(fā)性骨質(zhì)疏松癥診療指南(2022)[J]. 中國全科醫(yī)學, 2023, 26(14): 1671–1691.
[31] HEUCHEMER L, EMMERT D, BENDER T, et al. Pain management in osteoporosis[J]. Schmerz, 2020, 34(1): 91–104.
[32] KUBASZEWSKI ?, NOWAKOWSKI A, GASIK R, et al. Intraobserver and interobserver reproducibility of the novel transcription method for selection of potential nerve root compression in MRI study in degenerative disease of the lumbar spine[J]. Med Sci Monit, 2013, 19: 216–221.
[33] BOTTAI V, GIANNOTTI S, RAFFAETà G, et al. Underdiagnosis of osteoporotic vertebral fractures in patients with fragility fractures: Retrospective analysis of over 300 patients[J]. Clin Cases Miner Bone Metab, 2016, 13(2): 119–122.
[34] SAWICKI P, TA?A?AJ M, ?YCI?SKA K, et al. Comparison of the characteristics of back pain in women with postmenopausal osteoporosis with and without vertebral compression fracture: A retrospective study at a single osteoporosis center in Poland[J]. Med Sci Monit, 2021, 27: e929853.
[35] KELLY M A, MCCABE E, BERGIN D, et al. Osteoporotic vertebral fractures are common in hip fracture patients and are under-recognized[J]. J Clin Densitom, 2021, 24(2): 183–189.
[36] ENSRUD K E, SCHOUSBOE J T, KATS A M, et al. Height loss in old age and fracture risk among men in late life: A prospective cohort study[J]. J Bone Miner Res, 2021, 36(6): 1069–1076.
[37] GANZ D A, LATHAM N K. Prevention of falls in community-dwelling older adults[J]. N Engl J Med, 2020, 382(8): 734–743.
[38] SHERRINGTON C, FAIRHALL N, KWOK W, et al. Evidence on physical activity and falls prevention for people aged 65+ years: Systematic review to inform the WHO guidelines on physical activity and sedentary behaviour[J]. Int J Behav Nutr Phys Act, 2020, 17(1): 144.
[39] YAN Y, TAN B, FU F, et al. Exercise vs conventional treatment for treatment of primary osteoporosis: A systematic review and Meta-analysis of randomized controlled trials[J]. Orthop Surg, 2021, 13(5): 1474–1487.
[40] WEAVER C M, ALEXANDER D D, BOUSHEY C J, et al. Calcium plus vitamin D supplementation and risk of fractures: An updated Meta-analysis from the National Osteoporosis Foundation[J]. Osteoporos Int, 2016, 27(1): 367–376.
[41] OTTO S, MARX R E, TR?LTZSCH M, et al. Comments on “diagnosis and management of osteonecrosis of the jaw: A systematic review and international consensus”[J]. J Bone Miner Res, 2015, 30(6): 1113–1115.
[42] KEY T J. Endogenous oestrogens and breast cancer risk in premenopausal and postmenopausal women[J]. Steroids, 2011, 76(8): 812–815.
[43] KLOP C, WELSING P M, ELDERS P J, et al. Long-term persistence with anti-osteoporosis drugs after fracture[J]. Osteoporos Int, 2015, 26(6): 1831–1840.
[44] 唐鵬, 孟國林, 王軍, 等. 長期應用雙膦酸鹽類藥物對老年性骨質(zhì)疏松骨折愈合過程的影響[J]. 中國骨質(zhì)疏松雜志, 2012, 18(4): 317–322.
[45] JIN F, LI J, ZHANG Y B, et al. A functional motif of long noncoding RNA Nron against osteoporosis[J]. Nat Commun, 2021, 12(1): 3319.
[46] LEE K S, LEE J, KIM H K, et al. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p[J]. J Extracell Vesicles, 2021, 10(12): e12152.
[47] LIANG W, CHEN Q, CHENG S, et al. Skin chronological aging drives age-related bone loss via secretion of cystatin-A[J]. Nat Aging, 2022, 2(10): 906–922.
(修回日期:2025–06–05)
通信作者:高靜媛,電子信箱:gaojingyuan2009@126.com