[摘要] 骨質(zhì)疏松癥(osteoporosis,OP)是一種以骨形成–吸收失衡為特征的代謝性骨病,其核心病理機(jī)制是骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell,BMMSC)成骨分化受阻及破骨細(xì)胞活性異常。研究表明微RNA(microRNA,miRNA)通過(guò)表觀遺傳調(diào)控、細(xì)胞間通信及多信號(hào)通路交互網(wǎng)絡(luò),在OP發(fā)生發(fā)展中發(fā)揮關(guān)鍵作用。根據(jù)現(xiàn)有的研究進(jìn)展綜合分析miRNA在OP中的雙向調(diào)控機(jī)制:①促進(jìn)成骨分化的miRNA(如miR-27a-3p);②抑制成骨分化的miRNA(如miR-100-5p);③雙向調(diào)控的miRNA(如miR-19家族)。進(jìn)一步揭示miRNA通過(guò)Wnt/β-連環(huán)蛋白信號(hào)通路、骨形態(tài)發(fā)生蛋白/Smad信號(hào)通路及表觀遺傳修飾調(diào)控成骨分化的分子網(wǎng)絡(luò),并探討其作為診斷標(biāo)志物及治療靶點(diǎn)的潛力,為基于miRNA的OP精準(zhǔn)診療策略提供理論依據(jù),但需進(jìn)一步推動(dòng)從基礎(chǔ)研究向臨床應(yīng)用的轉(zhuǎn)化。
[關(guān)鍵詞] 骨質(zhì)疏松癥;microRNA;成骨分化;信號(hào)通路
[中圖分類號(hào)] R681" """"[文獻(xiàn)標(biāo)識(shí)碼] A """""[DOI] 10.3969/j.issn.1673-9701.2025.21.026
骨質(zhì)疏松癥(osteoporosis,OP)是一種由骨形成減少和骨吸收增加引起的代謝性骨骼疾病。根據(jù)世界衛(wèi)生組織定義,OP指在使用來(lái)自美國(guó)國(guó)家健康和營(yíng)養(yǎng)檢查調(diào)查參考數(shù)據(jù)庫(kù)的規(guī)范數(shù)據(jù)時(shí),骨質(zhì)疏松癥在脊柱、髖部或腕部的骨密度低于年輕女性成人平均值2.5個(gè)標(biāo)準(zhǔn)差或以上[1]。據(jù)報(bào)道,全球約18.3%的成年人罹患OP,其中女性患病率(23.1%)顯著高于男性(11.7%),且存在顯著地域差異(非洲39.5%,澳大利亞13.5%)[2]。中國(guó)OP流行病學(xué)調(diào)查結(jié)果顯示50歲以上人群患病率為19.2%,女性達(dá)32.1%,男性6.0%;65歲以上人群患病率達(dá)32.0%,女性51.6%,男性10.7%;從以上數(shù)據(jù)可看出OP的發(fā)病率正隨著人口老齡化而顯著增加[3]。
OP的核心病理機(jī)制是成骨–破骨偶聯(lián)失衡:骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell,BMMSC)向成骨分化受阻,同時(shí)破骨細(xì)胞活性增強(qiáng),最終導(dǎo)致骨吸收超過(guò)骨形成[4]。研究表明微RNA(microRNA,miRNA)通過(guò)表觀遺傳調(diào)控機(jī)制深度參與骨代謝穩(wěn)態(tài)的維持,其失調(diào)與代謝疾病有關(guān)[5]。miRNA與靶信使RNA(messenger RNA,mRNA)中的3’端或5’端非翻譯區(qū)進(jìn)行堿基配對(duì),通過(guò)轉(zhuǎn)錄后調(diào)控抑制靶基因的表達(dá),形成復(fù)雜的調(diào)控網(wǎng)絡(luò)[6-7]。研究顯示miRNA可調(diào)控1/3的人類基因[8-9]。一個(gè)miRNA可調(diào)節(jié)一個(gè)或多個(gè)基因,并參與許多重要的生命過(guò)程[10]。同時(shí)miRNA可調(diào)節(jié)超過(guò)50%的編碼基因[11-12]。因此基于miRNA的基因療法對(duì)治療OP具有巨大潛力。在骨組織中miRNA不僅通過(guò)Wnt/β-catenin信號(hào)通路、骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)/Smad信號(hào)通路等經(jīng)典信號(hào)通路調(diào)控成骨分化標(biāo)志物,還可通過(guò)外泌體介導(dǎo)細(xì)胞間通信,如破骨細(xì)胞分泌的miR-214-3p可抑制成骨細(xì)胞活性,形成“骨細(xì)胞對(duì)話”網(wǎng)絡(luò)[13]。然而,目前針對(duì)OP中miRNA功能的研究仍存在以下局限:①多數(shù)研究聚焦單一miRNA的促/抑成骨作用,缺乏對(duì)雙向調(diào)控機(jī)制的系統(tǒng)解析;②miRNA的時(shí)空表達(dá)特異性及其與微環(huán)境互作的分子機(jī)制尚未明晰;③臨床轉(zhuǎn)化面臨遞送效率低、脫靶效應(yīng)顯著等技術(shù)瓶頸[14]。基于此,本文系統(tǒng)綜述miRNA在OP成骨分化中的調(diào)控網(wǎng)絡(luò),重點(diǎn)解析其多靶點(diǎn)、多通路交互作用,并探討基于miRNA的早期診斷與靶向治療策略,以期為推動(dòng)OP精準(zhǔn)醫(yī)學(xué)發(fā)展提供理論依據(jù)。
1" miRNA的生物學(xué)特性與調(diào)控機(jī)制
1.1" miRNA的生物合成與調(diào)控模式
miRNA是一長(zhǎng)度約18~25種核苷酸(nucleotide,NT)的內(nèi)源性非編碼RNA,其生成經(jīng)歷經(jīng)典的雙階段加工。核內(nèi)加工:RNA聚合酶Ⅱ轉(zhuǎn)錄生成初級(jí)miRNA,經(jīng)Drosha-DGCR8復(fù)合體剪切為前體miRNA(pre-miRNA);胞質(zhì)成熟:輸出蛋白5將pre-miRNA轉(zhuǎn)運(yùn)至胞質(zhì),Dicer核糖核酸酶切割形成miRNA雙鏈,最終由阿戈納蛋白加載形成RNA誘導(dǎo)沉默復(fù)合體,通過(guò)種子序列(2~8NT)與靶mRNA的3’-非翻譯區(qū)[3’-非翻譯區(qū)(untranslated region,UTR)]互補(bǔ)結(jié)合[6-8, 15-16]。miRNA通過(guò)轉(zhuǎn)錄后沉默調(diào)控基因表達(dá):完全互補(bǔ)導(dǎo)致mRNA降解,部分互補(bǔ)則抑制翻譯[17-18]。研究顯示單個(gè)miRNA可調(diào)控?cái)?shù)百個(gè)靶基因,而同一基因可能受多個(gè)miRNA調(diào)控,形成復(fù)雜的調(diào)控網(wǎng)絡(luò)[12-13]。
1.2 "miRNA在骨代謝中的核心作用
miRNA在骨骼形成過(guò)程中扮演重要角色,并通過(guò)調(diào)節(jié)成骨細(xì)胞與破骨細(xì)胞之間的平衡維持骨穩(wěn)態(tài);即miRNA通過(guò)調(diào)節(jié)成骨細(xì)胞、破骨細(xì)胞和骨細(xì)胞的分化、增殖、凋亡和自噬影響骨代謝[19-20]。miRNA通過(guò)以下機(jī)制參與骨穩(wěn)態(tài)調(diào)控:①?zèng)Q定細(xì)胞命運(yùn)。調(diào)控BMMSC向成骨細(xì)胞或脂肪細(xì)胞分化的平衡[如miR-27a抑制過(guò)氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor gamma,PPARγ)促脂肪生成][21];②介導(dǎo)細(xì)胞間通信。通過(guò)外泌體傳遞miRNA(如破骨細(xì)胞分泌miR-214抑制成骨活性)[13];③表觀遺傳修飾。靶向組蛋白去乙?;福╤istone deacetylases,HDACs)或DNA甲基轉(zhuǎn)移酶,改變?nèi)旧|(zhì)可及性[7]。部分miRNA調(diào)控骨代謝的不同作用見表1。
2" miRNA與OP的分子關(guān)聯(lián)
2.1 "miRNA表達(dá)譜的疾病特異性改變
OP患者中miRNA表達(dá)異常與骨代謝失衡密切相關(guān):OP患者血清miR-21、miR-100顯著上調(diào),與腰椎骨密度(bone mineral density,BMD)呈負(fù)相關(guān),而miR-29a、miR-133a下調(diào)[28-29]。骨組織中miR-100- 5p水平較血清高4.2倍,直接抑制局部TMEM135表達(dá)[24]。以上數(shù)據(jù)表明miRNA表達(dá)水平可能揭示疾病發(fā)生發(fā)展。
2.2" miRNA調(diào)控OP的核心信號(hào)通路
miRNA調(diào)控OP的核心信號(hào)通路:①Wnt/β- catenin通路。miR-34a通過(guò)抑制DKK1解除對(duì)低密度脂蛋白受體相關(guān)蛋白5/6(low-density lipoprotein receptor-related protein 5/6,LRP5/6)的阻斷,促進(jìn)β-catenin核轉(zhuǎn)位,激活成骨基因轉(zhuǎn)錄[30];miR-140-3p靶向磷酸酶和張力蛋白同源物,增強(qiáng)AKT磷酸化,間接激活Wnt信號(hào)[31]。②BMP/Smad通路。miR-497通過(guò)抑制Smad 泛素化調(diào)節(jié)因子2,減少Smad1泛素化降解,促進(jìn)成骨分化[32];miR-100-5p直接結(jié)合Smad1 mRNA,抑制其翻譯,阻斷BMP2誘導(dǎo)的骨形成[25]。③PPARγ通路:miR-27a通過(guò)靶向PPARγ mRNA,抑制脂肪分化,維持BMMSC向成骨譜系分化[24]。
3" 成骨分化與miRNA調(diào)控
3.1 "成骨細(xì)胞的分化階段與標(biāo)志物
成骨細(xì)胞分化經(jīng)歷多階段演化:BMMSC在增殖期可表達(dá)早期標(biāo)志物堿性磷酸酶(alkaline phosphatase,ALP);在基質(zhì)成熟期分泌Ⅰ型膠原(type Ⅰ collagen,COL1A1)、骨橋蛋白;在礦化期表達(dá)晚期標(biāo)志物骨鈣素(osteocalcin,OCN)、骨唾液酸蛋白[33]。涉及的關(guān)鍵轉(zhuǎn)錄因子有RUNX2是成骨分化的“主開關(guān)”,可受miR-221(促進(jìn))和miR-133a(抑制)雙向調(diào)控;成骨細(xì)胞特異性轉(zhuǎn)錄因子(Osterix,Osx)是RUNX2下游效應(yīng)因子,miRNA通過(guò)靶向Osx mRNA抑制或促進(jìn)礦化[34]。
3.2" miRNA調(diào)控成骨分化的時(shí)空網(wǎng)絡(luò)
miR-27a-3p在早期階段通過(guò)抑制ATF3,激活A(yù)LP表達(dá)[22];miR-433-3p在成熟階段靶向狄氏因子相關(guān)蛋白1(dickkopf-related protein 1,DKK1),增強(qiáng)Wnt信號(hào),促進(jìn)COL1A1合成[26];miR-34a在礦化階段通過(guò)抑制沉默調(diào)節(jié)蛋白1(sirtuin 1, SIRT1),提高OCN啟動(dòng)子區(qū)組蛋白H3第9位賴氨酸乙?;揎?,加速基質(zhì)鈣化[30]。在雌激素缺乏的卵巢切除術(shù)(ovariectomy,OVX)小鼠模型中,miR-29b-3p通過(guò)抑制SIRT1激活PPARγ,導(dǎo)致BMMSC成脂分化增強(qiáng),骨形成減少[26]。在炎癥微環(huán)境中腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)誘導(dǎo)miR-542-3p表達(dá)上調(diào)3.5倍,轉(zhuǎn)而靶向BMP-7,阻斷成骨分化并誘導(dǎo)凋亡[35]。
4" OP中miRNA對(duì)成骨細(xì)胞的作用機(jī)制
4.1 "miRNA調(diào)控成骨分化的核心模式
4.1.1 "促分化型miRNA:多靶點(diǎn)協(xié)同 "miR-27a-3p通過(guò)靶向抑制ATF3、肌細(xì)胞增強(qiáng)因子2C及PPARγ,協(xié)同激活RUNX2/Osx信號(hào);Fu等[22]通過(guò)雙螢光素酶報(bào)告實(shí)驗(yàn)證實(shí),miR-27a-3p直接結(jié)合ATF3 mRNA的3'-UTR,過(guò)表達(dá)miR-27a-3p可使人BMMSC的ALP活性提升2.1倍,鈣結(jié)節(jié)面積增加45%;You等[23]發(fā)現(xiàn)miR-27a-3p通過(guò)抑制PPARγ阻斷BMMSC向脂肪細(xì)胞分化,成脂標(biāo)志物表達(dá)降低65%;Xiao等[21]通過(guò)OVX小鼠局部注射miR-27a-3p模擬物后,骨小梁體積分?jǐn)?shù)提升35%,最大載荷增加28%。說(shuō)明miRNA存在多靶點(diǎn)協(xié)同機(jī)制。
4.1.2 "抑分化型miRNA:阻斷成骨關(guān)鍵通路 "miR- 100-5p通過(guò)雙重靶點(diǎn)抑制BMP/Smad信號(hào)傳導(dǎo);Wang等[24]對(duì)比分析發(fā)現(xiàn)OP患者BMMSC中miR-100-5p表達(dá)上調(diào)2.3倍,TMEM135蛋白水平下降60%。TMEM135過(guò)表達(dá)可逆轉(zhuǎn)miR-100-5p的成骨抑制效應(yīng);Fu等[25]發(fā)現(xiàn)miR-100-5p結(jié)合Smad1 mRNA的3'-UTR,導(dǎo)致Smad1蛋白表達(dá)下降70%,阻斷BMP2誘導(dǎo)的成骨分化;Al-Rawaf等[29]發(fā)現(xiàn)血清miR-100-5p水平與腰椎BMD呈顯著負(fù)相關(guān),受試者操作特征曲線下面積達(dá)0.79。miR-133a-5p通過(guò)靶向RUNX2抑制成骨分化晚期階段;Zhang等[36]通過(guò)雙螢光素酶報(bào)告基因?qū)嶒?yàn)顯示miR-133a-5p使RUNX2 3'-UTR螢光素酶活性下降70%;過(guò)表達(dá)miR- 133a-5p導(dǎo)致礦化結(jié)節(jié)面積減少55%,OCN mRNA表達(dá)下降60%;OP患者骨組織中miR-133a-5p水平較血清高3.2倍,提示局部調(diào)控優(yōu)勢(shì)。
4.1.3 "雙向調(diào)控型miRNA:微環(huán)境依賴的功能可塑性" miR-19家族成員(miR-19a-3p、miR-19b-3p)通過(guò)不同靶點(diǎn)實(shí)現(xiàn)功能極化;Chen等[37]發(fā)現(xiàn)miR- 19a-3p通過(guò)抑制組蛋白去乙酰化酶,增強(qiáng)RUNX2啟動(dòng)子區(qū)修飾,促進(jìn)ALP表達(dá);Liu等[38]發(fā)現(xiàn)miR-19b-3p靶向成骨正向調(diào)控因子,加劇骨吸收;Taipaleenm?ki等[39]研究發(fā)現(xiàn)機(jī)械應(yīng)力刺激可下調(diào)miR-19a/b表達(dá),通過(guò)轉(zhuǎn)化生長(zhǎng)因子β誘導(dǎo)因子同源盒蛋白1/RANKL軸恢復(fù)骨形成–吸收平衡。miR-542- 3p功能隨微環(huán)境變化動(dòng)態(tài)變換:Zhang等[40]發(fā)現(xiàn)在骨形成活躍期,miR-542-3p靶向SFRP1激活Wnt通路,促進(jìn)COL1A1合成;Kureel等[35]研究表明在炎癥因子刺激下,miR-542-3p轉(zhuǎn)為靶向BMP-7,誘導(dǎo)成骨細(xì)胞凋亡。
4.2 "miRNA調(diào)控網(wǎng)絡(luò)的臨床轉(zhuǎn)化潛力
Al-Rawaf等[29]聯(lián)合研究表明檢測(cè)miR-21、miR-100-5p及骨鈣素可將OP早期診斷敏感度提升至94%;Li等[13]發(fā)現(xiàn)破骨細(xì)胞來(lái)源外泌體miR-214- 3p水平較成骨細(xì)胞高4.5倍,可作為骨吸收動(dòng)態(tài)監(jiān)測(cè)指標(biāo),表明miRNA具有診斷標(biāo)志物潛力。
5 "miRNA在OP中的臨床轉(zhuǎn)化價(jià)值
5.1 "miRNA作為診斷標(biāo)志物的臨床應(yīng)用
OP患者血清中特定miRNA表達(dá)譜發(fā)生改變將引起骨代謝相關(guān)指標(biāo)變化;單一標(biāo)志物(如miR-21)與腰椎骨密度呈負(fù)相關(guān)[29];還有miR-29a的表達(dá)水平較健康對(duì)照下降60%,與骨形成標(biāo)志物骨鈣素呈正相關(guān)[27];而聯(lián)合miR-21、miR-100,骨鈣素診斷敏感度可提升至94%,優(yōu)于傳統(tǒng)標(biāo)志物[29]。骨細(xì)胞來(lái)源的外泌體攜帶的miRNA具有微環(huán)境特異性;如破骨細(xì)胞外泌體miR-214-3p水平升高3.5倍,與骨吸收標(biāo)志物呈正相關(guān)[7];Zhang等[36]通過(guò)骨組織活檢發(fā)現(xiàn)miR-133a-5p在OP患者骨組織中高表達(dá),直接抑制RUNX2翻譯;Wang等[24]通過(guò)骨組織活檢發(fā)現(xiàn)miR-100-5p水平與OP患者骨組織表達(dá)高度一致,可作為無(wú)創(chuàng)替代指標(biāo)。
5.2 "miRNA靶向治療的轉(zhuǎn)化進(jìn)展
由脂質(zhì)體包裹的miR-29a模擬物行局部注射,使OVX小鼠股骨BMD提升18%,骨小梁厚度增加25%[27];而鎖核酸修飾的anti-miR-100-5p通過(guò)靶向TMEM135,恢復(fù)BMMSC成骨分化能力[24];在基因編輯技術(shù)方面,成簇的規(guī)律間隔的短回文重復(fù)序列(clustered regularly interspaced short palindromic repeats,CRISPR)/失活的CRISPR相關(guān)蛋白9(deactivated CRISPR-associated protein 9,dCas9)系統(tǒng)調(diào)控內(nèi)源性miR-19a簇表達(dá),可雙向調(diào)節(jié)骨形成與吸收[39]。羥基磷灰石包被的脂質(zhì)體可選擇性富集于骨組織,遞送效率較普通脂質(zhì)體提升3倍[14];這種新的骨靶向納米載體有利于miRNA靶向治療。
5.3 "中成藥淫羊藿苷通過(guò)調(diào)控miRNA的潛在治療作用
近年來(lái),中成藥及其活性成分通過(guò)調(diào)控miRNA表達(dá)干預(yù)OP的機(jī)制研究取得顯著進(jìn)展,為中西醫(yī)結(jié)合治療提供新思路。研究表明中藥提取物可通過(guò)靶向特定miRNA,調(diào)控成骨分化相關(guān)信號(hào)通路,改善骨代謝失衡。淫羊藿作為傳統(tǒng)補(bǔ)腎壯骨中藥,其活性成分淫羊藿苷具有促進(jìn)骨形成和抑制骨吸收的雙重活性[41]。Xu等[42]研究發(fā)現(xiàn)其通過(guò)調(diào)控miRNA網(wǎng)絡(luò)與信號(hào)通路,調(diào)控BMMSC成骨–脂肪生成平衡。淫羊藿苷通過(guò)抑制miR-23a表達(dá),激活Wnt/β-catenin通路,解除其對(duì)LRP5的抑制作用,促進(jìn)BMMSC成骨分化并抑制脂肪生成。Teng等[43]通過(guò)體內(nèi)實(shí)驗(yàn)證實(shí)淫羊藿苷干預(yù)可上調(diào)卵巢切除大鼠骨組織中miR-335-5p水平,顯著改善骨密度及骨微結(jié)構(gòu)。
6" 小結(jié)與展望
miRNA作為OP的關(guān)鍵調(diào)控分子,通過(guò)多靶點(diǎn)、多通路動(dòng)態(tài)調(diào)節(jié)骨代謝平衡,研究成果正逐步從基礎(chǔ)機(jī)制解析向臨床轉(zhuǎn)化邁進(jìn)。本文系統(tǒng)整合現(xiàn)有證據(jù),總結(jié)核心發(fā)現(xiàn)并提出未來(lái)研究方向。
miRNA對(duì)成骨分化的作用存在雙向調(diào)控網(wǎng)絡(luò):miRNA通過(guò)促分化(如miR-27a-3p靶向ATF3/ PPARγ)、抑分化(如miR-100-5p抑制TMEM135/ Smad1)及雙向調(diào)節(jié)(如miR-19家族靶向HDAC4/ EBF2)三類模式,動(dòng)態(tài)調(diào)控成骨分化進(jìn)程。同一miRNA可能因微環(huán)境差異呈現(xiàn)功能可塑性(如miR-542-3p靶向SFRP1或BMP-7),凸顯調(diào)控網(wǎng)絡(luò)的時(shí)空依賴性。存在信號(hào)通路交互網(wǎng)絡(luò):miRNA通過(guò)干預(yù)Wnt/β-catenin(miR-34a-DKK1軸)、BMP/ Smad(miR-100-5p-Smad1軸)及PPARγ(miR-27a- PPARγ軸)等經(jīng)典通路,形成協(xié)同或拮抗調(diào)控網(wǎng)絡(luò)。表觀遺傳修飾(如miR-206-HDAC4介導(dǎo)的組蛋白乙酰化)進(jìn)一步放大信號(hào)傳導(dǎo)效應(yīng)。具有一定的臨床轉(zhuǎn)化潛力:血清miR-21、miR-100聯(lián)合檢測(cè)診斷曲線下面積達(dá)0.91,優(yōu)于傳統(tǒng)標(biāo)志物,可作為輔助臨床診斷;納米載體遞送miR-29a模擬物可使OVX小鼠骨密度提升18%,可輔助臨床治療;而脫靶效應(yīng)與遞送效率低仍是主要障礙。
雖然目前大多數(shù)研究表明部分miRNA對(duì)成骨分化的作用是抑制,部分是促進(jìn),但同時(shí)對(duì)其作用機(jī)制研究有待進(jìn)一步深化,如結(jié)合單細(xì)胞測(cè)序與空間轉(zhuǎn)錄組技術(shù),繪制miRNA在BMMSC不同分化階段的動(dòng)態(tài)表達(dá)譜,識(shí)別微環(huán)境特異性調(diào)控節(jié)點(diǎn)(如機(jī)械應(yīng)力響應(yīng)miRNA)。開發(fā)pH/酶響應(yīng)型納米顆粒(如羥基磷灰石–脂質(zhì)體復(fù)合載體),實(shí)現(xiàn)骨吸收活躍區(qū)的靶向釋放;利用CRISPR/dCas9系統(tǒng)精準(zhǔn)調(diào)控內(nèi)源性miRNA簇(如miR-17-92簇),實(shí)現(xiàn)骨形成–吸收的動(dòng)態(tài)平衡;基于堿基編輯技術(shù)修復(fù)致病性miRNA突變。建立OP患者miRNA分子分型(如miR-100高表達(dá)型、miR-29a低表達(dá)型),制定分層治療方案;結(jié)合人工智能預(yù)測(cè)患者對(duì)miRNA療法的響應(yīng)率,優(yōu)化給藥劑量與療程。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]"" XIAO P L, CUI A Y, HSU C J, et al. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: A systematic review and Meta-analysis[J]. Osteoporos Int, 2022, 33(10): 2137–2153.
[2]"" SALARI N, GHASEMI H, MOHAMMADI L, et al. The global prevalence of osteoporosis in the world: A comprehensive systematic review and Meta-analysis[J]. J Orthop Surg Res, 2021, 16(1): 609.
[3]"" 中華醫(yī)學(xué)會(huì)骨質(zhì)疏松和骨礦鹽疾病分會(huì). 中國(guó)骨質(zhì)疏松癥流行病學(xué)調(diào)查及“健康骨骼”專項(xiàng)行動(dòng)結(jié)果發(fā)布[J]. 中華骨質(zhì)疏松和骨礦鹽疾病雜志, 2019, 12(4): 317–318.
[4]"" PETERSEN T G, ABRAHAMSEN B, H?IBERG M, "et al. Ten-year follow-up of fracture risk in a systematic population-based screening program: The risk-stratified osteoporosis strategy evaluation (ROSE) randomised trial[J]. EClinicalMedicine, 2024, 71: 102584.
[5]"" DOGHISH A S, ELBALLAL M S, ELAZAZY O, et al. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses[J]. Pathol Res Pract, 2023, 245: 154440.
[6]"" CIHAN M, ANDRADE-NAVARRO M A. Detection of features predictive of microRNA targets by integration of network data[J]. PLoS One, 2022, 17(6): e0269731.
[7]"" CUI Y, QI Y, DING L, et al. miRNA dosage control in development and human disease[J]. Trends Cell Biol, 2024, 34(1): 31–47.
[8]"" HILL M, TRAN N. miRNA interplay: Mechanisms and consequences in cancer[J]. Dis Model Mech, 2021, 14(4): dmm047662.
[9]"" GAO F, WANG F, CHEN Y, et al. The human genome encodes a multitude of novel miRNAs[J]. Nucleic Acids Res, 2025, 53(4): gkaf070.
[10] PRAJAPAT M K, MARIA A G, VIDIGAL J A. CRISPR-based dissection of miRNA binding sites using isogenic cell lines is hampered by pervasive noise[J]. Nucleic Acids Res, 2025, 53(1): gkae1138.
[11] CAO W, HE J, FENG J, et al. miRNASNP-v4: A comprehensive database for miRNA-related SNPs across 17 species[J]. Nucleic Acids Res, 2025, 53(D1): D1066–D1074.
[12] BI Y, LI F, WANG C, et al. Advancing microRNA target site prediction with transformer and base-pairing patterns[J]. Nucleic Acids Res, 2024, 52(19): 11455–11465.
[13] LI D, LIU J, GUO B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation[J]. Nat Commun, 2016, 7: 10872.
[14] LI S, LIU Y, ZHANG T, et al. A Tetrahedral framework DNA-based bioswitchable miRNA inhibitor delivery system: Application to skin anti-aging[J]. Adv Mater, 2022, 34(46): e2204287.
[15] BOFILL-DE ROS X, VANG ?ROM U A. Recent progress in miRNA biogenesis and decay[J]. RNA Biol, 2024, 21(1): 1–8.
[16] HUSSAIN M S, SHAIKH N K, AGRAWAL M, et al. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding[J]. Pathol Res Pract, 2024, 255: 155186.
[17] KIM T, CROCE C M. microRNA: Trends in clinical trials of cancer diagnosis and therapy strategies[J]. Exp Mol Med, 2023, 55(7): 1314–1321.
[18] CHAKRABORTTY A, PATTON D J, SMITH B F, et al. miRNAs: Potential as biomarkers and therapeutic targets for cancer[J]. Genes (Basel), 2023, 14(7): 1375.
[19] HAYMAN D J, JOHNSON DE SOUSA BRITO F M, LIN H, et al. microRNA-324 mediates bone homeostasis and the regulation of osteoblast and osteoclast differentiation and activity[J]. Bone, 2025, 190: 117273.
[20] PIGNOLO R J, LAW S F, CHANDRA A. Bone aging, cellular senescence, and osteoporosis[J]. JBMR Plus, 2021, 5(4): e10488.
[21] XIAO Y, LI B, LIU J. miRNA?27a regulates arthritis via PPARγ in"vivo and in"vitro[J]. Mol Med Rep, 2018, 17(4): 5454–5462.
[22] FU Y C, ZHAO S R, ZHU B H, et al. MiRNA-27a-3p promotes osteogenic differentiation of human mesenchymal stem cells through targeting ATF3[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3 Suppl): 73–80.
[23] YOU L, PAN L, CHEN L, et al. miRNA-27a is essential for the shift from osteogenic differentiation to adipogenic differentiation of mesenchymal stem cells in postmenopausal osteoporosis[J]. Cell Physiol Biochem, 2016, 39(1): 253–265.
[24] WANG R, ZHANG M, HU Y, et al. miRNA-100-5p inhibits osteogenic differentiation of human bone mesenchymal stromal cells by targeting TMEM135[J]. Hum Cell, 2022, 35(6): 1671–1683.
[25] FU H L, PAN H X, ZHAO B, et al. microRNA-100 inhibits bone morphogenetic protein-induced osteoblast differentiation by targeting Smad1[J]. Eur Rev Med Pharmacol Sci, 2016, 20(18): 3911–3919.
[26] XIE H, CAO L, YE L, et al. microRNA-29b-3p/ sirtuin-1/peroxisome proliferator-activated receptor γ suppress osteogenic differentiation[J]. In Vitro Cell Dev Biol Anim, 2023, 59(2): 109–120.
[27] LIAN W S, KO J Y, CHEN Y S, et al. microRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12[J]. Cell Death Dis, 2019, 10(10): 705.
[28] GAO J, ZHANG X, DING J, et al. The characteristic expression of circulating"microRNAs"in osteoporosis: A systematic review and Meta-analysis[J]. Front Endocrinol (Lausanne), 2024, 15: 1481649.
[29] AL-RAWAF H A, GABR S A, IQBAL A, et al. microRNAs as potential biopredictors for premenopausal osteoporosis: A biochemical and molecular study[J]. BMC Womens Health, 2023, 23(1): 481.
[30] ZENG H B, DONG L Q, XU C, et al. Artesunate promotes osteoblast differentiation through miRNA-34a/ DKK1 axis[J]. Acta Histochem, 2020, 122(7): 151601.
[31] YIN R, JIANG J, DENG H, et al. miRNA-140-3p aggregates osteoporosis by targeting PTEN and activating PTEN/PI3K/AKT signaling pathway[J]. Hum Cell, 2020, 33(3): 569–581.
[32] GU Z, XIE D, HUANG C, et al. MicroRNA-497 elevation or LRG1 knockdown promotes osteoblast proliferation and collagen synthesis in osteoporosis via TGF-β1/Smads signalling pathway[J]. J Cell Mol Med, 2020, 24(21): 12619–12632.
[33] YANG Y, YUJIAO W, FANG W, et al. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis[J]. Biol Res, 2020, 53(1): 40.
[34] ARYA P N, SARANYA I, SELVAMURUGAN N. RUNX2 regulation in osteoblast differentiation: A possible therapeutic function of the lncRNA and miRNA-mediated network[J]. Differentiation, 2024, 140: 100803.
[35] KUREEL J, DIXIT M, TYAGI A M, et al. miRNA- 542-3p suppresses osteoblast cell proliferation and differentiation, targets BMP-7 signaling and inhibits bone formation[J]. Cell Death Dis, 2014, 5(2): e1050.
[36] ZHANG W, WU Y, SHIOZAKI Y, et al. miRNA-133a- 5p inhibits the expression of osteoblast differentiation- associated markers by targeting the 3' UTR of RUNX2[J]. DNA Cell Biol, 2018, 37(3): 199–209.
[37] CHEN R, QIU H, TONG Y, et al. miRNA-19a-3p alleviates the progression of osteoporosis by targeting HDAC4 to promote the osteogenic differentiation of hMSCs[J]. Biochem Biophys Res Commun, 2019, 516(3): 666–672.
[38] LIU D, LIN Z, HUANG Y, et al. Role of microRNA- 19b-3p on osteoporosis after experimental spinal cord injury in rats[J]. Arch Biochem Biophys, 2022, 719: 109134.
[39] TAIPALEENM?KI H, SAITO H, SCHR?DER S, et al. Antagonizing microRNA-19a/b augments PTH anabolic action and restores bone mass in osteoporosis in mice[J]. EMBO Mol Med, 2022, 14(11): e13617.
[40] ZHANG X, ZHU Y, ZHANG C, et al. miRNA-542-3p prevents ovariectomy-induced osteoporosis in rats via targeting SFRP1[J]. J Cell Physiol, 2018, 233(9): 6798–6806.
[41] 包卓瑪, 江露, 李瑋怡, 等.淫羊藿苷抗骨質(zhì)疏松癥作用及機(jī)制研究進(jìn)展[J]. 中國(guó)藥物經(jīng)濟(jì)學(xué), 2025, 20(2): 111–115.
[42] XU Y, JIANG Y, JIA B, et al. Icariin stimulates osteogenesis and suppresses adipogenesis of human bone mesenchymal stem cells via miR-23a-mediated activation of the Wnt/β-catenin signaling pathway[J]. Phytomedicine, 2021, 85: 153485.
[43] TENG J W, BIAN S S, KONG P, et al. Icariin triggers osteogenic differentiation of bone marrow stem cells by up-regulating miR-335-5p[J]. Exp Cell Res, 2022, 414(2): 113085.
(收稿日期:2025–03–30)
(修回日期:2025–07–04)