中圖分類號:R364.5 文獻(xiàn)標(biāo)志碼:A DOI:10.3969/j.issn.1007-7146.2025.03.009
Abstract:To investigate theefectoflow expressonofmicroRNAs-133a(miR-133a)ontheapoptosisofpodocytes induced byhighglucoseanditsrelatedmechanism,humanglomerularpodocyte (HGPC)celswerecultured invitronddividedinto control group(Con,notreatment),HGgroup(3Ommol/LD-glucose),ibitorNCgroup(HGgroup+transfectioninbitor NC), miR-133a inbitor group (HGgroup+transfectionmiR-133a inhibitor).24hafter ransfectionreal-timefluorescence quantitativePCR(RT-qPCR)was usedto detectthe transfection effciency.Follow-uptests were performedafter transfection success, which were divided into Con group,HG group,inhibitorNCgroupand miR-133ainhibitor group,miR-133a inhibi tor+phosphatidylinositol3-kinase(PI3K)/protein kinaseB(AKT)pathway inhibitor group (miR-133ainhibitol +10μmol/L (20
LY294002),miR-133a inhibitor + PI3K/AKT pathway activator group [miR-133a inhibitor +50mg/mL insulin-like growth factor (IGF-1)].Livecell counting method(CCK-8)and Hoechst33258 staining wereusedrespectively,enzyme-linked immunosorbentassy(ELISA)andWestemblotwereusedtoetectHGPCcellviabilityapoptosisate,tumornecrosisactor (TNF)-α,interleukin-6(IL-6)levels,PI3K,phosphorylation(p)-I3K,AKTandp-AKTexpressionlevels.miR-133aas transfected successfully. The cell viability,p-PI3K and p -AKT protein expression of HG group and inhibitor NC group were lower than those of Con group (Plt;0.05 ),theapoptosisrate,NF ??a and IL-6 levels were higher than those of Con group (Plt;0.05 ).Theapoptosisrate,TNF- ??a and IL-6 levels of miR-133a inhibitor group were lower than those of miR-133a inhibitor group ),while the protein expressions of p -PI3K and p-AKT increased (
).LY294002 attenuated the action ofmiR-133ainhibitorandIGF-IenhancedtheactionofmiR-133ainhibitor.ThelowexpresionofmiR-133acanregulatethe PI3K/AKTpathwaytoinhibitthereleaseofinflammatoryfactorsandapoptosisofHG-inducedHGPCcels,tisresearchcould provideanew direction for the study of diseases related to diabetic nephropathy.
Key words: diabetic nephropathy; miR-133a; HGPC cels; high glucose; inflammation (ActaLaserBiology Sinica,2025,34(3):267-273)
中國糖尿?。╠iabetes)患者眾多,也是世界上糖尿病患病率增長較快的國家,在2021年糖尿病患病人數(shù)已經(jīng)達(dá)到1.4億[1]。糖尿病患者易出現(xiàn)多種并發(fā)癥,往往涉及許多器官,如血管、眼睛、腎臟和足,導(dǎo)致高病死率[2]。近年來,經(jīng)過臨床不斷研究和干預(yù),糖尿病在治療后,其發(fā)病率雖有所下降,但仍對人們生命健康有一定威脅。糖尿病腎病屬于糖尿病患者周圍神經(jīng)及血管病變,也是糖尿病患者的病死風(fēng)險因素之一。糖尿病腎病致病機(jī)制復(fù)雜,主要發(fā)病原因之一就是足細(xì)胞損傷。足細(xì)胞是一種終末期分化的腎小球上皮細(xì)胞,減輕足細(xì)胞損傷對治療糖尿病腎病至關(guān)重要。目前,基因檢測是當(dāng)前研究的熱點。微小核糖核酸(microribonucleicacid,miRNA/miR)是一種非編碼單鏈核糖核酸(ribonucleicacid,RNA),可以調(diào)節(jié)轉(zhuǎn)錄后的基因表達(dá),并通過介導(dǎo)翻譯抑制或引導(dǎo)靶信使核糖核酸(messengerribonucleicacid,mRNA)切割來發(fā)揮其功能[3]。miRNA參與細(xì)胞生物學(xué)行為的許多重要過程,如生長、發(fā)育、增殖和凋亡[4]。miRNA被認(rèn)為是控制許多途徑的關(guān)鍵阻斷劑,包括胰島素信號傳導(dǎo)。miRNA可以調(diào)節(jié)胰島素靶器官的胰島素敏感性,從而參與糖尿病的發(fā)展[5]。然而,對miRNA表達(dá)和糖尿病機(jī)制的研究較少。miR-133a是一種肌肉特異性miRNA,最近的研究人員發(fā)現(xiàn),不同病情程度的糖尿病患者miR-133a水平有一定差異。在2型糖尿病中,骨骼肌中的miR-133a表達(dá)下降較為明顯?;诖耍狙芯糠治隽薽iR-133a低表達(dá)對高糖誘導(dǎo)的足細(xì)胞炎癥凋亡的改善作用及相關(guān)機(jī)制,為糖尿病腎病相關(guān)疾病的研究提供了新的思路和方向。
1材料與方法
1.1 主要儀器及試劑
人腎小球足細(xì)胞(humanglomerularpodocytes,HGPC),購自北納生物微生物菌種科研細(xì)胞菌株庫。D-葡萄糖、 LY294002[6] 、胰島素樣生長因子I(insulin-like growth factorI,IGF-I)[7](純度 ?98% 中國上海吉瑪制藥公司);inhibitorNC、miR-133ainhibitor(中國上海吉瑪制藥公司);胎牛血清(fetalbovineserum,F(xiàn)BS)、DMEM培養(yǎng)基(美國Gibco公司);LipofectamineTM2000陽離子脂質(zhì)體(美國Invitrogen公司);Trizol、KR21miRNA逆轉(zhuǎn)錄試劑盒、SYBRPremixExTaqII試劑盒及細(xì)胞計數(shù)試劑盒-8(cellcountkit-8,CCK-8)分別購自美國ThermoFisherScientific公司、北京天根公司、杭州主諾生物技術(shù)有限公司、蘇州新賽美生物科技有限公司; 0.1% 結(jié)晶紫水溶液、基質(zhì)膠購自青檸生物有限公司;鼠抗人肌動蛋白( β -actin)、PI3K、磷酸化(phosphorylation,p)-PI3K、AKT、p-AKT一抗及山羊抗鼠IgG抗體(堿性磷酸酶)二抗購自武漢艾美捷科技有限公司。二氧化碳培養(yǎng)箱(上海一恒公司,BPN-80CRH型),WMS-1033型倒置熒光顯微鏡(上海無陌光學(xué)儀器有限公司);TG-21WC離心機(jī)購自山東博科公司;GelDoc2000型凝膠成像系統(tǒng)(美國Thermo公司);BBS-V500型超凈工作臺(濟(jì)南卓隆生物技術(shù)有限公司),MultiskanFC型酶標(biāo)儀(美國Thermo公司),
LEPGEN-96型PCR儀(佛山樂普公司)等。
1.2 細(xì)胞培養(yǎng)
將液氮中保存的HGPC細(xì)胞復(fù)蘇并進(jìn)行體外培養(yǎng),將其接種至完全DMEM培養(yǎng)基(含 100U/mL 青霉素、 100μg/mL 鏈霉素和 10% FBS)的T25瓶中,在適宜條件下培養(yǎng)( 濕度70%~80% ,當(dāng)細(xì)胞密度 ≥80% 時進(jìn)行傳代。
1.3 分組與處理
將HGPC細(xì)胞進(jìn)行分組:對照組(Con,不做處理)HG組(30mmol/LD-葡萄糖處理)inhibitorNC組(HG組基礎(chǔ)上轉(zhuǎn)染inhibitorNC)、miR-133ainhibitor組(HG組基礎(chǔ)上轉(zhuǎn)染miR-133ainhibitor)。轉(zhuǎn)染 24h 后,用實時熒光定量逆轉(zhuǎn)錄PCR(real-timefluorescencequantitativePCR,RT-qPCR)檢驗轉(zhuǎn)染效率。轉(zhuǎn)染成功后進(jìn)行后續(xù)試驗,分組為:Con組、HG組、inhibitorNC組、miR-133ainhibitor組,miR-133ainhibitor ?+ PI3K/AKT通路抑制劑組(miR-133ainhibitor組基礎(chǔ)上加 LY294002干預(yù)),miR-133ainhibitor ?+ PI3K/AKT通路激活劑組(miR-133ainhibitor組基礎(chǔ)上加 50mg/mL IGF-I干預(yù))。每組重復(fù)3次,轉(zhuǎn)染后藥物干預(yù) 24h
1.4HGPC細(xì)胞中miR-133a相對表達(dá)量檢測
提取各組干預(yù)后的細(xì)胞總RNA(細(xì)胞總RNA提取試劑盒),反轉(zhuǎn)錄擴(kuò)增cDNA(PCR儀),并分析其熔解曲線和擴(kuò)增曲線。反應(yīng)條件如下: 94°C5min 57% 35s, 72°C40s ,并設(shè)置上述程序為40個循環(huán)。根據(jù)循環(huán)閾值(Ct)和 2-ΔΔct 法計算miR-133a水平。以 Uδ 為內(nèi)參,引物序列詳見表1。
1.5HGPC細(xì)胞的活力檢測
將HGPC細(xì)胞用含 10% FBS培養(yǎng)基重懸后,接種至96孔板(接種密度:每孔 1×104 個細(xì)胞)。各組進(jìn)行處理后,將各個處理孔加入CCK-8液(每孔10μL ,孵育 2h ,最后,將96孔板置于酶標(biāo)儀上,記錄各個處理孔在 450nm 波長處的光密度值(opticaldensity, OD )值,各組 OD 值與Con組 OD 值的百分
比即為細(xì)胞活力。
1.6HGPC細(xì)胞的細(xì)胞凋亡率檢測
當(dāng)接種于24孔板中的細(xì)胞密度達(dá)到 80% 時,接受藥物處理;24h后,與Hoechst33258工作液孵育,條件為避光,時長為 10min 。熒光顯微鏡下觀察并拍照。低弱藍(lán)色信號為正常細(xì)胞,高強(qiáng)藍(lán)色信號為凋亡細(xì)胞。凋亡細(xì)胞數(shù)占總細(xì)胞數(shù)的百分比為細(xì)胞凋亡率。
1.7HGPC細(xì)胞裂解液中腫瘤壞死因子 -a (TNF- σ?a ) 和白介素-6(IL-6)的分泌水平檢測
收集干預(yù)24h的細(xì)胞,利用超聲對細(xì)胞進(jìn)行破碎,離心后吸取上清液,按照試劑盒說明書操作步驟,測定HGPC細(xì)胞裂解液中TNF- a 、IL-6的表達(dá)水平。
1.8HGPC細(xì)胞中PI3K/AKT通路蛋白檢測
于6孔板中接種細(xì)胞(每孔 1×105 個細(xì)胞),各組按1.3處理后,收集細(xì)胞并裂解,提取蛋白,定量并上樣,電泳后轉(zhuǎn)膜,膜封閉(脫脂牛奶法)后加入一抗(PI3K、p-PI3K、AKT、p-AKT、 β -actin), 4°C 過夜處理,加入二抗孵育,孵育條件為室溫,時長為 2h 洗滌后加顯影液,拍照記錄(凝膠成像系統(tǒng))。計算目的蛋白相對表達(dá)量,內(nèi)參為 β -actin,其中蛋白灰度用Image-J圖像分析軟件確定。
1.9 統(tǒng)計學(xué)分析
所有試驗至少重復(fù)3次,試驗數(shù)據(jù)以平均值 ± 標(biāo)準(zhǔn)差 表示。SPSS26.0軟件分析數(shù)據(jù),多組間采用單因素方差,兩組間進(jìn)行Dunnett's t 檢驗。Plt;0.05 被認(rèn)為具有統(tǒng)計學(xué)顯著性差異。
2 結(jié)果與分析
2.1RT-qPCR測定HGPC細(xì)胞中miR-133a的相對表達(dá)量
HGPC細(xì)胞轉(zhuǎn)染24h后,與Con組比,HG組和inhibitorNC組miR-133a相對表達(dá)量升高 (Plt;0.05 ),miR-133ainhibitor組miR-133a相對表達(dá)量差異不顯著( )。miR-133ainhibitor組miR-133a相對表達(dá)量低于inhibitorNC組 (Plt;0.05) ,提示轉(zhuǎn)染成功(圖1)。
2.2miR-133a對HGPC細(xì)胞活力的影響
如圖2所示:HG組和inhibitorNC組細(xì)胞活力低于Con組( Plt;0.05 );miR-133ainhibitor組細(xì)胞活力高于inhibitorNC組( Plt;0.05 );miR-133ainhibitor + LY294002組細(xì)胞活力低于miR-133ainhibitor組( Plt;0.05 ;miR-133ainhibitor+IGF-I組細(xì)胞活力高于miR-133ainhibitor組( Plt;0.05 );miR-133ainhibitor+IGF-I組細(xì)胞活力較Con組差異不顯著 (Pgt;0.05) 。
2.3miR-133a對HGPC細(xì)胞凋亡情況的影響
使用Hoechst染色法檢測HGPC細(xì)胞凋亡的結(jié)果見圖3。HG組和inhibitorNC組細(xì)胞凋亡率高于Con組( Plt;0.05 );miR-133ainhibitor組細(xì)胞凋亡率低于inhibitorNC組( Plt;0.05 );miR-133ainhibitor +LY294002 組細(xì)胞凋亡率高于miR-133ainhibitor組( Plt;0.05 );miR-133ainhibitor+IGF-I組細(xì)胞凋亡率低于miR-133ainhibitor組( Plt;0.05 );miR-133ainhibitor+IGF-I組細(xì)胞凋亡率較Con組差異不顯著 (Pgt;0.05) 。
2.4miR-133a對HGPC細(xì)胞炎癥因子分泌水平的 影響
如圖4所示:HG組和inhibitorNC組細(xì)胞TNF- σ?a
aPlt;0.05 vs Con組, bPlt;0.05 vs inhibitor NC 組, vs miR-133a inhibitor組。 aPlt;0.05 vs Con group, bPlt;0.05 vs inhibitor NC group,
vs miR-133a inhibitor group.
IL-6分泌水平高于Con組( Plt;0.05 );miR-133a inhibitor組細(xì)胞TNF- a 、IL-6分泌水平低于inhibitor NC組( Plt;0.05 );miR-133ainhibitor+LY294002組細(xì) 胞TNF- ??a 、IL-6分泌水平高于miR-133ainhibitor組 0 Plt;0.05 );miR-133ainhibitor+IGF-I組細(xì)胞TNF- ??a 、 IL-6分泌水平低于miR-133ainhibitor組( Plt;0.05 ) miR-133ainhibitor+IGF-I組細(xì)胞TNF- ??a 、IL-6水平較 Con組差異不顯著 (Pgt;0.05) 。
2.5miR-133a對HGPC細(xì)胞中PI3K/AKT通路蛋白相對表達(dá)量的影響
如圖5所示:HG組和inhibitorNC組細(xì)胞p-PI3K、p-AKT的相對表達(dá)量低于Con組( (Plt;0.05) )miR-133ainhibitor組細(xì)胞p-PI3K、p-AKT的相對表達(dá)量高于inhibitorNC組( Plt;0.05 );p-PI3K、p-AKT在miR-133ainhibitor+LY294002組中的相對表達(dá)量相較于miR-133ainhibitor組降低( Plt;0.05 );miR-133ainhibitor+IGF-I組細(xì)胞 -PI3K、p-AKT的相對表達(dá)
(a)熒光倒置顯微鏡下 200×) 觀察HGPC細(xì)胞的凋亡情況;(b)HGPC細(xì)胞的凋亡率。 aPlt;0.05 vsCon組, bPlt;0.05 vs inhibitor NC組, cPlt;0.05 Vs miR-133a inhibitor組。 (a) The apoptosis of HGPC cels was observed under fluorescence inverted microscope (200× ); (b)HGPCcell apoptosisrate. aPlt;0.05 vs Con group, bPlt;0.05 vs inhibitor NC group, cPlt;0.05 vs miR-133a inhibitor group.
(a)PI3K、p-PI3K、AKT、p-AKT蛋白條帶;(b)p-PI3K、p-AKT的相對表達(dá)量。 aPlt;0.05 vs Con組, bPlt;0.05 vs inhibitor NC組, cPlt;0.05 vs miR-133a inhibitor組。
(a)PI3K,p-PI3K,AKT, p-AKT protein bands; (b) Relative expression of p-PI3K and p-AKT. aPlt;0.05 vs Con group, bPlt;0.05 vs inhibitor NC group, cPlt;0.05 vs miR-133a inhibitor group.
量高于miR-133ainhibitor組( Plt;0.05 ),miR-133ainhibitor+IGF-I組細(xì)胞p-PI3K、p-AKT的相對表達(dá)量較Con組差異不顯著 (Pgt;0.05) 。
3討論
糖尿病是一種常見的慢性病,可威脅人類的身體健康。糖尿病患者由于長期糖代謝紊亂、微血管病變、神經(jīng)營養(yǎng)因子缺乏以及氧化應(yīng)激損傷等因素容易發(fā)生血管和神經(jīng)系統(tǒng)病變,其發(fā)生率相對較高,癥狀相對嚴(yán)重[89]。前者并發(fā)癥主要包括微血管病變(視網(wǎng)膜病變)和大血管病變(外周血管疾病、腦中風(fēng)、心臟?。?,后者并發(fā)癥主要是糖尿病周圍神經(jīng)病變[10]。糖尿病腎病是糖尿病患者最重要的微血管慢性并發(fā)癥之一,發(fā)病率為 40%~55%[11-12] ,嚴(yán)重威脅患者的生命健康。而足細(xì)胞是糖尿病腎病發(fā)展的關(guān)鍵參與者,如在糖尿病腎病細(xì)胞模型中發(fā)現(xiàn),足細(xì)胞數(shù)量及足突減少等。雖然此方面的研究越來越多,但糖尿病腎病足細(xì)胞的損傷機(jī)制仍未完全闡明。
天然免疫激活和炎癥是糖尿病腎病損傷機(jī)制中的重要因素,各種炎癥因子及其通路參與其中。首先,核因子-kB(nuclearfactor-kB,NF-kB)參與糖尿病腎病發(fā)病時的炎癥反應(yīng),調(diào)節(jié)多種炎性細(xì)胞因子,這些炎性細(xì)胞因子可激活中性粒細(xì)胞和巨噬細(xì)胞的促炎性細(xì)胞因子,參與糖尿病腎病誘導(dǎo)的細(xì)胞損傷[13]。其次,炎癥因子TNF- ??a 刺激會調(diào)控機(jī)體相關(guān)炎癥通路,如PI3K/AKT通路[14]。因此,對于糖尿病腎病病程中的各種炎癥因子和炎癥通路的作用要格外重視[15]。本試驗通過體外構(gòu)建糖尿病腎病足細(xì)胞模型,體外模擬糖尿病腎病模型,以研究miR-133a在糖尿病腎病足細(xì)胞損傷中的作用及機(jī)制。研究結(jié)果發(fā)現(xiàn),細(xì)胞轉(zhuǎn)染成功后,抑制miR133a的表達(dá)可降低HGPC細(xì)胞的凋亡率、TNF- ??a 和IL-6的表達(dá)水平,提示敲低miR-133a可減輕HG條件下HGPC細(xì)胞的炎癥反應(yīng),抑制其凋亡。但本研究僅在細(xì)胞層面進(jìn)行了分析,未進(jìn)行動物試驗進(jìn)一步驗證,下一步可完善試驗設(shè)計,進(jìn)行動物試驗,以期為糖尿病腎病的研究奠定理論基礎(chǔ)。
PI3K/AKT已被證實是體內(nèi)關(guān)鍵的胰島素信號分子[16]。PI3K/AKT信號通路能促進(jìn)胰島素刺激的葡萄糖的攝取與儲存,在有胰島素刺激的情況下,可啟動PI3K/AKT信號途徑,解除對糖原合酶的抑制,促進(jìn)糖原的合成[17-18]。PI3K/AKT信號傳導(dǎo)活性在胰島素作用中的至關(guān)重要性已得到充分證實[19]本研究檢測了各組細(xì)胞中PI3K/AKT信號通路的活性,結(jié)果表明,與miR-133ainhibitor組比,miR-133ainhibitor+LY294002組細(xì)胞p-PI3K、p-AKT相對表達(dá)量下降,凋亡率、TNF ??a 、IL-6水平升高,而miR-133ainhibitor+IGF-I組細(xì)胞p-PI3K、p-AKT相對表達(dá)量升高,凋亡率、TNF- ??a 、IL-6水平下降,提示miR-133a可能通過調(diào)控PI3K/AKT信號通路改善高糖條件下的足細(xì)胞炎癥及凋亡。
綜上所述,miR-133a低表達(dá)對高糖誘導(dǎo)的足細(xì)胞炎癥及凋亡起到了一定的改善作用,這種作用可能是通過激活PI3K/AKT信號通路來實現(xiàn)的,這為臨床糖尿病腎病的miRNA靶向治療研究提供了一些新的思路和理論基礎(chǔ)。
參考文獻(xiàn)(References):
[1] 陳彥旭,姜曉雪,張欽媛,等.TGF-β/Smad信號通路在糖尿病 腎病中的作用及中藥干預(yù)的研究進(jìn)展[J].中國中藥雜志, 2023,48(10):2630-2638. CHENYanxu,JIANGXiaoxue,ZHANGQinyuan,etal.Roleof TGF-β/Smad signaling pathwayin diabetic kidney disease and research progress of traditional Chinese medicine intervention [J].China Journal ofChinese Materia Medica,2O23,48(10): 2630-2638.
[2] COLEJB,F(xiàn)LOREZJC.Genetics of diabetes mellitus and diabetescomplications[J].Nature ReviewsNephrology,2020, 16(7): 377-390.
[3] YEZ,XIANW,LINGGU,etal.Efficacyofdangguibuxue decoction on diabetic nephropathy-induced renal fibrosis inrats andpossiblemechanism[J].Journal ofTraditional Chinese Medicine,2023,43(3):507-513.
[4] WUT, ZHANG ZQ,HUANG HW, et al.RNA-Seq analysis of ceRNA-related networks in the regulatorymetabolicpathway ofmicewith diabeticnephropathy subjectedto empagliflozin intervention[J].ArchivosEspanolesDeUrologia,2023,76(9): 680-689.
[5] FOUDI N,LEGEAY S.Effects of physical activity on cell-tocell communication during type 2 diabetes: a focus on miRNA signaling[J].Fundamental amp; Clinical Pharmacology,2021, 35(5): 808-821.
[6] 王先鶴,吳慢,鄧芳,等.PI3K/AKT通路與TRPC6通道在Ang Ⅱ誘導(dǎo)足細(xì)胞損傷中的相互作用[J].安徽醫(yī)科大學(xué)學(xué)報, 2021,56(6): 882-887. WANG Xianhe,WU Man,DENGFang,etal.Study on the interaction betweenPI3K/AKT pathwayandTRPC6 channel inAngI-induced podocyte injury[J].Acta Universitatis Medicinalis Anhui, 2021, 56(6): 882-887.
[7] DUCY,ZHANG T,XIAOX,etal.Protease-activated receptor-2 promotes kidney tubular epithelial inflammation by inhibiting autophagy via thePI3K/Akt/mTOR signallingpathway[J]. Biochemical Journal,2017,474(16):2733-2747.
[8] CHINNADURAIR,CHRYSOCHOUC,KALRAPA.Increased risk for cardiovascular events in patients with diabetic kidney disease and non-alcoholic fatty liver disease[J].Nephron, 2019, 141(1): 24-30.
[9] DEMIR S,NAWROTHPP,HERZIG S,et al. Emerging targets in type2diabetesand diabetic complications[J].Advanced Science, ∠UZI,O(IO).c∠IUUZ/).
[10]覃群婷,路文盛.血糖波動對糖尿病大血管并發(fā)癥發(fā)生機(jī)制 的研究進(jìn)展[J].山東醫(yī)藥,2017,57(25):110-112. QINQunting,LUWensheng.Research progress of blood glucose fluctuation on the mechanism of diabetic macrovascular complications[J].Shandong Medical Journal, 2017,57(5): 110-112.
[11]KORSAAT,GENEMO E S,BAYISAHG,et al. Diabetes melitus complicationsand associated factorsamond adult diabetic patientsin selected hospitalsofWestEthiopia[J].TheOpen CardiovascularMedicine Journal,2019,13:41-48.
[12]THIPSAWAT S.Early detection of diabetic nephropathy in patient with type2 diabetes mellitus:a review of the literature[J]. Diabetes amp; Vascular Disease Research,2021,18(6):1-9.
[13]EHTEWISH H,ARREDOUANI A,EL-AGNAF O.Diagnostic, prognostic,and mechanistic biomarkers of diabetes mellitusassociated cognitive decline[J]. International Journal of Molecular Sciences,2022,23(11):6144.
[14]LAIXX,ZHANGN,CHENLY,et al.Latifolin protects against myocardialinfarctionbyalleviatingmyocardial inflammatoryvia the HIF-1α/NF-kB/IL-6 pathway[J].Pharmaceutical Biology, 2020,58(1): 1156-1166.
[15]CHANGHY, CHANGHJ, CHENG TJ,et al. Micro-ribonucleic acid-23a-3p prevents the onset of type2 diabetes mellitus by suppressing the activation of nucleotide-binding oligomerizationlike receptor family pyrin domain containing 3 inflammatory bodies-caused pyroptosis through negatively regulating NIMArelated kinase7[J]. Journal of Diabetes Investigation, 2021, 12(3):334-345.
[16]AIERKENAL,LIBL,LIUP,etal.Melatonin treatment improves human umbilical cord mesenchymal stem cell therapy inamousemodel oftypeII diabetesmellitusvia thePI3K/AKT signaling pathway[J].Stem Cell Researchamp; Therapy,2022, 13(1): 164.
[17]萬金艷,龍宇,張羽璐,等.PI3K/Akt信號通路在糖尿病腎病 中的作用及中藥干預(yù)的研究進(jìn)展[J].中草藥,2021,52(12): 3705-3716. WANJinyan,LONGYu,ZHANGYulu,etal.RoleofPI3K/Akt signaling pathway in diabetic nephropathy and research progress onintervention of traditional Chinese medicine[J].Chinese Traditional andHerbal Drugs,2021, 52(12):3705-3716.
[18]WANGFF,LI S,MAL,et al.Study on the mechanism of Periplanetaamericana extracttoacceleratewound healingafter diabetic anal fistula operation based on network pharmacology[J]. Evidence-based Complementary andAlternative Medicine,2021, 2021:6659154.
[19]CHEN S H, LIU X N,PENG Y.MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway byinhibitingFLOT2inmiceofgestational diabetesmellitus [J].Journal of Cellular and Molecular Medicine,2019,23(9): 5895-5906.