【摘要】 游離脂肪酸是機(jī)體調(diào)節(jié)能量代謝的重要物質(zhì),主要通過與細(xì)胞膜上的G蛋白偶聯(lián)受體(GPRs)結(jié)合并發(fā)揮功能。G蛋白偶聯(lián)受體120(GPR120)是哺乳動(dòng)物體內(nèi)中、長(zhǎng)鏈游離脂肪酸的受體。研究顯示,內(nèi)皮細(xì)胞、血管平滑肌細(xì)胞和單核/巨噬細(xì)胞上GPR120的激活可降低單核細(xì)胞黏附、促進(jìn)泡沫細(xì)胞內(nèi)膽固醇流出、調(diào)控巨噬細(xì)胞的遷移和分化,發(fā)揮抗炎、抗氧化等功能,具有抵抗動(dòng)脈粥樣硬化的潛在作用。文章綜述了GPR120的分子結(jié)構(gòu)、組織分布、配體類型、信號(hào)轉(zhuǎn)導(dǎo)途徑及其在抗動(dòng)脈粥樣硬化疾病中的研究進(jìn)展,旨在揭示GPR120抗動(dòng)脈粥樣硬化的分子機(jī)制及其作為治療靶點(diǎn)的潛在價(jià)值。
【關(guān)鍵詞】 G蛋白偶聯(lián)受體120;動(dòng)脈粥樣硬化;巨噬細(xì)胞;炎癥;膽固醇逆轉(zhuǎn)運(yùn);心血管疾病
The functional characteristics of GPR120 and its mechanism in preventing atherosclerosis
XIAO Jiahai1,2, CHEN Gengji1,2, ZHANG Pengfei3,WU Tianyu4,CHEN Xiaojia1,ZHANG Zhizhen1
(1. School of Basic Medicine, Guangdong Medical University, Dongguan 523808, China; 2. School of Medical Technology, Guangdong Medical University, Dongguan 523808, China; 3. Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China; 4. Department of Neonatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China)
Corresponding author: ZHANG Zhizhen, E-mail: zzzhang@gdmu.edu.cn
【Abstract】 Free fatty acids are important substances for regulating energy metabolism in the body and mainly exert their functions by binding to G protein-coupled receptors (GPRs) on the cell membrane. GPR120 is the receptor for medium and long-chain free fatty acids in mammals. Studies have found that the activation of GPR120 on endothelial cells, vascular smooth muscle cells, and monocytes/macrophages can reduce monocyte adhesion, promote cholesterol efflux from foam cells, regulate the migration and differentiation of macrophages, and exert anti-inflammatory and antioxidant functions, potentially resisting atherosclerosis. This article reviews the molecular structure, tissue distribution, ligand types, signal transduction pathways of GPR120, and its research progress in anti-atherosclerotic diseases, aiming to reveal the molecular mechanism of GPR120 in resisting atherosclerosis and its potential value as a therapeutic target.
【Key words】 G protein-coupled receptor 120; Atherosclerosis; Macrophage; Inflammation; Reverse cholesterol transport;
Cardiovascular disease
游離脂肪酸(free fatty acids,F(xiàn)FAs)是機(jī)體調(diào)節(jié)能量代謝的重要物質(zhì),還可作為內(nèi)源性配體與細(xì)胞膜表面受體結(jié)合,進(jìn)行胞外和胞內(nèi)的信號(hào)轉(zhuǎn)導(dǎo),參與機(jī)體多種生理功能[1]。G蛋白偶聯(lián)受體(G protein-coupled receptors,GPRs)是細(xì)胞表面最大、最多樣化的受體家族之一,參與調(diào)節(jié)多種生理過程,也是藥物靶點(diǎn)最多的蛋白質(zhì)家族之一[2]。GPRs中有一類孤兒型亞家族,這些受體能夠識(shí)別并被內(nèi)源性和外源性的FFAs激活,故又被稱為游離脂肪酸受體(free fatty acid receptor,F(xiàn)FAR),其中包括GPR40(FFAR1)、GPR41(FFAR3)、GPR43(FFAR2)和GPR120(FFAR4)[3]。
GPR120的配體多為中、長(zhǎng)鏈游離脂肪酸,以ω-3多不飽和脂肪酸(omega-3 polyunsaturated fatty acid,ω-3 PUFA)為主。研究報(bào)道,GPR120主要表達(dá)于機(jī)體的口腔味蕾、脂肪組織、胃腸道和腦等組織,與配體結(jié)合后可發(fā)揮調(diào)控食物選擇、調(diào)節(jié)胃腸道肽類激素水平、促進(jìn)細(xì)胞增殖、調(diào)節(jié)脂肪細(xì)胞發(fā)育和分化、調(diào)節(jié)巨噬細(xì)胞遷移和分化等生物學(xué)功能[4]。近年來的研究顯示,GPR120是唯一高表達(dá)于全身巨噬細(xì)胞的G蛋白偶聯(lián)受體,其在巨噬細(xì)胞激活后具有降血脂和抗炎的作用,可作為心血管疾?。ㄈ鐒?dòng)脈粥樣硬化)治療的潛在靶點(diǎn)[5-6]。本文將對(duì)GPR120分子結(jié)構(gòu)、組織分布、配體及其介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)相關(guān)研究的最新進(jìn)展進(jìn)行綜述,并重點(diǎn)闡述GPR120在血管內(nèi)皮細(xì)胞、血管平滑肌細(xì)胞和巨噬細(xì)胞中的作用機(jī)制,探究其在動(dòng)脈粥樣硬化疾病發(fā)生和發(fā)展中的作用及分子機(jī)制,為GPR120作為抗動(dòng)脈粥樣硬化疾病的潛在治療靶點(diǎn)提供理論依據(jù)。
1 GPR120的分子結(jié)構(gòu)及其相關(guān)信號(hào)轉(zhuǎn)導(dǎo)途徑
1.1 GPR120的基因和分子結(jié)構(gòu)特點(diǎn)
GPR120是一種含有7個(gè)跨膜結(jié)構(gòu)域的蛋白,其基因組位于染色體10q23.33區(qū),具有GPRs的拓?fù)浣Y(jié)構(gòu)域[7]。在人類中,GPR120基因組在外顯子3發(fā)生選擇性剪接,編碼出兩種長(zhǎng)度不同的基因產(chǎn)物,較長(zhǎng)的轉(zhuǎn)錄本編碼區(qū)包含1 134個(gè)核苷酸,編碼由377個(gè)氨基酸殘基組成的蛋白質(zhì),通常稱為GPR120-“長(zhǎng)”(GPR120-L);較短的轉(zhuǎn)錄本編碼區(qū)含有1 086個(gè)核苷酸,編碼由361個(gè)氨基酸殘基組成的蛋白質(zhì),稱為GPR120-“短”(GPR120-S)[8]。小鼠和大鼠的同源基因克隆實(shí)驗(yàn)表明,嚙齒類動(dòng)物與人類之間氨基酸序列存在98%的同源性,但在嚙齒類動(dòng)物或非人靈長(zhǎng)類動(dòng)物中尚未發(fā)現(xiàn)長(zhǎng)轉(zhuǎn)錄本的存在,說明GPR120-L可能僅存在于人類中[9]。值得注意的是,GPR120-L在第三個(gè)胞內(nèi)環(huán)(intracellular loop 3, ICL3)中含有額外的16個(gè)氨基酸序列,還包含了絲氨酸和蘇氨酸的兩個(gè)殘基。ICL3具有GPR結(jié)構(gòu)域功能,通常參與G蛋白偶聯(lián)、蛋白質(zhì)相互作用、受體磷酸化、下游信號(hào)轉(zhuǎn)導(dǎo)和G蛋白解偶聯(lián)等過程,這也導(dǎo)致了GPR120-L具有不同于GPR120-S的信號(hào)轉(zhuǎn)導(dǎo)作用,并且相比于GPR120-S,在組織分布上更加稀缺[7, 9]。
1.2 GPR120的表達(dá)
GPR120廣泛表達(dá)于胃腸道、脂肪組織、味蕾、肺臟、腦等組織及巨噬細(xì)胞中。①胃腸道:GPR120主要表達(dá)于胃腸道的內(nèi)分泌細(xì)胞和殺傷細(xì)胞,激活GPR120可刺激Ghrelin激素、葡萄糖依賴性促胰島素分泌多肽和胰高血糖素樣肽-1(glucagon-like peptide-1,GLP-1)的分泌,具有調(diào)節(jié)食欲和全身能量代謝的作用[10-11]。②脂肪組織:GPR120在棕色脂肪和白色脂肪中均有表達(dá),GPR120可通過Ca2+信號(hào)通路激活過氧化物酶體增殖物激活受體γ(peroxisome proliferator-activated receptor-gamma,PPAR-γ)調(diào)控白色脂肪細(xì)胞分化,GPR120激活成纖維細(xì)胞生長(zhǎng)因子21(fibroblast growth factor 21, FGF21)促進(jìn)棕色脂肪細(xì)胞產(chǎn)熱[12-14]。③口腔味蕾:GPR120也表達(dá)于味蕾Ⅱ型細(xì)胞中,經(jīng)Ca2+信號(hào)通路或絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)參與味覺信號(hào)轉(zhuǎn)導(dǎo)[15-16]。④肺臟組織:GPR120主要表達(dá)于細(xì)支氣管外分泌細(xì)胞(或稱俱樂部細(xì)胞Club cells)、遠(yuǎn)端細(xì)支氣管周圍的肺泡上皮細(xì)胞和肺泡巨噬細(xì)胞上,可通過磷脂酰肌醇信號(hào)通路升高細(xì)胞內(nèi)Ca2+水平,參與肺泡巨噬細(xì)胞吞噬功能、抑制炎癥和氣道上皮細(xì)胞的修復(fù)[17-18]。⑤巨噬細(xì)胞:GPR120是唯一在人和小鼠全身巨噬細(xì)胞中高表達(dá)的G蛋白偶聯(lián)受體,主要具有促進(jìn)巨噬細(xì)胞分化、調(diào)節(jié)免疫功能和慢性炎癥等功能[19]。
1.3 GPR120的配體
GPR120的配體包括機(jī)體的內(nèi)源性配體和外源性激動(dòng)劑。內(nèi)源性配體為含有14~22個(gè)碳原子的脂肪酸,主要有飽和脂肪酸(C14∶0/肉豆蔻酸、C16∶0/棕櫚酸和C18∶0/硬脂酸)、單不飽和脂肪酸(C16∶1n-7/棕櫚油酸、C18∶1n-9/油酸)和多不飽和脂肪酸(C18∶3n-3/亞麻酸、C20∶5n-3/二十碳五烯酸(eicosapentaenoic acid,EPA)和C22∶6n-3/二十二碳六烯酸(docosahexaenoic acid,DHA))、ω-6脂肪酸(C18∶2n-6/亞油酸、C18∶3n-6/γ-亞麻酸、C20∶3n-6/二高-γ-亞麻酸和C22∶4n-6/二十二碳四烯酸)[9]。另外,Yore等[20]研究發(fā)現(xiàn),含有支鏈脂肪酸酯的棕櫚酸-9-羥基硬脂酸(palmitic-acid-9-hydroxy-stearic-acid,9-PAHSA)是一種內(nèi)源性脂質(zhì),可特異性地與GPR120結(jié)合并激活其下游信號(hào)轉(zhuǎn)導(dǎo)。內(nèi)源性配體如DHA和EPA,與GPR120結(jié)合后具有顯著的抗炎和胰島素增敏作用,這一過程涉及巨噬細(xì)胞介導(dǎo)的脂肪組織炎癥和肥胖癥中的胰島素抵抗,使其成為治療糖尿病的一個(gè)關(guān)鍵藥物靶點(diǎn)。內(nèi)源性配體與GPR120的親和力相對(duì)較低,且不具有特異性。
除了這些內(nèi)源性配體外,研究者根據(jù)GPR120的結(jié)構(gòu)特性開發(fā)出了一些具有選擇特異性的外源性配體,主要包括:4-(3-苯氧芐氨基)苯丙酸(GW9508)、3-{4-[(4-Fluoro-4-methyl-2-biphenylyl)甲氧基]苯基}丙酸(TUG-891)、灰葉酸(grifolic acid)、化合物A(compound A)和4-甲氧基-N-(2,4,6-三甲基苯)苯磺酰胺(GSK137647A)等。這些激動(dòng)劑對(duì)GPR120具有高親和力,可作為其外源性的配體而發(fā)揮作用,但這些配體選擇特異性存在明顯的種屬差異,動(dòng)物實(shí)驗(yàn)的結(jié)果未必能很好地反映人體內(nèi)的效果[21-22]。
1.4 GPR120介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)途徑
GPR120與配體結(jié)合后可激活下游信號(hào)轉(zhuǎn)導(dǎo)通路,主要為G蛋白依賴途徑和非G蛋白依賴途徑的β-抑制蛋白(β-arrestin)信號(hào)轉(zhuǎn)導(dǎo)途徑。
1.4.1 G蛋白依賴的信號(hào)轉(zhuǎn)導(dǎo)途徑
G蛋白依賴途徑主要為異三聚體G蛋白的激活,異三聚體G蛋白是由Gα、Gβ和Gγ三個(gè)亞基組成[23]。當(dāng)GPR的α亞基與鳥苷二磷酸(guanosine diphosphate,GDP)結(jié)合時(shí),Gα與Gβγ二聚體結(jié)合形成非活性異源三聚體;而當(dāng)GPR與配體結(jié)合被激活后,活化的GPR與Gα亞基結(jié)合,使Gα亞基構(gòu)象發(fā)生變化,Gα亞基與GDP的親和力下降,隨即與鳥苷三磷酸(guanosine triphosphate,GTP)結(jié)合,導(dǎo)致Gα和Gβγ亞基解離。處于活化狀態(tài)的Gα-GTP亞基能夠靶向調(diào)節(jié)下游效應(yīng)蛋白活性[24]。Gα主要有Gs、Gi/0、Gq/11和G12/13四種不同亞型,當(dāng)GPR120與不同配體結(jié)合后,可激活不同的Gα亞型,從而進(jìn)行信號(hào)轉(zhuǎn)導(dǎo)[24]。研究發(fā)現(xiàn),GPR120與配體結(jié)合后可通過激活Gs、Gi和Gq亞基發(fā)揮作用,但與不同配體結(jié)合后,GPR120激活的亞基具有選擇特異性。EPA、9-PAHSA、油酸、棕櫚酸、TUG-891與GPR120結(jié)合后可活化Gi和Gq亞基,激活Ca2+信號(hào)通路和環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)信號(hào)通路;而ω-3族脂肪酸(EPA和DHA)與GPR120結(jié)合后,能夠活化Gs亞基,進(jìn)而激活下游的cAMP信號(hào)通路,見圖1[8]。
1.4.2 β-arrestin介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)途徑
β-arrestin介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)是GPR120發(fā)生磷酸化后一種特有的蛋白激活途徑。GPR120與配體結(jié)合后,通過G蛋白偶聯(lián)受體激酶(G
protein-coupled receptor kinases,GRKs)促進(jìn)受體磷酸化,這一過程被稱為同源磷酸化。磷酸化的GPR120與G蛋白發(fā)生解偶聯(lián)效應(yīng),降低下游G蛋白信號(hào)轉(zhuǎn)導(dǎo)的敏感性,而卻與β-arrestin配體蛋白(β-arrestin2)具有很高的親和力,促進(jìn)β-arrestin2介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo)、受體內(nèi)化和轉(zhuǎn)運(yùn)[25-27]。
研究發(fā)現(xiàn),在配體或激動(dòng)劑α-亞麻酸(alpha-linolenic acid,ALA)和DHA作用下,GPR120-L和GPR120-S均可發(fā)生快速磷酸化,且兩種同源物的磷酸化速率和程度上沒有顯著差異。然而,在沒有激動(dòng)劑的情況下,GPR120-S的磷酸化程度比GPR120-L的更高,這是由于GPR120-L中ICL3多出的16個(gè)氨基酸有助于降低其磷酸化程度。因此,關(guān)于GPR120磷酸化的研究多集中在GPR120-S上[28]。不同配體或激動(dòng)劑可使GPR120-S的 不同位點(diǎn)發(fā)生磷酸化,Burns等[29]報(bào)道,DHA誘導(dǎo)的磷酸化是由G蛋白偶聯(lián)受體激酶6(GRK6)和Gαq/11/Ca2+/PKC信號(hào)通路介導(dǎo),這兩條信號(hào)通路均可磷酸化GPR120-S羧基端的Thr347、Ser350和Ser357位點(diǎn),這3個(gè)位點(diǎn)的突變會(huì)抑制β-arrestin2向細(xì)胞膜募集,導(dǎo)致細(xì)胞內(nèi)Ca2+水平升高。Butcher等[30]也證實(shí),TUG-891與GPR120結(jié)合后,通過GRK6信號(hào)通路使Thr347、Ser350和Ser357位點(diǎn)發(fā)生磷酸化,并且臨近位點(diǎn)的Thr349和Ser360可協(xié)同促進(jìn)TUG-891誘導(dǎo)的磷酸化反應(yīng)。磷酸化的GPR120可激活β-arrestin2,將信號(hào)傳遞至下游轉(zhuǎn)化生長(zhǎng)因子激活激酶1結(jié)合蛋白1(transforming growth factor-beta activated kinase 1 binding protein 1,TAB1),抑制其與轉(zhuǎn)化生長(zhǎng)因子β活化激酶1(transforming growth factor-beta activated kinase 1, TAK1)的結(jié)合,進(jìn)而抑制NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)?表達(dá),發(fā)揮抗炎和免疫調(diào)節(jié)的作用,見圖2。
2 GPR120可作為抗動(dòng)脈粥樣硬化疾病的潛在靶點(diǎn)
動(dòng)脈粥樣硬化(atherosclerosis,AS)是指在動(dòng)脈壁內(nèi)發(fā)生脂質(zhì)沉積、炎癥反應(yīng)和纖維化,最終導(dǎo)致血管壁增厚硬化、血管腔狹窄的血管病變,為心血管疾病發(fā)病和死亡的主要誘因[31-32]。在AS的發(fā)病過程中,血管壁上的內(nèi)皮細(xì)胞、血管平滑肌細(xì)胞和巨噬細(xì)胞是參與促進(jìn)AS發(fā)生和發(fā)展的重要細(xì)胞群。內(nèi)皮細(xì)胞損傷是脂質(zhì)、血管平滑肌細(xì)胞和單核/巨噬細(xì)胞浸潤血管內(nèi)壁的主要誘因;而過多的脂質(zhì)被這些細(xì)胞攝取后沉積在動(dòng)脈壁內(nèi)形成AS斑塊并誘發(fā)炎癥因子風(fēng)暴,進(jìn)一步加劇AS斑塊的發(fā)展[33]。由前文綜述可知,當(dāng)GPR120與不同配體結(jié)合后,活化的GPR120具有升高細(xì)胞內(nèi)Ca2+水平、激活cAMP信號(hào)通路、抗炎和免疫調(diào)節(jié)的作用,理論上具有修復(fù)內(nèi)皮細(xì)胞損傷、抑制巨噬細(xì)胞或平滑肌細(xì)胞源性泡沫細(xì)胞形成、降低脂質(zhì)堆積誘發(fā)的炎癥水平,進(jìn)而發(fā)揮抵抗AS發(fā)生和發(fā)展的作用,可作為治療AS的潛在靶點(diǎn)[34-35]。
2.1 GPR120激活可抑制內(nèi)皮細(xì)胞損傷
內(nèi)皮細(xì)胞上的GPR120激活,能夠減輕氧化低密度脂蛋白(oxidized-low density lipoprotein,ox-LDL)引發(fā)的內(nèi)皮功能障礙。研究顯示,使用GW9508和TUG-891激活人主動(dòng)脈內(nèi)皮細(xì)胞(human aortic vascular endothelial cells,HAECs)上的GPR120可以抑制內(nèi)皮細(xì)胞血管細(xì)胞黏附分子-1(vascular cell adhesion molecule,VCAM-1)和E-選擇素(E-selectin)的表達(dá),進(jìn)而阻止單核細(xì)胞附著于內(nèi)皮細(xì)胞上[36];GPR120的激活還可以降低內(nèi)皮細(xì)胞中促炎因子,如白細(xì)胞介素6(interleukin 6,IL-6)、單核細(xì)胞趨化蛋白1(monocyte chemoattractant protein 1,MCP-1)和高遷移率族蛋白B1(high mobility group box 1 protein,HMGB1)等的表達(dá),抑制炎癥反應(yīng)。HAECs的衰老會(huì)促進(jìn)血栓形成、抑制纖溶功能以及加劇炎癥反應(yīng),這些都是促進(jìn)AS發(fā)展的潛在危險(xiǎn)因素。使用GW9508激活內(nèi)皮細(xì)胞上GPR120的表達(dá),還可以減少衰老相關(guān)的β-半乳糖苷酶和其他細(xì)胞衰老因子,進(jìn)而改善ox-LDL誘導(dǎo)的細(xì)胞衰老。除此之外,GW9508激活內(nèi)皮細(xì)胞上的GPR120后,還可以促進(jìn)核因子-紅細(xì)胞因子2-相關(guān)因子2(nuclear factor-erythroid factor 2-related factor 2,Nrf2)易位進(jìn)入細(xì)胞核,該因子是一種能增加抗氧化蛋白產(chǎn)生的轉(zhuǎn)錄因子,發(fā)揮抗氧化作用[37-39]。
綜上,血管內(nèi)皮細(xì)胞中GPR120的激活可通過降低單核細(xì)胞黏附、抗炎以及抗氧化的方式抑制AS的發(fā)生和發(fā)展(見圖3,內(nèi)皮細(xì)胞部分)。
2.2 GPR120激活可抑制血管平滑肌細(xì)胞炎癥和氧化損傷
血管平滑肌細(xì)胞(vascular smooth muscle cells, VSMCs)在某些應(yīng)激條件下增殖、遷移至內(nèi)皮下后可分化形成泡沫細(xì)胞,促進(jìn)炎癥的發(fā)展,從而促進(jìn)AS的進(jìn)展。研究顯示[40],GPR120在VSMCs上的過表達(dá)可以促進(jìn)β-arrestin2表達(dá),并形成復(fù)合物,進(jìn)而抑制下游IL-6和MCP-1的表達(dá),發(fā)揮抗炎的作用;然而,類泛素小分子化修飾(small ubiquitin-like modifier,SUMO)后的GPR120與β-arrestin2的親和力降低,減弱了下游信號(hào)分子的轉(zhuǎn)導(dǎo)。EPA可通過激活VSMCs上的GPR120,抑制c-Jun氨基末端激酶c-Jun N-terminal kinase(TAK1-JNK)信號(hào)通路從而抑制炎癥,進(jìn)而抑制腹主動(dòng)脈斑塊的發(fā)展[41]。另外,GPR120與EPA結(jié)合后,可升高VSMCs中NADPH氧化酶4(NADPH oxidase 4, NOX-4)的表達(dá)水平,降低活性氧(reactive oxygen species, ROS)的生成,抑制kloth基因敲除小鼠的動(dòng)脈鈣化,從而抑制AS的發(fā)展[42]。
綜上,VSMCs中的GPR120的激活可發(fā)揮抗炎和抗氧化活性,降低斑塊組織內(nèi)氧化損傷,抑制AS的發(fā)生和發(fā)展(見圖3,血管平滑肌細(xì)胞部分)。
2.3 GPR120激活可調(diào)控巨噬細(xì)胞功能抵抗AS的發(fā)生和發(fā)展
巨噬細(xì)胞內(nèi)膽固醇的過度沉積,促進(jìn)了泡沫細(xì)胞的形成,并加劇了炎癥反應(yīng),具有調(diào)控AS的關(guān)鍵作用,而GPR120的激活可以從多個(gè)方面來抑制巨噬細(xì)胞源性泡沫細(xì)胞的形成。
2.3.1 促進(jìn)巨噬細(xì)胞內(nèi)膽固醇外流
AS斑塊中泡沫細(xì)胞的形成歸因于巨噬細(xì)胞內(nèi)膽固醇的攝取和外流之間的平衡紊亂。ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白A1(ATP binding cassette transport protein A1,ABCA1)和ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白G1(ATP binding cassette transport protein G1,ABCG1)是介導(dǎo)巨噬細(xì)胞源性泡沫細(xì)胞內(nèi)膽固醇流出的重要蛋白。其中,ABCA1介導(dǎo)膽固醇和磷脂外流至載脂蛋白A1(apolipoprotein A1,apoA-1),ABCG1主要介導(dǎo)氧化膽固醇流出至成熟的高密度脂蛋白(high density lipoprotein,HDL)顆粒上,其蛋白水平或功能的提升有助于促進(jìn)泡沫細(xì)胞內(nèi)膽固醇的外流,抑制動(dòng)脈斑塊的形成[43-44]。GW9508激活巨噬細(xì)胞上GPR120可升高細(xì)胞內(nèi)中性膽固醇酯水解酶(neutral cholesterol ester hydrolase,nCEH)活性,促進(jìn)細(xì)胞內(nèi)的膽固醇酯水解為游離膽固醇。另外,GPR120的激活可以通過磷脂酶C(phospholipase C, PLC)/鈣調(diào)蛋白激活激酶(calcium/calmodulin dependent protein kinases,CaMK)/腺苷酸活化蛋白激酶(adenosine monophosphate(AMP)-activated protein kinase,AMPK)信號(hào)通路提高胞內(nèi)ABCA1和ABCG1的表達(dá),進(jìn)而增加泡沫細(xì)胞內(nèi)游離膽固醇的外流[38, 45]。然而,Liang等[46]卻發(fā)現(xiàn),飲食中的ω-3脂肪酸(DHA)可通過GPR120顯著降低前列腺癌小鼠來源的原代骨髓巨噬細(xì)胞(bone marrow-derived macrophages,BMDMs)中ABCA1的基因表達(dá)水平,抑制細(xì)胞內(nèi)膽固醇外流,這與前文所述GW9508的作用結(jié)果完全相反,可能與腫瘤微環(huán)境對(duì)BMDMs的影響有關(guān),或是DHA和GW9508與GPR120結(jié)合后激發(fā)的下游信號(hào)通路不同導(dǎo)致。由于GPR120的配體較多,其激活后對(duì)泡沫細(xì)胞內(nèi)膽固醇流出的影響還需進(jìn)一步探究。
2.3.2 調(diào)控巨噬細(xì)胞極化
巨噬細(xì)胞主要有M1和M2兩種亞型。M1型巨噬細(xì)胞在斑塊內(nèi)起到誘發(fā)炎癥、誘導(dǎo)ROS產(chǎn)生以及損傷周圍組織的作用;而M2型巨噬細(xì)胞則具有抑制炎癥、清除細(xì)胞碎片和凋亡細(xì)胞、促進(jìn)組織修復(fù)和纖維化的作用[47-48]。研究發(fā)現(xiàn),在ApoE基因敲除小鼠中,外源性激動(dòng)劑GW9508 激活GPR120可降低主動(dòng)脈斑塊大小,且斑塊內(nèi)促炎性的M1型巨噬細(xì)胞(CD68的免疫熒光水平)的數(shù)量明顯降低,但GW9508對(duì)M2型巨噬細(xì)胞的水平無顯著影響[49]。另有研究表明,一種效力更強(qiáng)且更具選擇性的GPR120激動(dòng)劑(TUG-891)可顯著升高血漿中嗜酸性粒細(xì)胞趨化因子(CCL11/eotaxin)和粒細(xì)胞集落刺激因子(granulocyte colony stimulating factor,G-CSF)的水平,不僅可以降低斑塊內(nèi)M1型巨噬細(xì)胞數(shù)量、還可以升高斑塊內(nèi)M2型巨噬細(xì)胞數(shù)量,進(jìn)而抑制炎癥,降低AS斑塊大小和壞死核心面積[50]。以上結(jié)果提示GPR120的激活可以通過調(diào)控巨噬細(xì)胞表型分化,進(jìn)而抑制AS斑塊內(nèi)的炎癥水平。
2.3.3 調(diào)控巨噬細(xì)胞遷移
巨噬細(xì)胞遷移是決定AS早期病變的一個(gè)重要因素,巨噬細(xì)胞向組織損傷部位遷移可能會(huì)導(dǎo)致富含膽固醇的泡沫細(xì)胞增加[51]。Stuttgen等[38]發(fā)現(xiàn),GPR120的激活可以影BMDMs遷出斑塊等受損部位。此外,由于雄性小鼠BMDMs上GPR120表達(dá)水平更高,其BMDMs的遷出率更加高。Yang等[52]也發(fā)現(xiàn),在體外培養(yǎng)的RAW264.7細(xì)胞中,EPA和DHA可通過GPR120顯著降低促炎性巨噬細(xì)胞的遷移率、降低了腫瘤壞死因子-α(tumor necrosis
factor-alpha,TNF-α)水平,升高了CD206水平(抗炎性巨噬細(xì)胞的標(biāo)志物),進(jìn)而抑制了巨噬細(xì)胞介導(dǎo)的炎癥。
因此,GPR120的激活不僅可抑制促炎性巨噬細(xì)胞的遷移,還可促進(jìn)動(dòng)脈斑塊內(nèi)巨噬細(xì)胞從受損部位遷出,這有助于減少斑塊的形成,抑制AS的發(fā)展。
2.3.4 抑制炎癥
GPR120的激活可以抑制小鼠單核細(xì)胞系(RAW264.7細(xì)胞)和原代腹腔巨噬細(xì)胞發(fā)揮抗炎作用。研究顯示,GPR120的激活可顯著抑制RAW264.7細(xì)胞內(nèi)炎癥因子的分泌,其主要通過GPR120/β-arrestin2信號(hào)轉(zhuǎn)導(dǎo)途徑發(fā)揮抗炎作用。一方面GPR120被激活,細(xì)胞內(nèi)的β-arrestin2會(huì)將GPR120受體內(nèi)化形成復(fù)合物,再與TAB1結(jié)合,繼而阻斷TAB1與TAK1結(jié)合,抑制TAK1磷酸化從而抑制下游炎性因子的釋放[13-14, 19]。另一方面,GPR120的激活可降低Toll樣受體4(toll-like receptor 4,TLR4)的表達(dá),從而抑制LPS刺激引起的RAW267.4細(xì)胞炎癥反應(yīng),GW9508抑制了LPS刺激誘導(dǎo)的人核因子κB抑制物激酶β
(inhibitor of nuclear factor kappa-B kinase subunit beta,IKKβ) 和JNK的磷酸化,阻止了i-κb的降解,抑制TNF-α和IL-6的分泌。此外,GPR120及其下游支架蛋白β-arrestin2的激活還可抑制ω-3脂肪酸誘導(dǎo)的NLRP3炎癥小體的組裝。NLRP3炎癥小體響應(yīng)病原體感染或危險(xiǎn)信號(hào),促進(jìn)炎性細(xì)胞因子(IL-1β、IL-18、IL-33等)的成熟和釋
放[53-54]。越來越多的證據(jù)表明NLRP3炎癥小體參與AS的發(fā)展,并被確定為治療AS的新靶點(diǎn)[55-56]。
綜上,GPR120的激活可促進(jìn)巨噬細(xì)胞內(nèi)膽固醇的流出、調(diào)控巨噬細(xì)胞向M2型分化和遷移以及抗炎等方面抑制巨噬細(xì)胞源性泡沫細(xì)胞的形成,抵抗AS的發(fā)生和發(fā)展(見圖3,單核/巨噬細(xì)胞部分)。
3 結(jié)語與展望
目前研究已證實(shí),GPR120的激活具有改善機(jī)體胰島素抵抗、抑制炎癥反應(yīng)、調(diào)控細(xì)胞凋亡等多種功能。近年來多將其作為治療2型糖尿病、抗炎、抗癌的藥物靶點(diǎn)進(jìn)行研究,而將其與AS治療關(guān)聯(lián)的報(bào)道目前較少。本文顯示,內(nèi)皮細(xì)胞和血管平滑肌細(xì)胞的GPR120與配體結(jié)合后可介導(dǎo)多種信號(hào)轉(zhuǎn)導(dǎo),發(fā)揮抑制單核細(xì)胞黏附、抗氧化、抗炎和抑制動(dòng)脈斑塊鈣化的功能。巨噬細(xì)胞源性泡沫細(xì)胞的形成是AS發(fā)生和發(fā)展的重要標(biāo)志,而GPR120是唯一在巨噬細(xì)胞高表達(dá)的G蛋白偶聯(lián)受體。GPR120的激活不僅有抑制炎癥的作用,還有促進(jìn)泡沫細(xì)胞內(nèi)膽固醇流出的作用?;谝陨献饔脵C(jī)制,GPR120可作為治療AS疾病的潛在藥物靶點(diǎn)。
自發(fā)現(xiàn)GPR120是PUFA的受體以來,研究者已投入大量精力來探究和合成具有高選擇特異性且強(qiáng)效的GPR120激動(dòng)劑。目前已發(fā)現(xiàn)的GPR120配體,既有內(nèi)源性配體(ω-3 PUFAs),又有外源性配體或激動(dòng)劑(GW9508、9-PAHSA和TUG-891等),但對(duì)于這些配體的研究也僅限于基礎(chǔ)研究階段,用于臨床階段的研究少有報(bào)道。另外,GPR120與不同配體結(jié)合后可激活細(xì)胞內(nèi)不同的信號(hào)通路,可據(jù)此開發(fā)出以GPR120為靶點(diǎn)具有不同作用的抗AS治療藥物。當(dāng)然,這些都需要開展更多的體內(nèi)研究,從而為AS的防治提供新的策略。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] GHOSH A, GAO L, THAKUR A, et al. Role of free fatty acids in endothelial dysfunction[J]. J Biomed Sci, 2017, 24(1): 50. DOI: 10.1186/s12929-017-0357-5.
[2] ADDIS P, BALI U, BARON F, et al. Key aspects of modern GPCR drug discovery[J]. SLAS Discov, 2024, 29(1): 1-22. DOI: 10.1016/j.slasd.2023.08.007.
[3] AL MAHRI S, MALIK S S, AL IBRAHIM M, et al. Free fatty acid receptors (FFARs) in adipose: physiological role and therapeutic outlook[J]. Cells, 2022, 11(4): 750. DOI: 10.3390/cells11040750.
[4] MILLIGAN G, ALVAREZ-CURTO E, HUDSON B D, et al. FFA4/GPR120: pharmacology and therapeutic opportunities[J].
Trends Pharmacol Sci, 2017, 38(9): 809-821. DOI: 10.1016/j.tips.2017.06.006.
[5] LU D, HE A, TAN M, et al. Liver ACOX1 regulates levels of circulating lipids that promote metabolic health through adipose remodeling[J]. Nat Commun, 2024, 15(1): 4214. DOI: 10.1038/s41467-024-48471-2.
[6] NAKAMOTO K, TOKUYAMA S. Docosahexaenoic acid attenuates the progression of nonalcoholic steatohepatitis by suppressing the adipocyte inflammation via the G protein-coupled receptor 120/free fatty acid receptor 4 pathway[J].
Pharmacology, 2022, 107(5-6): 330-338. DOI: 10.1159/
000522117.
[7] 趙妍妍, 梁向艷, 李曉, 等. 游離脂肪酸受體4(FFAR4/GPR120)調(diào)控巨噬細(xì)胞功能的研究進(jìn)展[J]. 細(xì)胞與分子免疫學(xué)雜志, 2018, 34(6): 565-570. DOI: 10.13423/j.cnki.cjcmi.008625.
ZHAO Y Y, LIANG X Y, LI X, et al. Research progress of free fatty acid receptor 4(FFAR4/GPR120) regulating macrophage function[J]. Chin J Cell Mol Immunol, 2018, 34(6): 565-570. DOI: 10.13423/j.cnki.cjcmi.008625.
[8] MAO C, XIAO P, TAO X N, et al. Unsaturated bond recognition leads to biased signal in a fatty acid receptor[J]. Science, 2023, 380(6640): eadd6220. DOI: 10.1126/science.add6220.
[9] MONIRI N H. Free-fatty acid receptor-4 (GPR120): cellular and molecular function and its role in metabolic disorders[J]. Biochem Pharmacol, 2016, 110/111: 1-15. DOI: 10.1016/j.bcp.
2016.01.021.
[10] TIAN M, WU Z, HENG J, et al. Novel advances in understanding fatty acid-binding G protein-coupled receptors and their roles in controlling energy balance[J]. Nutr Rev, 2022, 80(2): 187-199. DOI: 10.1093/nutrit/nuab021.
[11] ZHAO Y F. Free fatty acid receptors in the endocrine regulation of glucose metabolism: insight from gastrointestinal-pancreatic-adipose interactions[J]. Front Endocrinol (Lausanne), 2022, 13: 956277. DOI: 10.3389/fendo.2022.956277.
[12] QUESADA-LóPEZ T, GAVALDà-NAVARRO A, MORóN-ROS S, et al. GPR120 controls neonatal brown adipose tissue thermogenic induction[J]. Am J Physiol Endocrinol Metab, 2019, 317(5): E742-E750. DOI: 10.1152/ajpendo.00081.2019.
[13] SONG T, YANG Y, ZHOU Y, et al. GPR120: a critical role in adipogenesis, inflammation, and energy metabolism in adipose tissue[J]. Cell Mol Life Sci, 2017, 74(15): 2723-2733. DOI: 10.1007/s00018-017-2492-2.
[14] 趙乃倩, 榮青峰, 張?chǎng)危?等. GPR120的結(jié)構(gòu)特征、生物學(xué)功能及作用機(jī)制[J]. 生理科學(xué)進(jìn)展, 2013, 44(4): 291-296. DOI: 10.3969/j.issn.0559-7765.2013.04.010.
ZHAO N Q, RONG Q F, ZHANG X, et al. Structural characteristics, biological functions and mechanism of GPR120[J]. Prog Physiol Sci, 2013, 44(4): 291-296. DOI: 10.3969/j.issn.
0559-7765.2013.04.010.
[15] JAIME-LARA R B, BROOKS B E, VIZIOLI C, et al. A systematic review of the biological mediators of fat taste and
smell[J]. Physiol Rev, 2023, 103(1): 855-918. DOI: 10.1152/physrev.00061.2021.
[16] KHAN A S, KEAST R, KHAN N A. Preference for dietary fat: From detection to disease[J]. Prog Lipid Res, 2020, 78: 101032. DOI: 10.1016/j.plipres.2020.101032.
[17] 趙妍妍, 張麗君, 張小春, 等. G蛋白偶聯(lián)受體120在呼吸系統(tǒng)疾病中的作用 [J]. 基礎(chǔ)醫(yī)學(xué)與臨床, 2025, 45(2): 244-248. DOI: 10.16352/j.issn.1001-6325.2025.02.0244.
ZHAO Y Y, ZHANG L J, ZHANG X C, et al. Role of G protein-coupled receptor 120 in respiratory diseases [J]. Basic amp; Clin Med, 2025, 45(02): 244-248. DOI: 10.16352/j.issn.1001-6325.2025.02.0244.
[18] KARMOKAR P F, MONIRI N H. Oncogenic signaling of the free-fatty acid receptors FFA1 and FFA4 in human breast carcinoma cells[J]. Biochem Pharmacol, 2022, 206: 115328. DOI: 10.1016/j.bcp.2022.115328.
[19] OH D Y, TALUKDAR S, BAE E J, et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects[J]. Cell, 2010, 142(5): 687-698. DOI: 10.1016/j.cell.2010.07.041.
[20] YORE M M, SYED I, MORAES-VIEIRA P M, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects[J]. Cell, 2014, 159(2): 318-332. DOI: 10.1016/j.cell.2014.09.035.
[21] ICHIMURA A, HARA T, HIRASAWA A. Regulation of energy homeostasis via GPR120[J]. Front Endocrinol (Lausanne), 2014, 5: 111. DOI: 10.3389/fendo.2014.00111.
[22] SON S E, KIM N J, IM D S. Development of free fatty acid receptor 4 (FFA4/GPR120) agonists in health science[J]. Biomol Ther (Seoul), 2021, 29(1): 22-30. DOI: 10.4062/biomolther.2020.213.
[23] HILGER D, MASUREEL M, KOBILKA B K. Structure and dynamics of GPCR signaling complexes[J]. Nat Struct Mol Biol, 2018, 25(1): 4-12. DOI: 10.1038/s41594-017-0011-7.
[24] KIMURA I, ICHIMURA A, OHUE-KITANO R, et al. Free fatty acid receptors in health and disease[J]. Physiol Rev, 2020, 100(1): 171-210. DOI: 10.1152/physrev.00041.2018.
[25] WESS J. The two β-arrestins regulate distinct metabolic processes: studies with novel mutant mouse models[J]. Int J Mol Sci, 2022, 23(1): 495. DOI: 10.3390/ijms23010495.
[26] RAJAGOPAL S, SHENOY S K. GPCR desensitization: acute and prolonged phases[J]. Cell Signal, 2018, 41: 9-16. DOI: 10.1016/j.cellsig.2017.01.024.
[27] 胡蘊(yùn)然, 周琳, 楊慧, 等. 游離脂肪酸受體4作為呼吸系統(tǒng)疾病潛在治療靶點(diǎn)研究進(jìn)展[J]. 重慶醫(yī)學(xué), 2023, 52(13): 2051-2055. DOI: 10.3969/j.issn.1671-8348.2023.13.026.
HU Y R, ZHOU L, YANG H, et al. Research progress of free fatty acid receptor 4 as a potential therapeutic target for respiratory system diseases[J]. Chongqing Med, 2023, 52(13): 2051-2055. DOI: 10.3969/j.issn.1671-8348.2023.13.026.
[28] BURNS R N, MONIRI N H. Agonism with the omega-3 fatty acids alpha-linolenic acid and docosahexaenoic acid mediates phosphorylation of both the short and long isoforms of the human GPR120 receptor[J]. Biochem Biophys Res Commun, 2010, 396(4): 1030-1035. DOI: 10.1016/j.bbrc.2010.05.057.
[29] BURNS R N, SINGH M, SENATOROV I S, et al. Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr347, Ser350, and Ser357 in the C-terminal tail[J]. Biochem Pharmacol, 2014, 87(4): 650-659. DOI: 10.1016/j.bcp.2013.12.016.
[30] BUTCHER A J, HUDSON B D, SHIMPUKADE B, et al. Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4[J]. J Biol Chem, 2014, 289(26): 18451-18465. DOI: 10.1074/jbc.M114.568816.
[31] TIAN K, XU Y, SAHEBKAR A, et al. CD36 in atherosclerosis: pathophysiological mechanisms and therapeutic implications[J]. Curr Atheroscler Rep, 2020, 22(10): 59. DOI: 10.1007/s11883-020-00870-8.
[32] MIANO J M, FISHER E A, MAJESKY M W. Fate and state of vascular smooth muscle cells in atherosclerosis[J]. Circulation, 2021, 143(21): 2110-2116. DOI: 10.1161/circulationaha.120.049922.
[33] JEBARI-BENSLAIMAN S, GALICIA-GARCíA U, LARREA-SEBAL A, et al. Pathophysiology of atherosclerosis[J]. Int J Mol Sci, 2022, 23(6): 3346. DOI: 10.3390/ijms23063346.
[34] DORAN A C. Inflammation resolution: implications for atherosclerosis[J]. Circ Res, 2022, 130(1): 130-148. DOI: 10.1161/circresaha.121.319822.
[35] KIEPURA A, STACHYRA K, OLSZANECKI R. Anti-atherosclerotic potential of free fatty acid receptor 4 (FFAR4)[J].
Biomedicines, 2021, 9(5): 467. DOI: 10.3390/biomedicines
9050467.
[36] JIANG T, JIANG D, YOU D, et al. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells[J]. Chem Biol Interact, 2020, 316: 108916. DOI: 10.1016/j.cbi.2019.108916.
[37] LIU R, CHENG F, ZENG K, et al. GPR120 agonist GW9508 ameliorated cellular senescence induced by ox-LDL[J]. ACS Omega, 2020, 5(50): 32195-32202. DOI: 10.1021/acsomega.0c03581.
[38] STUTTGEN G M, SAHOO D. FFAR4: a new player in cardiometabolic disease[J]. Endocrinology, 2021, 162(8): bqab111. DOI: 10.1210/endocr/bqab111.
[39] MA S, FAN L, CAO F. Combating cellular senescence by sirtuins: implications for atherosclerosis[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(7): 1822-1830. DOI: 10.1016/j.bbadis.2018.06.011.
[40] YAN C H, LIU H W, TIAN X X, et al. AMPKα2 controls the anti-atherosclerotic effects of fish oils by modulating the SUMOylation of GPR120[J]. Nat Commun, 2022, 13(1): 7721. DOI: 10.1038/s41467-022-34996-x.
[41] KAMATA R, BUMDELGER B, KOKUBO H, et al. EPA prevents the development of abdominal aortic aneurysms through gpr-120/ffar-4[J]. PLoS One, 2016, 11(10): e0165132. DOI: 10.1371/journal.pone.0165132.
[42] NAKAMURA K, MIURA D, SAITO Y, et al. Eicosapentaenoic acid prevents arterial calcification in klotho mutant mice[J]. PLoS One, 2017, 12(8): e0181009. DOI: 10.1371/journal.pone.0181009.
[43] GROENEN A G, HALMOS B, TALL A R, et al. Cholesterol efflux pathways, inflammation, and atherosclerosis[J]. Crit Rev Biochem Mol Biol, 2021, 56(4): 426-439. DOI: 10.1080/10409238.2021.1925217.
[44] CHEN L, ZHAO Z W, ZENG P H, et al. Molecular mechanisms for ABCA1-mediated cholesterol efflux[J]. Cell Cycle, 2022, 21(11): 1121-1139. DOI: 10.1080/15384101.2022.2042777.
[45] AN T, ZHANG X, LI H, et al. GPR120 facilitates cholesterol efflux in macrophages through activation of AMPK signaling pathway[J]. Febs J, 2020, 287(23): 5080-5095. DOI: 10.1111/febs.15310.
[46] LIANG P, HENNING S M, GROGAN T, et al. Effect of omega-3 fatty acid diet on prostate cancer progression and cholesterol efflux in tumor-associated macrophages-dependence on GPR120[J]. Prostate Cancer Prostatic Dis, 2024, 27(4): 700-708. DOI: 10.1038/s41391-023-00745-4.
[47] WU J, HE S, SONG Z, et al. Macrophage polarization states in atherosclerosis[J]. Front Immunol, 2023, 14: 1185587. DOI: 10.3389/fimmu.2023.1185587.
[48] JINNOUCHI H, GUO L, SAKAMOTO A, et al. Diversity of macrophage phenotypes and responses in atherosclerosis[J]. Cell Mol Life Sci, 2020, 77(10): 1919-1932. DOI: 10.1007/s00018-019-03371-3.
[49] SUSKI M, KIEPURA A, WI?NIEWSKA A, et al. Anti-atherosclerotic action of GW9508-Free fatty acid receptors activator-In apoE-knockout mice[J]. Pharmacol Rep, 2019,
71(4): 551-555. DOI: 10.1016/j.pharep.2019.02.014.
[50] KIEPURA A, STACHYRA K, WI?NIEWSKA A, et al. The anti-atherosclerotic action of FFAR4 agonist TUG-891 in ApoE-knockout mice is associated with increased macrophage polarization towards M2 phenotype[J]. Int J Mol Sci, 2021,
22(18): 9772. DOI: 10.3390/ijms22189772.
[51] TOMAS L, PRICA F, SCHULZ C. Trafficking of mononuclear phagocytes in healthy arteries and atherosclerosis[J]. Front Immunol, 2021, 12: 718432. DOI: 10.3389/fimmu.
2021.718432.
[52] YANG X, LI X, HU M, et al. EPA and DHA differentially improve insulin resistance by reducing adipose tissue inflammation-targeting GPR120/PPARγ pathway[J]. J Nutr Biochem, 2024, 130: 109648. DOI: 10.1016/j.jnutbio.
2024.109648.
[53] YAN Y, JIANG W, SPINETTI T, et al. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation[J]. Immunity, 2013, 38(6):
1154-1163. DOI: 10.1016/j.immuni.2013.05.015.
[54] ZHU P, ZHANG J J, CEN Y, et al. High endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 mice attenuate high-fat diet-induced insulin resistance by inhibiting NLRP3 inflammasome activation via Akt/GSK-3β/TXNIP Pathway[J].
Molecules, 2022, 27(19): 6384. DOI: 10.3390/molecules
27196384.
[55] KONG P, CUI Z Y, HUANG X F, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic
intervention[J]. Signal Transduct Target Ther, 2022, 7(1): 131. DOI: 10.1038/s41392-022-00955-7.
[56] BURGER F, BAPTISTA D, ROTH A, et al. NLRP3 inflammasome
activation controls vascular smooth muscle cells phenotypic switch in atherosclerosis[J]. Int J Mol Sci, 2021,23(1): 340. DOI: 10.3390/ijms23010340.
(責(zé)任編輯:江玉霞 洪悅民)