【摘要】 目的 研究葡萄糖氨基轉(zhuǎn)移酶3(GCNT3)對(duì)肺腺癌細(xì)胞的增殖、凋亡、侵襲及上皮-間質(zhì)轉(zhuǎn)化(EMT)的影響。方法 收集2020至2023年在上海交通大學(xué)醫(yī)學(xué)院附屬仁濟(jì)醫(yī)院浦南分院行手術(shù)治療的30例肺腺癌患者癌組織及其對(duì)應(yīng)的癌旁正常組織。利用實(shí)時(shí)熒光定量PCR(RT-qPCR)檢測(cè)肺腺癌和癌旁正常組織中GCNT3的表達(dá)水平。體外培養(yǎng)人肺腺癌H1650細(xì)胞,分別轉(zhuǎn)染GCNT3短發(fā)夾RNA(Sh GCNT3組)和Lipofectamine 2000(NC組),采用RT-qPCR法檢測(cè)GCNT3 mRNA相對(duì)表達(dá)量、細(xì)胞計(jì)數(shù)試劑盒-8(CCK-8)法評(píng)估NC組和Sh GCNT3組細(xì)胞的增殖活力、流式細(xì)胞儀分析GCNT3對(duì)H1650細(xì)胞凋亡的影響,通過(guò)Transwell實(shí)驗(yàn)檢測(cè)GCNT3對(duì)H1650細(xì)胞侵襲能力的影響,并應(yīng)用蛋白免疫印跡法檢測(cè)GCNT3對(duì)H1650細(xì)胞中EMT相關(guān)蛋白的表達(dá)變化。結(jié)果 與癌旁正常組織相比,肺腺癌組織中GCNT3 mRNA相對(duì)表達(dá)量增加(P lt; 0.05)。與NC組相比,Sh GCNT3組的GCNT3 mRNA相對(duì)表達(dá)量下降、細(xì)胞增殖率降低,細(xì)胞侵襲能力減弱,EMT表型受到抑制,細(xì)胞凋亡率升高(均P lt; 0.05)。結(jié)論 GCNT3基因促進(jìn)肺腺癌細(xì)胞的增殖、侵襲和EMT,同時(shí)抑制細(xì)胞凋亡。
【關(guān)鍵詞】 葡萄糖氨基轉(zhuǎn)移酶3;肺腺癌;增殖;凋亡;侵襲;上皮-間質(zhì)轉(zhuǎn)化
Effect of GCNT3 on proliferation, apoptosis and invasion of lung adenocarcinoma H1650 cells
ZHANG Qing, FENG Qiliang, CHEN Rongrong, WANG Nini, ZHANG Chengshi, WU Lingzhi , ZHAO Yunfeng
(Department of Respiratory Medicine, Punan Hospital, Renji Hospital Affiliated of Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China)
Corresponding author: WU Lingzhi, E-mail: 472895226@qq.com; ZHAO Yunfeng, E-mail: yfzh71@126.com
【Abstract】 Objective To study the effect of glucosaminyl (N-acetyl) transferase 3 (GCNT3) on the proliferation, apoptosis, invasion and epithelial mesenchymal transition (EMT) of lung adenocarcinoma cells. Methods Lung adenocarcinoma and matched paracancerous tissue specimens were collected from 30 lung adenocarcinoma patients undergoing surgical resection in Punan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine from 2020 to 2023. The expression level of GCNT3 in lung adenocarcinoma and paracancerous tissues was detected using RT-qPCR. Human lung adenocarcinoma H1650 cells were cultured in vitro, and transfected with GCNT3 small interfering RNA (Sh GCNT3 group) and Lipofectamine 2000 (NC group). The relative expression level of GCNT3 mRNA was detected by RT-qPCR. The proliferation viability of cells in the NC and Sh GCNT3 groups was assessed by CCK-8 assay. The effect of GCNT3 on the apoptosis of H1650 cells was analyzed using flow cytometry. The effect of GCNT3 on the invasion ability of H1650 cells was detected by Transwell assay. The effect of GCNT3 on the changes in the expression levels of EMT-related proteins in H1650 cells was determined by Western blot. Results The relative expression level of GCNT3 mRNA in lung adenocarcinoma tissues was significantly higher compared with that in paracancerous tissues (P lt; 0.05). Compared with the NC group, the relative expression level of GCNT3 mRNA was down-regulated, the proliferation rate of cells was significantly reduced, the cell invasion ability was weakened, the EMT phenotype was inhibited, and the apoptosis rate was significantly increased in the Sh GCNT3 group (all P lt; 0.05). Conclusion GCNT3 gene promotes the proliferation, invasion and EMT of lung adenocarcinoma cells and inhibits cell apoptosis.
【Key words】 Glucosaminyl (N-acetyl) transferase 3; Lung adenocarcinoma; Proliferation; Apoptosis; Invasion;
Epithelial mesenchymal transition
肺癌是全球發(fā)病率和病死率最高的癌癥[1-3]。作為非小細(xì)胞肺癌的主要類型,近年來(lái)肺腺癌的發(fā)病率增長(zhǎng)迅速,已超過(guò)肺鱗癌,約占肺癌病例的40%[4-6]。盡管分子靶向治療在肺腺癌的治療中取得了顯著進(jìn)展,但全球范圍內(nèi)該病患者的5年生存率仍不足20%[7-9]。因此,亟須尋找新的高特異度和高靈敏度的生物標(biāo)志物,以改善肺腺癌的診斷、預(yù)后及治療策略。葡萄糖氨基
轉(zhuǎn)移酶3[glucosaminyl(N-acetyl)transferase 3,GCNT3]是一種黏蛋白型合酶,在聚糖合成中發(fā)揮重要作用。研究表明,GCNT3在乳腺癌、前列腺癌、結(jié)腸癌、胃癌和肝癌等多種癌癥中具有關(guān)鍵作用,并與上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)密切相關(guān)[10-18]。GCNT3高表達(dá)可促進(jìn)細(xì)胞的增殖、遷移和侵襲。然而,GCNT3在肺腺癌中的表達(dá)及其對(duì)癌細(xì)胞生物學(xué)行為的影響尚缺乏詳細(xì)研究。本研究旨在探討GCNT3基因?qū)Ψ蜗侔┘?xì)胞增殖、凋亡和侵襲的影響,為肺腺癌的診斷和治療提供新的潛在生物標(biāo)志物及分子靶點(diǎn)。
1 材料與方法
1.1 材 料
收集2020至2023年在本院行手術(shù)治療的30例肺腺癌患者的癌組織及其對(duì)應(yīng)的癌旁正常組織。納入標(biāo)準(zhǔn):經(jīng)病理活組織檢查(活檢)確診為肺腺癌,并有完整的臨床和病理資料,癌旁正常組織取自距離腫瘤邊緣至少2 cm處,確保樣本無(wú)腫瘤細(xì)胞浸潤(rùn)。排除標(biāo)準(zhǔn):非原發(fā)性腫瘤者,合并其他腫瘤者。30例肺腺癌患者中,男14例、女16例,患者年齡為42~65歲,中位年齡為53歲。所有患者均簽署知情同意書,研究方案經(jīng)醫(yī)院倫理委員會(huì)批準(zhǔn)[批件號(hào):(2023)醫(yī)倫第(018)號(hào)]。為避免交叉污染,采樣過(guò)程嚴(yán)格控制。組織取材后,部分樣本經(jīng)4%多聚甲醛固定以保存組織結(jié)構(gòu),另一部分樣本迅速置于液氮中冷凍保存,并轉(zhuǎn)移至-80 ℃超低溫保存。
1.2 主要試劑與儀器
H1650細(xì)胞株購(gòu)自美國(guó)模式菌種收集中心,DMEM培養(yǎng)基、胎牛血清、1%青鏈霉素購(gòu)自美國(guó)Gibco公司,短發(fā)夾RNA(short hairpin RNA,ShRNA)慢病毒質(zhì)粒、TRIzol試劑、SYBR Green試劑盒和Transwell小室購(gòu)自德國(guó)Sigma-Aldrich公司;Lipofectamine 2000轉(zhuǎn)染試劑盒購(gòu)自美國(guó)Invitrogen公司;實(shí)時(shí)熒光定量PCR(quantitative real-time polymerase chain reaction,RT-qPCR)試劑盒購(gòu)自日本TaKaRa公司;RT-qPCR引物購(gòu)自上海生工生物工程有限公司;Annexin V-FITC細(xì)胞凋亡檢測(cè)試劑盒、二喹啉甲酸(bicinchoninic acid,BCA)法試劑盒和細(xì)胞計(jì)數(shù)試劑盒-8(cell counting kit-8,CCK-8)購(gòu)自上海碧云天生物技術(shù)公司。
1.3 細(xì)胞培養(yǎng)與轉(zhuǎn)染
將H1650細(xì)胞調(diào)整至1×104 /mL,每組設(shè)3個(gè)復(fù)孔,置于含10%胎牛血清和1%青鏈霉素的DMEM培養(yǎng)基中,在37 ℃、5% CO2的條件下進(jìn)行培養(yǎng)和傳代。按照Lipofectamine 2000試劑操作說(shuō)明,將100 nmol/L的GCNT3 ShRNA(靶序列:5'-GACCCAAAGGTAGATGATAAT-3')轉(zhuǎn)染入H1650細(xì)胞,并將細(xì)胞暴露于2 mg/L的嘌呤霉素溶液中篩選。轉(zhuǎn)染后的細(xì)胞設(shè)為Sh GCNT3組,在含1 mg/L嘌呤霉素的培養(yǎng)基中持續(xù)培養(yǎng)72 h以維持穩(wěn)定性??瞻讓?duì)照組即Sh NC組,使用Sh NC通過(guò)Lipofectamine 2000轉(zhuǎn)染。
1.4 實(shí)時(shí)熒光定量PCR法檢測(cè)GCNT3的mRNA表達(dá)水平
每組設(shè)3個(gè)復(fù)孔,使用TRIzol試劑提取樣本總RNA,然后依據(jù)RT-qPCR試劑盒的操作說(shuō)明書,將提取的RNA逆轉(zhuǎn)錄為cDNA,并以cDNA為模板進(jìn)行RT-qPCR擴(kuò)增。GCNT3正向引物:5'-
TCTGGGCTGCTATATGCTGC-3',GCNT3反向引物:5'-GTTGATAGACCTCTTTGCTGGAA-3';β-actin正向引物:5'-CATGTACGTTGCTATCCAGGC-3',β-actin反向引物:5'-CTCCTTAATGTCACGCACGAT-3'。產(chǎn)物長(zhǎng)度控制為163 bp,β-actin用作內(nèi)參基因,作為內(nèi)源性對(duì)照。GCNT3基因的相對(duì)表達(dá)量采用2-ΔΔCt法計(jì)算。
1.5 細(xì)胞計(jì)數(shù)試劑盒-8法檢測(cè)細(xì)胞增殖
將Sh NC組與Sh GCNT3組H1650細(xì)胞以1×104 /mL接種于96孔培養(yǎng)板中,每組設(shè)3個(gè)復(fù)孔,分別在37 ℃、5% CO2條件下培養(yǎng)24、48、72 h。培養(yǎng)結(jié)束后,每孔加入10 μL CCK-8試劑,繼續(xù)孵育2 h。以磷酸鹽緩沖液(phosphate buffer saline,PBS)為空白對(duì)照。隨后使用酶標(biāo)儀在450 nm
波長(zhǎng)下測(cè)定各孔的吸光度(A)值。細(xì)胞增殖率=(A實(shí)驗(yàn)孔-A空白對(duì)照孔)/(A對(duì)照孔-A空白對(duì)照孔)×100%。
1.6 流式細(xì)胞儀檢測(cè)H1650細(xì)胞凋亡
當(dāng)Sh NC組與Sh GCNT3組H1650細(xì)胞融合度達(dá)70%~80%時(shí),使用胰蛋白酶消化并用PBS洗滌,制備相應(yīng)的細(xì)胞懸液。每份細(xì)胞懸液中加入5 μL Annexin V-FITC試劑,在避光條件下孵育15 min,然后加入5 μL PI(50 mg/L)染色10 min,并向每管加入400 μL結(jié)合緩沖液。最后,使用流式細(xì)胞儀進(jìn)行細(xì)胞凋亡分析。凋亡率為早期凋亡細(xì)胞和晚期凋亡細(xì)胞百分率之和。每組設(shè)3個(gè)復(fù)孔。
1.7 Transwell法檢測(cè)H1650細(xì)胞的侵襲能力
將Sh NC組與Sh GCNT3組H1650細(xì)胞調(diào)整至1.5×105 cells/mL,將基質(zhì)膠與DMEM培養(yǎng)基按1∶5的比例在冰上混合制備。然后,使用移液槍將稀釋后的基質(zhì)膠緩慢均勻地鋪于Transwell上室。接著,在Transwell上室內(nèi)加入300 μL細(xì)胞懸液,而下室添加500 μL含10% FBS的DMEM培養(yǎng)基。細(xì)胞培養(yǎng)48 h后,固定并染色穿過(guò)Transwell膜的細(xì)胞,在顯微鏡下進(jìn)行觀察。
1.8 蛋白免疫印跡法檢測(cè)上皮-間質(zhì)轉(zhuǎn)化相關(guān)蛋白的表達(dá)水平
收集各組細(xì)胞,使用PBS洗滌2次以去除上清液。隨后,使用細(xì)胞裂解液裂解細(xì)胞并提取總蛋白,用BCA試劑盒進(jìn)行定量。等量的蛋白質(zhì)樣品通過(guò)SDS-PAGE分離,并轉(zhuǎn)移至PVDF膜上。膜上用1%脫脂牛奶封閉1 h,然后用含0.1%吐溫-20的PBS洗膜3次,每次10 min,接著將膜與相應(yīng)的一抗在4 ℃搖床上孵育過(guò)夜,再用含0.1%吐溫-20的PBS洗膜3次,每次10 min。隨后,用結(jié)合辣根過(guò)氧化物酶的二抗孵育。使用ECL化學(xué)發(fā)光液進(jìn)行曝光并拍照,以GAPDH作為內(nèi)參。蛋白免疫印跡法結(jié)果使用ImageJ軟件進(jìn)行定量分析。
1.9 統(tǒng)計(jì)學(xué)方法
采用GraphPad Prism 8.0進(jìn)行統(tǒng)計(jì)分析和圖形數(shù)據(jù)表示,所有數(shù)據(jù)以表示,2組間比較采取Student-t檢驗(yàn)。每項(xiàng)實(shí)驗(yàn)均重復(fù)進(jìn)行3次,數(shù)據(jù)符合統(tǒng)計(jì)分析的假設(shè)。雙側(cè)P lt; 0.05為差異具有統(tǒng)計(jì)學(xué)意義。
2 結(jié) 果
2.1 GCNT3在癌旁正常組織和肺腺癌組織中的表達(dá)情況
RT-qPCR法結(jié)果顯示,癌旁正常組織中GCNT3 mRNA的表達(dá)量為1.00±0.23,而肺腺癌組織中GCNT3 mRNA的表達(dá)量為3.75±0.28,差異具有統(tǒng)計(jì)學(xué)意義(t = 41.57,P lt; 0.000 1)。見(jiàn)圖1。
2.2 下調(diào)GCNT3對(duì)肺腺癌H1650細(xì)胞增殖水平的影響
CCK-8法檢測(cè)結(jié)果顯示,Sh NC組在24、48和72 h的增殖率分別為(57.64±3.96)%、(76.26±
4.58)%和(92.24±5.12)%;Sh GCNT3組在相應(yīng)時(shí)間點(diǎn)的增殖率分別為(42.32±3.72)%、(62.21±
4.62)%和(73.31±4.86)%。組間的增殖率比較差異均有統(tǒng)計(jì)學(xué)意義(均P lt; 0.05)。見(jiàn)表1。
2.3 下調(diào)GCNT3對(duì)肺腺癌H1650細(xì)胞凋亡水平的影響
RT-qPCR法結(jié)果顯示,與Sh NC組相比,Sh GCNT3組的GCNT3 mRNA表達(dá)水平下降,見(jiàn)圖2A。進(jìn)一步流式細(xì)胞術(shù)結(jié)果顯示,Sh NC組和Sh GCNT3組的凋亡率分別為(17.46±1.95)%和(30.01±2.63)%。Sh GCNT3組的凋亡率高于Sh NC組,且差異具有統(tǒng)計(jì)學(xué)意義(t = 6.64,P = 0.003),見(jiàn)圖2B、C。
2.4 下調(diào)GCNT3對(duì)肺腺癌PC3細(xì)胞侵襲水平的影響
Transwell實(shí)驗(yàn)結(jié)果顯示,2組侵襲細(xì)胞數(shù)分別為(25.12±2.30)個(gè)與(9.26±1.68)個(gè),Sh GCNT3組細(xì)胞的侵襲能力低于Sh NC組,差異有統(tǒng)計(jì)學(xué)意義(t = -9.64,P lt; 0.001)。見(jiàn)圖3。
2.5 下調(diào)GCNT3對(duì)肺腺癌PC3細(xì)胞上皮-間質(zhì)轉(zhuǎn)化表型的影響
蛋白免疫印跡法結(jié)果顯示,與NC組(0.33±0.06)比較,Sh GCNT3組E-cadherin蛋白(0.85±0.07)表達(dá)水平增加,差異有統(tǒng)計(jì)學(xué)意義(t = 9.77,P lt; 0.001);與NC組(0.72±0.06,0.72±0.05)比較,Sh GCNT3組Vimentin、N-cadherin蛋白(0.31±0.05,0.32±0.04)表達(dá)水平降低,差異均有統(tǒng)計(jì)學(xué)意義(t = -9.09,P lt; 0.001;t = -9.61,P lt; 0.001)。見(jiàn)圖4。
3 討 論
根據(jù)近年的全球癌癥統(tǒng)計(jì)數(shù)據(jù),肺癌仍然是導(dǎo)致癌癥相關(guān)死亡的首要原因,約占全球癌癥死亡人數(shù)的18%[19-21]。在中國(guó),肺癌也是癌癥病死率最高的腫瘤類型,病死率達(dá)19%,這一趨勢(shì)可能與吸煙年輕人群中肺癌發(fā)病率的增加密切相
關(guān)[22-25]。盡管近年來(lái)手術(shù)、放射治療、化學(xué)治療及靶向治療等治療手段取得了顯著進(jìn)展,肺癌患者的整體預(yù)后依然不甚理想,特別是在具有轉(zhuǎn)移、復(fù)發(fā)及治療耐藥性的患者中[26-30]。肺腺癌是肺癌的一種,屬于非小細(xì)胞癌。不同于鱗狀細(xì)胞肺癌,肺腺癌較多見(jiàn)于女性及抽煙者。其起源于支氣管黏膜上皮,少數(shù)起源于大支氣管的黏液腺,其預(yù)后優(yōu)于其他類型的肺癌[31]。探討肺腺癌放射治療耐藥的機(jī)制和潛在分子靶點(diǎn),對(duì)更好地改善患者的生存預(yù)后具有重要意義[32]。
GCNT3是糖基轉(zhuǎn)移酶家族的重要成員,作為一種黏蛋白型合成酶,GCNT3催化核心2和核心4型O-聚糖的合成,并在蛋白質(zhì)的O-連接糖基化過(guò)程中發(fā)揮關(guān)鍵作用[33-35]。多項(xiàng)研究表明,GCNT3在多種癌癥中呈現(xiàn)過(guò)度表達(dá)或突變,與腫瘤的發(fā)生和進(jìn)展密切相關(guān),已被視為潛在的生物標(biāo)志物和治療靶點(diǎn)[36-37]。GCNT3在胃癌、結(jié)腸癌和卵巢癌等多種惡性腫瘤中起到推動(dòng)腫瘤進(jìn)展的重要作用[38-39]。然而,GCNT3在肺腺癌中的具體功能和機(jī)制仍有待深入研究。
本研究首先通過(guò)RT-qPCR檢測(cè)了30例肺腺癌及其癌旁正常組織中GCNT3的表達(dá)水平,結(jié)果顯示肺腺癌組織中GCNT3表達(dá)高于癌旁正常組織,提示GCNT3可能與肺腺癌的發(fā)生密切相關(guān)。為進(jìn)一步探究GCNT3在肺腺癌進(jìn)展中的作用機(jī)制,本研究通過(guò)轉(zhuǎn)染GCNT3 ShRNA構(gòu)建了GCNT3敲低的H1650細(xì)胞株,評(píng)估了GCNT3的下調(diào)對(duì)肺腺癌相關(guān)惡性生物學(xué)行為的影響。結(jié)果表明,GCNT3的敲低抑制了H1650細(xì)胞的增殖,同時(shí)促進(jìn)了細(xì)胞凋亡,這一過(guò)程進(jìn)一步導(dǎo)致了細(xì)胞侵襲能力的降低。研究結(jié)果表明,GCNT3在調(diào)控細(xì)胞生長(zhǎng)和生存中發(fā)揮著關(guān)鍵作用,可能通過(guò)影響細(xì)胞的生存和遷移機(jī)制,協(xié)調(diào)細(xì)胞增殖與凋亡的平衡。因此,GCNT3的表達(dá)可能是維持H1650細(xì)胞增殖與侵襲能力的重要因素。
EMT是一種細(xì)胞通過(guò)特定程序由上皮表型轉(zhuǎn)化為間質(zhì)表型的生物學(xué)過(guò)程,在腫瘤發(fā)展、創(chuàng)傷修復(fù)、胚胎發(fā)育及器官纖維化過(guò)程中具有重要作用[40-42]。EMT通常伴隨著上皮細(xì)胞黏附分子E-cadherin表達(dá)的下調(diào)及間質(zhì)標(biāo)志物Vimentin的上調(diào),目前被公認(rèn)是推動(dòng)肺腺癌轉(zhuǎn)移的重要機(jī)制[43-45]。大部分腫瘤細(xì)胞中的E-Cadherin的表達(dá)是下調(diào)的,而N-Cadherin的表達(dá)增加[46]。本研究進(jìn)一步通過(guò)蛋白免疫印跡法發(fā)現(xiàn),敲低GCNT3表達(dá)水平能夠抑制H1650細(xì)胞E-cadherin表達(dá)的下調(diào)、間質(zhì)標(biāo)志物Vimentin的上調(diào),而N-Cadherin的表達(dá)增加,這表明GCNT3可能通過(guò)調(diào)控EMT過(guò)程促進(jìn)肺腺癌的侵襲和轉(zhuǎn)移。
綜上所述,本研究證實(shí)了GCNT3在肺腺癌中的高表達(dá),并通過(guò)調(diào)控H1650細(xì)胞的增殖、侵襲、凋亡及EMT過(guò)程,表明GCNT3在肺腺癌的發(fā)生、發(fā)展中起到至關(guān)重要的作用。GCNT3有望作為肺腺癌診斷和治療的潛在靶點(diǎn),尤其是在阻止肺腺癌轉(zhuǎn)移方面具有重要的應(yīng)用前景。
利益沖突聲明:本研究未受到企業(yè)、公司等第三方資助,不存在潛在利益沖突。
參 考 文 獻(xiàn)
[1] HAN G, SINJAB A, RAHAL Z, et al. An atlas of epithelial cell states and plasticity in lung adenocarcinoma[J]. Nature, 2024, 627(8004): 656-663. DOI: 10.1038/s41586-024-07113-9.
[2] LAUGHNEY A M, HU J, CAMPBELL N R, et al. Regenerative lineages and immune-mediated pruning in lung cancer
metastasis[J]. Nat Med, 2020, 26(2): 259-269. DOI: 10.1038/s41591-019-0750-6.
[3] NICHOLSON A G, TSAO M S, BEASLEY M B, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015[J]. J Thorac Oncol, 2022, 17(3): 362-387. DOI: 10.1016/j.jtho.2021.11.003.
[4] TRAVIS W D, ASAMURA H, BANKIER A A, et al. The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer[J]. J Thorac Oncol, 2016, 11(8): 1204-1223. DOI: 10.1016/j.jtho.2016.03.025.
[5] SINGH S, BERGSLAND E K, CARD C M, et al. Commonwealth neuroendocrine tumour research collaboration and the North American neuroendocrine tumor society guidelines for the diagnosis and management of patients with lung neuroendocrine tumors: an international collaborative endorsement and update of the 2015 European neuroendocrine tumor society expert consensus guidelines[J]. J Thorac Oncol, 2020, 15(10): 1577-1598. DOI: 10.1016/j.jtho.2020.06.021.
[6] FRIEDLAENDER A, PEROL M, BANNA G L, et al. Oncogenic alterations in advanced NSCLC: a molecular super-highway[J]. Biomark Res, 2024, 12(1): 24. DOI: 10.1186/s40364-024-00566-0.
[7] VLACHOU E, JOHNSON B A 3rd, BARABAN E, et al. Current advances in the management of nonurothelial subtypes of bladder cancer[J]. Am Soc Clin Oncol Educ Book, 2024,
44(3): e438640. DOI: 10.1200/EDBK_438640.
[8] NASO J R, RODEN A C. Recent developments in the pathology of primary pulmonary salivary gland-type tumours[J].
Histopathology, 2024, 84(1): 102-123. DOI: 10.1111/his.
15039.
[9] WEI X, LI X, HU S, et al. Regulation of ferroptosis in lung adenocarcinoma[J]. Int J Mol Sci, 2023, 24(19): 14614. DOI: 10.3390/ijms241914614.
[10] WANG Y, FANG X, XIE H, et al. GCNT3 promotes hepatocellular carcinoma progression and EMT by activating the PI3K/AKT pathway[J]. Biochem Genet, 2024. DOI: 10.1007/s10528-024-10830-5.
[11] ZHANG Y, XIAO P, HU X. LINC00511 enhances LUAD malignancy by upregulating GCNT3 via miR-195-5p[J]. BMC Cancer, 2022, 22(1): 389. DOI: 10.1186/s12885-022-09459-7.
[12] ZHAO T, ZHAO X, QIAN K, et al. Radiotherapy prognosis-associated gene GCNT3 promotes the proliferation, migration and invasion of lung adenocarcinoma cells[J]. Heliyon, 2022, 8(12): e12100. DOI: 10.1016/j.heliyon.2022.e12100.
[13] QIU K, WU T, DONG B, et al. GCNT3 regulated MUC13 to promote the development of hepatocellular carcinoma through the GSK3β/β-catenin pathway[J]. Dig Liver Dis, 2024, 56(9): 1572-1581. DOI: 10.1016/j.dld.2024.01.198.
[14] YAMAMOTO D, SASAKI K, KOSAKA T, et al. Functional analysis of GCNT3 for cell migration and EMT of castration-resistant prostate cancer cells[J]. Glycobiology, 2022,
32(10): 897-908. DOI: 10.1093/glycob/cwac044.
[15] LIU J, ZHANG Y, LIU W, et al. miR-BART1-5p targets core 2β-1, 6-acetylglucosaminyltransferase GCNT3 to inhibit cell proliferation and migration in EBV-associated gastric cancer[J]. Virology, 2020, 541: 63-74. DOI: 10.1016/j.virol.2019.12.004.
[16] FERNáNDEZ L P, SáNCHEZ-MARTíNEZ R, VARGAS T, et al. The role of glycosyltransferase enzyme GCNT3 in colon and ovarian cancer prognosis and chemoresistance[J]. Sci Rep, 2018, 8(1): 8485. DOI: 10.1038/s41598-018-26468-4.
[17] PASTUSHENKO I, BLANPAIN C. EMT transition states during tumor progression and metastasis[J]. Trends Cell Biol, 2019, 29(3): 212-226. DOI: 10.1016/j.tcb.2018.12.001.
[18] HUANG Y, HONG W, WEI X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and
metastasis[J]. J Hematol Oncol, 2022, 15(1): 129. DOI: 10.1186/s13045-022-01347-8.
[19] HENDRIKS L E L, REMON J, FAIVRE-FINN C, et al. Non-small-cell lung cancer[J]. Nat Rev Dis Primers, 2024, 10(1): 71. DOI: 10.1038/s41572-024-00551-9.
[20] LOPICCOLO J, GUSEV A, CHRISTIANI D C, et al. Lung cancer in patients who have never smoked-an emerging
disease[J]. Nat Rev Clin Oncol, 2024, 21(2): 121-146. DOI: 10.1038/s41571-023-00844-0.
[21] WANG Z, ZHANG Q, WANG C, et al. Multiple primary lung cancer: updates and perspectives[J]. Int J Cancer, 2024,
155(5): 785-799. DOI: 10.1002/ijc.34994.
[22] KONDO K K, RAHMAN B, AYERS C K, et al. Lung cancer diagnosis and mortality beyond 15 years since quit in individuals with a 20+ pack-year history: a systematic review[J]. CA Cancer J Clin, 2024, 74(1): 84-114. DOI: 10.3322/caac.
21808.
[23] HE Z, XU Y, RAO Z, et al. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine[J]. Sci Total Environ, 2024, 912: 169604. DOI: 10.1016/j.scitotenv.
2023.169604.
[24] KRATZER T B, BANDI P, FREEDMAN N D, et al. Lung cancer statistics, 2023[J]. Cancer, 2024, 130(8): 1330-1348. DOI: 10.1002/cncr.35128.
[25] WOLF A M D, OEFFINGER K C, SHIH T Y, et al. Screening for lung cancer: 2023 guideline update from the American Cancer Society[J]. CA Cancer J Clin, 2024, 74(1): 50-81. DOI: 10.3322/caac.21811.
[26] STRANGE C D, STRANGE T A, ERASMUS L T, et al. Imaging in lung cancer staging[J]. Clin Chest Med, 2024, 45(2): 295-305. DOI: 10.1016/j.ccm.2024.02.004.
[27] GUO H, ZHANG J, QIN C, et al. Advances and challenges of first-line immunotherapy for non-small cell lung cancer: a review[J]. Medicine, 2024, 103(3): e36861. DOI: 10.1097/MD.0000000000036861.
[28] SU P L, CHAKRAVARTHY K, FURUYA N, et al. DLL3-guided therapies in small-cell lung cancer: from antibody-drug conjugate to precision immunotherapy and radioimmunotherapy[J].
Mol Cancer, 2024, 23(1): 97. DOI: 10.1186/s12943-024-02012-z.
[29] CIARDIELLO F, HIRSCH F R, PIRKER R, et al. The role of anti-EGFR therapies in EGFR-TKI-resistant advanced non-small cell lung cancer[J]. Cancer Treat Rev, 2024, 122: 102664. DOI: 10.1016/j.ctrv.2023.102664.
[30] BANKS E, YAZIDJOGLOU A, BROWN S, et al. Electronic cigarettes and health outcomes: umbrella and systematic review of the global evidence[J]. Med J Aust, 2023, 218(6): 267-275. DOI: 10.5694/mja2.51890.
[31] 田甜, 陳港軍, 胡創(chuàng), 等. PIK3R1基因低甲基化在肺腺癌中的臨床意義[J]. 暨南大學(xué)學(xué)報(bào)(自然科學(xué)與醫(yī)學(xué)版), 2023, 44(4): 358-370. DOI: 10.11778/j.jdxb.20230049.
TIAN T, CHEN G J, HU C, et al. Clinical significance of PIK3R1 gene hypomethylation in lung adenocarcinoma[J]. J Jinan Univ Nat Sci (Med Ed), 2023, 44(4): 358-370. DOI: 10.11778/j.jdxb.20230049.
[32] 錢晶, 何澤來(lái), 田校源, 等. 68例EGFR突變型肺腺癌腦轉(zhuǎn)移患者早期顱腦放療對(duì)比延遲放療療效分析[J]. 中華全科醫(yī)學(xué), 2021, 19(12): 1995-1998, 2027. DOI: 10.16766/j.cnki.issn.1674-4152.002219.
QIAN J, HE Z L, TIAN X Y, et al. Efficacy analysis of early radiotherapy versus delayed radiotherapy in 68 cases of EGFR-mutant lung adenocarcinoma with brain metastases[J]. Chin J Gen Pract, 2021, 19(12): 1995-1998, 2027. DOI: 10.16766/j.cnki.issn.1674-4152.002219.
[33] GUPTA R, LEON F, THOMPSON C M, et al. Global analysis of human glycosyltransferases reveals novel targets for pancreatic cancer pathogenesis[J]. Br J Cancer, 2020, 122(11): 1661-1672. DOI: 10.1038/s41416-020-0772-3.
[34] RAO C V, JANAKIRAM N B, MOHAMMED A. Molecular pathways: mucins and drug delivery in cancer[J]. Clin Cancer Res, 2017, 23(6): 1373-1378. DOI: 10.1158/1078-0432.CCR-16-0862.
[35] XI X, WANG J, QIN Y, et al. Glycosylated modification of MUC1 maybe a new target to promote drug sensitivity and efficacy for breast cancer chemotherapy[J]. Cell Death Dis, 2022,
13(8): 708. DOI: 10.1038/s41419-022-05110-2.
[36] AGOSTINI A, GUERRIERO I, PIRO G, et al. Talniflumate abrogates mucin immune suppressive barrier improving efficacy of gemcitabine and nab-paclitaxel treatment in pancreatic
cancer[J]. J Transl Med, 2023, 21(1): 843. DOI: 10.1186/s12967-023-04733-z.
[37] 楊永泉, 田永靖, 龐健, 等. 腫瘤相關(guān)巨噬細(xì)胞通過(guò)誘導(dǎo)GCNT3上調(diào)促進(jìn)胃癌細(xì)胞上皮-間質(zhì)轉(zhuǎn)化[J]. 中國(guó)免疫學(xué)雜志, 2023, 39(3): 483-488. DOI: 10.3969/j.issn.1000-484X.2023.03.006.
YANG Y Q, TIAN Y J, PANG J, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition of gastric cancer cells by inducing GCNT3 up-regulation[J]. Chin J Immunol, 2023, 39(3): 483-488. DOI: 10.3969/j.issn.1000-484X.2023.03.006.
[38] 劉陜西, 葉鈞, 尚楊楊, 等. GCNT3在結(jié)直腸癌中的表達(dá)及臨床意義[J]. 第三軍醫(yī)大學(xué)學(xué)報(bào), 2019, 41(10): 913-917. DOI: 10.16016/j.1000-5404.201812043.
LIU S X, YE J, SHANG Y Y, et al. Expression and clinical significance of GCNT3 in colorectal cancer[J]. J Third Mil Med Univ, 2019, 41(10): 913-917. DOI: 10.16016/j.1000-5404.201812043.
[39] 孫曉燕, 劉暢, 張華, 等. GCNT3表達(dá)在非小細(xì)胞肺癌中的臨床意義[J]. 中國(guó)腫瘤臨床, 2019, 46(3): 111-116. DOI: 10.3969/j.issn.1000-8179.2019.03.377.
SUN X Y, LIU C, ZHANG H, et al. Clinical significance of GCNT3 expression in non-small cell lung cancer[J]. Chin J Clin Oncol, 2019, 46(3): 111-116. DOI: 10.3969/j.issn.1000-
8179.2019.03.377.
[40] SAITOH M. Transcriptional regulation of EMT transcription factors in cancer[J]. Semin Cancer Biol, 2023, 97: 21-29. DOI: 10.1016/j.semcancer.2023.10.001.
[41] AKHMETKALIYEV A, ALIBRAHIM N, SHAFIEE D, et al. EMT/MET plasticity in cancer and Go-or-Grow decisions in quiescence: the two sides of the same coin[J]. Mol Cancer, 2023, 22(1): 90. DOI: 10.1186/s12943-023-01793-z.
[42] AKRIDA I, PAPADAKI H. Adipokines and epithelial-mesenchymal transition (EMT) in cancer[J]. Mol Cell Biochem, 2023, 478(11): 2419-2433. DOI: 10.1007/s11010-023-04670-x.
[43] SALEEM H M, RAMAIAH P, GUPTA J, et al. Nanotechnology-empowered lung cancer therapy: from EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis[J]. Environ Res, 2023, 232: 115942. DOI: 10.1016/j.envres.2023.115942.
[44] XIE S, WU Z, QI Y, et al. The metastasizing mechanisms of lung cancer: Recent advances and therapeutic challenges[J]. Biomed Pharmacother, 2021, 138: 111450. DOI: 10.1016/j.biopha.2021.111450.
[45] MAK M P, TONG P, DIAO L, et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition[J]. Clin Cancer Res, 2016, 22(3): 609-620. DOI: 10.1158/1078-0432.CCR-15-0876.
[46] 陳文燦, 周倜. N-鈣黏蛋白功能研究進(jìn)展[J]. 中山大學(xué)學(xué)報(bào)(醫(yī)學(xué)科學(xué)版), 2024, 45(6): 866-875. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241030.002.
CHEN W C, ZHOU T. Research progress in N-cadherin function[J]. J Sun Yat-sen Univ (Med Sci), 2024, 45(6): 866-875. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).20241030.002.
(責(zé)任編輯:林燕薇)