[摘要]"慢性腎臟病的發(fā)病率日益升高,該病治療手段有限,給社會造成巨大經(jīng)濟負擔(dān)。尿酸是嘌呤的代謝產(chǎn)物,主要經(jīng)腎臟排泄。慢性腎臟病患者常出現(xiàn)高尿酸血癥,而高尿酸血癥也可通過氧化應(yīng)激、激活炎癥小體、促炎等途徑使腎纖維化。本文就高尿酸血癥引起腎損傷的機制、慢性腎臟病與高尿酸血癥的相關(guān)性、降尿酸治療對慢性腎臟病的影響等研究進展進行綜述。
[關(guān)鍵詞]"慢性腎臟病;高尿酸血癥;腎損傷機制
[中圖分類號]"R589.7""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.10.022
慢性腎臟病(chronic"kidney"disease,CKD)是由多種原因引起的腎臟結(jié)構(gòu)或功能異常,表現(xiàn)為血液和尿液成分異常、影像學(xué)檢查結(jié)果異常,或在不明原因情況下腎小球濾過率低于60ml/min,且持續(xù)超過3個月,對患者健康產(chǎn)生影響。根據(jù)第6次中國慢性病及危險因素監(jiān)測結(jié)果估計,中國的CKD患病率約8.2%[1]。但近期一項針對亞洲CKD患病率的Meta分析結(jié)果顯示,中國成人CKD病例數(shù)位居亞洲首位[2]。目前,人們對高尿酸血癥是否是CKD發(fā)生進展的重要因素存在爭議。本文就高尿酸血癥引起腎損傷的機制、CKD與高血尿酸血癥的相關(guān)性、降尿酸治療對CKD的影響等研究進展進行綜述。
1""尿酸的生成與代謝
尿酸是嘌呤代謝的產(chǎn)物,主要在肝臟中合成,并經(jīng)腎臟和腸道代謝。腺嘌呤核苷酸和鳥嘌呤核苷酸通過不同途徑生成黃嘌呤,黃嘌呤在黃嘌呤氧化還原酶催化作用下最終生成尿酸[3]。尿酸主要經(jīng)腎臟排泄,腎臟對血清中尿酸的調(diào)節(jié)起關(guān)鍵作用。腎小球經(jīng)濾過作用使尿酸進入腎小管,隨后腎小管通過分泌和再吸收調(diào)節(jié)尿酸水平。約90%的腎小球濾過尿酸可被腎小管重吸收,該過程主要依賴特定轉(zhuǎn)運蛋白。在腎小管轉(zhuǎn)運過程中,轉(zhuǎn)運蛋白可分為重吸收相關(guān)轉(zhuǎn)運蛋白和分泌相關(guān)轉(zhuǎn)運蛋白,包括ATP結(jié)合盒G2(ATP-binding"cassette"G2,ABCG2)、鈉磷酸轉(zhuǎn)運蛋白1/4、單羧酸鈉轉(zhuǎn)運蛋白1/2、尿酸陰離子轉(zhuǎn)運蛋白1(urate"anion"transporter"1,URAT1)、有機陰離子轉(zhuǎn)運蛋白1/3等[4]。這些轉(zhuǎn)運蛋白的動態(tài)平衡對維持全身尿酸穩(wěn)態(tài)至關(guān)重要。
人體其他途徑對尿酸的生成和代謝也有影響。微RNA(microRNA,miRNA)是一種內(nèi)源性非編碼RNA,可通過抑制黃嘌呤氧化還原酶表達抑制尿酸生成;還可抑制URAT1表達減少尿酸重吸收,增加尿酸排泄[5]。研究發(fā)現(xiàn)腸道微生物也與高尿酸血癥相關(guān),腸道微生物群可促進嘌呤和尿酸分解并減少二者吸收。腸道微生物代謝產(chǎn)物可通過調(diào)節(jié)腸上皮細胞增殖改善嘌呤代謝紊亂,促進尿酸排出[6]。
2""高尿酸腎損傷機制
尿酸是嘌呤代謝終產(chǎn)物,主要經(jīng)腎臟排泄。當(dāng)尿酸濃度升高時,可導(dǎo)致尿酸鹽結(jié)晶在腎臟沉積,從而損傷腎功能。此外越來越多的研究表明可溶性尿酸同樣對腎功能具有顯著影響。
2.1""尿酸鹽結(jié)晶腎損傷機制
在pH=7.4及37℃的條件下,大多數(shù)尿酸轉(zhuǎn)化為尿酸鹽結(jié)晶。當(dāng)尿酸濃度超過6.5mg/dl時,血清中尿酸鹽達到飽和,導(dǎo)致尿酸鹽結(jié)晶沉積在關(guān)節(jié)、腎臟及其他組織中,引發(fā)組織損傷。尿酸鹽結(jié)晶在腎小管中沉積,通過激活巨噬細胞向M1型極化,進一步促進腎小管間質(zhì)纖維化[7]。此外,尿酸單鈉晶體被免疫細胞吞噬,但因其不易被溶酶體酶降解可導(dǎo)致溶酶體破裂,進而激活核苷酸結(jié)合結(jié)構(gòu)域富含亮氨酸重復(fù)序列和含熱蛋白結(jié)構(gòu)域受體3(nucleotide-"binding"domain"leucine-rich"repeat"and"pyrin"domain-"containing"receptor"3,NLRP3)炎癥小體形成,促進白細胞介素(interleukin,IL)-1β釋放。同時,這些結(jié)晶還可通過激活絲裂原活化蛋白激酶(mitogen-"activated"protein"kinase,MAPK)和核因子κB(nuclear"factor-κB,NF-κB)等信號通路激活NLRP3炎癥小體,進一步加劇炎癥反應(yīng)[8]。此外,尿酸鹽結(jié)晶可通過上調(diào)氧化應(yīng)激反應(yīng),誘導(dǎo)含Src同源2結(jié)構(gòu)域的蛋白酪氨酸磷酸酶2(Src"homology"2"domain-containing"protein"tyrosine"phosphatase"2,SHP2)/轉(zhuǎn)化生長因子-β(transforming"growth"factor-β,TGF-β)信號通路失調(diào),增強糖尿病腎病中腎成纖維細胞增殖,促進腎纖維化進程[9]。
2.2""可溶性尿酸腎損傷機制
2.2.1""可溶性尿酸導(dǎo)致內(nèi)皮損傷""內(nèi)皮是血管重要組成部分,其功能障礙可導(dǎo)致血管損傷??扇苄阅蛩嵬ㄟ^影響一氧化氮(nitric"oxide,NO)合成誘發(fā)內(nèi)皮功能障礙。在血管壁中,NO主要由內(nèi)皮型一氧化氮合酶(endothelial"nitric"oxide"synthase,eNOS)通過L-精氨酸合成。研究表明可溶性尿酸激活精氨酸酶降解L-精氨酸,減少NO產(chǎn)生,進一步影響內(nèi)皮細胞功能[10]。Yin等[11]切除高尿酸血癥小鼠右腎觀察腎臟病理變化,結(jié)果顯示小鼠腎臟內(nèi)皮細胞出現(xiàn)水腫并呈現(xiàn)泡沫樣改變,管壁中聚集少量炎癥細胞,伴隨平滑肌細胞增生和組織結(jié)構(gòu)紊亂;且內(nèi)皮細胞中IL-1β、胱天蛋白酶-1(cysteinyl"aspartate"specific"proteinase-1,caspase-1)和細胞間黏附分子-1(intercellular"adhesion"molecule-1,ICAM-1)表達顯著增加,進一步表明內(nèi)皮功能受到損害。
2.2.2""可溶性尿酸激活炎癥小體""NLRP3炎癥小體是一種重要的細胞內(nèi)多聚體復(fù)合物,屬于天然免疫系統(tǒng)的關(guān)鍵組成部分。NLRP3炎癥小體的主要功能是感知細胞內(nèi)和細胞外的危險信號,如病原體、細胞損傷和代謝紊亂,并啟動炎癥反應(yīng)誘導(dǎo)炎性細胞因子成熟與釋放??扇苄阅蛩嶙鳛橐环N危險信號可激活NLRP3炎癥小體。激活后的NLRP3炎癥小體通過調(diào)節(jié)胞外信號調(diào)節(jié)激酶(extracellular"signal-regulated"kinase,ERK)、NF-κB及活性氧(reactive"oxygen"species,ROS)信號通路,影響高尿酸血癥導(dǎo)致腎損傷。在腎固有細胞中,NLRP3炎癥小體的激活可導(dǎo)致不同類型的細胞損傷,進一步加重腎臟病理學(xué)變化[12]。
2.2.3""可溶性尿酸導(dǎo)致氧化應(yīng)激""可溶性尿酸與氧化應(yīng)激密切相關(guān),氧化應(yīng)激可導(dǎo)致腎臟核糖核苷酸損傷、炎性細胞因子產(chǎn)生及細胞凋亡,加重腎功能惡化。在嘌呤代謝過程中,黃嘌呤氧化還原酶將其轉(zhuǎn)化為尿酸,該反應(yīng)可產(chǎn)生與氧化應(yīng)激密切相關(guān)的ROS和還原型煙酰胺腺嘌呤二核苷酸(reduced"nicotinamide"adenine"dinucleotide,NADH)。高尿酸血癥也可引起線粒體鈣超載,導(dǎo)致鈉鈣交換功能障礙,進一步誘導(dǎo)ROS生成[13]。Yang等[14]發(fā)現(xiàn)高尿酸血癥小鼠的丙二醛水平顯著升高,同時超氧化物歧化酶水平下降,與對照組相比,模型組小鼠的腎小管上皮細胞大量凋亡,表明尿酸和氧化應(yīng)激與腎損傷相關(guān)。此外,細胞內(nèi)高尿酸水平通過多種機制促進氧化應(yīng)激形成,如它可激活還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced"nicotinamide"adenine"dinucleotide"phosphate,NADPH)氧化酶,降低抗氧化劑NO水平,并激活過亞硝酸鹽介導(dǎo)的脂質(zhì)氧化[15]。這些途徑共同加劇氧化應(yīng)激及其對腎臟的損害。
2.2.4""可溶性尿酸促炎作用""可溶性尿酸通過多種途徑促進炎癥反應(yīng)。尿酸可促進巨噬細胞中腫瘤壞死因子-α(tumor"necrosis"factor-α,TNF-α)和Toll樣受體4(Toll-like"receptor"4,TLR4)表達。促炎巨噬細胞中CX3C基序趨化因子受體1(CX3C-motif"chemokine"receptor"1,CX3CR1)和CC趨化因子受體2(C-C"chemokine"receptor"type"2,CCR2)表達降低說明尿酸可干預(yù)巨噬細胞表型轉(zhuǎn)換[16]。體外實驗將尿酸添加至人腎小管上皮細胞培養(yǎng)基中并孵育5~24h,結(jié)果顯示TLR4和單核細胞趨化蛋白-1(monocyte"chemoattractant"protein-1,MCP-1)濃度明顯升高[17]。這進一步說明尿酸可激活損傷模式識別受體,并通過TLR4介導(dǎo)炎癥反應(yīng)。
2.3""高尿酸血癥導(dǎo)致腎纖維化
研究表明高尿酸血癥可導(dǎo)致小鼠腎纖維化[18]。E-鈣黏蛋白是一種上皮細胞間連接的細胞黏附分子,其缺失可誘導(dǎo)上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal"transition,EMT)過程,使上皮細胞轉(zhuǎn)變?yōu)殚g充質(zhì)細胞,分泌Ⅰ型膠原蛋白等細胞外基質(zhì),進一步導(dǎo)致腎纖維化。目前研究表明尿酸可通過多種信號通路介導(dǎo)腎間質(zhì)EMT,包括TGF-β/Smad3等信號通路[13]。另外,內(nèi)皮間質(zhì)轉(zhuǎn)化也是腎纖維化的重要機制。實驗發(fā)現(xiàn)尿酸可通過氧化應(yīng)激導(dǎo)致內(nèi)皮細胞糖萼脫落,使內(nèi)皮細胞向間充質(zhì)細胞轉(zhuǎn)化[19]。在體外實驗中,尿酸可直接促進腎小球系膜細胞增殖。系膜細胞增殖是導(dǎo)致腎小球硬化和腎功能喪失的重要原因,尿酸通過多種途徑促進系膜細胞增殖,包括NADPH氧化酶激活ERK1/2通路等[20-21]。
3""CKD與高尿酸血癥的關(guān)系
流行病學(xué)研究表明尿酸水平與CKD進展相關(guān),但尿酸大部分由腎臟排泄,故很難明確兩者間是否存在因果關(guān)系。尿酸水平與CKD發(fā)病率和進展之間成反比。較低的尿酸水平對CKD發(fā)病和進展具有保護作用,說明尿酸與CKD發(fā)生及其演變有關(guān)[22]。在特殊人群中,如老年糖尿病患者、兒童及青少年中也觀察到高尿酸血癥是CKD發(fā)病的獨立預(yù)測因素[23-24]。但也有研究發(fā)現(xiàn)尿酸與CKD發(fā)生無關(guān)[25]。這些研究得出相互矛盾的結(jié)論,說明尿酸水平與CKD關(guān)系比較復(fù)雜,可能并非是兩者間直接相關(guān),或與其他因素相關(guān)。Ohashi等[26]研究發(fā)現(xiàn)無癥狀高尿酸血癥與估算腎小球濾過率(estimated"glomerular"filtration"rate,eGFR)總體下降無相關(guān)性。然而,在血尿酸≥6.0mg/dl且eGFR為60~89ml/min的患者中,與全功能ABCG2相比,ABCG2功能≤50%與eGFR較快下降相關(guān)。這說明尿酸和腎功能惡化之間存在中間途徑,除ABCG2功能障礙外,是否有其他因素參與需要更多的研究進一步探索。
4""降尿酸治療對CKD的影響
大部分研究表明尿酸與CKD發(fā)生有關(guān),但降尿酸治療是否對CKD進展有延緩作用一直存在爭議。因此,關(guān)于CKD合并高尿酸血癥的治療時機并不一致。《中國高尿酸血癥相關(guān)疾病診療多學(xué)科專家共識(2023年版)》[27]建議腎小球濾過率lt;60ml/min合并尿酸gt;480μmol/L可開始降尿酸治療,控制血尿酸lt;300μmol/L。而改善全球腎臟病預(yù)后組織最新實踐指南認為,CKD伴痛風(fēng)患者建議降尿酸治療,而CKD伴無癥狀高尿酸血癥因為目前缺乏十分肯定的隨機對照試驗(randomized"controlled"trial,RCT)結(jié)果,不建議降尿酸治療。
大部分Meta分析結(jié)果提示,降尿酸治療對腎小球濾過率下降有延緩作用。但不同Meta分析得出不同結(jié)果,考慮是因為納入研究條件不同,特別是尿酸水平。納入尿酸水平高的研究更偏向得出陽性結(jié)果,提示可能較高水平尿酸才會對腎功能有影響,降尿酸治療對較高水平尿酸合并CKD患者腎功能損傷有延緩作用。另外,雖然降尿酸治療對腎小球濾過率下降有延緩作用,但可能作用有限。一項Meta分析納入28項觀察時間至少6個月的RCT研究,共納入6458例患者,結(jié)果發(fā)現(xiàn)降尿酸治療對eGFR下降gt;30%、肌酐較基線翻倍或進展為終末期腎病無顯著益處,但降尿酸治療可減弱eGFR下降的斜率[28]。與安慰劑相比,降尿酸治療不管是長期還是短期均可延緩eGFR下降;亞組分析提示年齡lt;60歲患者降尿酸治療對eGFR的下降延緩作用更強[29]。
除Meta研究結(jié)果不一致外,目前RCT研究結(jié)果也不一致。FEATHER、CKDFIX、PERL研究均提示降尿酸治療對CKD進展無作用[30-31]。FEATHER研究亞組分析發(fā)現(xiàn)沒有蛋白尿且肌酐水平低于中位數(shù)的患者進行降尿酸治療對延緩CKD進展有效,提示尿酸參與CKD進展,但相對于蛋白尿、糖尿病等危險因素,尿酸的作用不是主要進展因素。
有RCT研究提示降尿酸治療對eGFR下降或蛋白尿減少有作用。對非布司他預(yù)防腦和心血管事件的FREED研究進行事后分析,比較其中降尿酸治療對腎臟結(jié)局的影響,發(fā)現(xiàn)非布司他治療組與對照組相比,進展為大量蛋白尿的風(fēng)險降低[33]。2018年國內(nèi)一項RCT研究比較苯溴馬隆和非布司他在eGFR"20~60ml/(min·1.73m2)患者中的效果,共納入66例患者,結(jié)果顯示非布司他和苯溴馬隆均可維持eGFR穩(wěn)定[34]。一項評估非布司他對3~4期CKD患者eGFR影響的多中心RCT研究發(fā)現(xiàn),非布司他可顯著減緩3~4期CKD患者的eGFR下降[35]。這些研究納入人群總體進展風(fēng)險都較小,基線尿酸水平較高,尿蛋白較少,再次說明降尿酸治療對進展風(fēng)險較小如少量蛋白尿的患者有延緩腎小球濾過率下降的作用。
除非布司他和別嘌呤醇等經(jīng)典降尿酸藥物外,一些新型藥物如多替諾雷和托吡司他已在多個國家獲得批準。這些藥物不僅具有明確的降尿酸作用,其潛在的腎保護作用也亟待進一步研究。RCT研究表明托吡司他對伴微量蛋白尿糖尿病腎病患者具有改善eGFR的效果,相較于安慰劑組,托吡司他組顯示出減少蛋白尿的趨勢[36];且托吡司他已被證實可減少CKD高尿酸血癥患者的尿白蛋白排泄。動物實驗研究發(fā)現(xiàn)在抗裂隙素抗體誘導(dǎo)足細胞損傷大鼠中,腎臟黃嘌呤氧化還原酶活性增加,使用托吡司他治療后,黃嘌呤氧化還原酶活性下降,足細胞損傷中裂隙素、足細胞素和平足蛋白表達恢復(fù)[37]。此結(jié)果提示托吡司他可能通過影響黃嘌呤氧化還原酶活性而對腎臟功能產(chǎn)生保護作用。同時,兩項小規(guī)模研究表明,多替諾雷可改善CKD患者的eGFR[38-39]。多替諾雷通過抑制尿酸轉(zhuǎn)運蛋白URAT1阻止尿酸從近端腎小管內(nèi)腔被動轉(zhuǎn)運至腎間質(zhì),從而減輕由尿酸引起的腎損傷。此外,TMX-049作為一種黃嘌呤氧化還原酶抑制劑,RCT研究顯示200mg"TMX-049可降低糖尿病腎病患者尿蛋白水平[40]。這些研究結(jié)果表明,新型降尿酸藥物可能在腎臟保護方面發(fā)揮重要作用,值得進一步深入研究。
5""總結(jié)
雖然目前關(guān)于高尿酸血癥是否導(dǎo)致CKD發(fā)生或進展有爭議,但大部分研究還是肯定高尿酸血癥是CKD發(fā)生和加重的因素。不管是尿酸鹽結(jié)晶還是可溶性尿酸均通過實驗證實可對腎臟固有細胞等造成損傷。但關(guān)于降尿酸治療是否使CKD患者獲益并未獲得肯定的結(jié)果,有可能與納入人群、尿酸水平、疾病階段等相關(guān),未來需要更多設(shè)計更好的RCT繼續(xù)進一步研究。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] WANG"L,"XU"X,"ZHANG"M,"et"al."Prevalence"of"chronic"kidney"disease"in"China:"Results"from"the"sixth"China"chronic"disease"and"risk"factor"surveillance[J]."JAMA"Intern"Med,"2023,"183(4):"298–310.
[2] LIYANAGE"T,"TOYAMA"T,"HOCKHAM"C,"et"al."Prevalence"of"chronic"kidney"disease"in"Asia:"A"systematic"review"and"analysis[J]."BMJ"Glob"Health,"2022,"7(1):"e007525.
[3] DU"L,"ZONG"Y,"LI"H,"et"al."Hyperuricemia"and"its"related"diseases:"Mechanisms"and"advances"in"therapy[J]."Signal"Transduct"Target"Ther,"2024,"9(1):"212.
[4] ADOMAKO"E"A,"MOE"O"W."Uric"acid"transport,"transporters,"and"their"pharmacological"targeting[J]."Acta"Physiol"(Oxf),"2023,"238(2):"e13980.
[5] 馬冬艷,"孫凱琳,"高偉微,"等."高尿酸血癥及其相關(guān)疾病中miRNAs作用研究進展[J]."中國老年學(xué)雜志,"2020,"40(21):"4700–4703.
[6] 程靜茹,"陶俊,"李艷."腸道菌群與性激素影響高尿酸血癥發(fā)生發(fā)展的研究進展[J]."疑難病雜志,"2022,"21(6):"651–655.
[7] SELLMAYR"M,"HERNANDEZ"PETZSCHE"M"R,"MA"Q,"et"al."Only"hyperuricemia"with"crystalluria,"but"not"asymptomatic"hyperuricemia,"drives"progression"of"chronic"kidney"disease[J]."J"Am"Soc"Nephrol,"2020,"31(12):"2773–2792.
[8] BRAGA"T"T,"FORESTO-NETO"O,"CAMARA"N"O"S."The"role"of"uric"acid"in"inflammasome-mediated"kidney"injury[J]."Curr"Opin"Nephrol"Hypertens,"2020,"29(4):"423–431.
[9] LI"J,"ZHANG"J,"ZHAO"X,"et"al."MSU"crystallization"promotes"fibroblast"proliferation"and"renal"fibrosis"in"diabetic"nephropathy"via"the"ROS/SHP2/TGFβ"pathway[J]."Sci"Rep,"2024,"14(1):"20251.
[10] ZHARIKOV"S,"KROTOVA"K,"HU"H,"et"al."Uric"acid"decreases"NO"production"and"increases"arginase"activity"in"cultured"pulmonary"artery"endothelial"cells[J]."Am"J"Physiol"Cell"Physiol,"2008,"295(5):"C1183–C1190.
[11] YIN"W,"ZHOU"Q"L,"OUYANG"S"X,"et"al."Uric"acid"regulates"NLRP3/IL-1β"signaling"pathway"and"further"induces"vascular"endothelial"cells"injury"in"early"CKD"through"ROS"activation"and"K+"efflux[J]."BMC"Nephrol,"2019,"20(1):"319.
[12] WEN"L,"YANG"H,"MA"L,"et"al."The"roles"of"NLRP3"inflammasome-mediated"signaling"pathways"in"hyperuricemic"nephropathy[J]."Mol"Cell"Biochem,"2021,"476(3):"1377–1386.
[13] SU"H"Y,"YANG"C,"LIANG"D,"et"al."Research"advances"in"the"mechanisms"of"hyperuricemia-Induced"renal"injury[J]."Biomed"Res"Int,"2020,"2020:"5817348.
[14] YANG"L,"CHANG"B,"GUO"Y,"et"al."The"role"of"oxidative"stress-mediated"apoptosis"in"the"pathogenesis"of"uric"acid"nephropathy[J]."Ren"Fail,"2019,"41(1):"616–622.
[15] GHERGHINA"M"E,"PERIDE"I,"TIGLIS"M,"et"al."Uric"acid"and"oxidative"stress-relationship"with"cardiovascular,"metabolic,"and"renal"impairment[J]."Int"J"Mol"Sci,"2022,"23(6):"3188.
[16] MARTíNEZ-REYES"C"P,"MANJARREZ-REYNA"A"N,"MéNDEZ-GARCíA"L"A,"et"al."Uric"acid"has"direct"proinflammatory"effects"on"human"macrophages"by"increasing"proinflammatory"mediators"and"bacterial"phagocytosis"probably"via"URAT1[J]."Biomolecules,"2020,"10(4):"576.
[17] MILANESI"S,"VERZOLA"D,"CAPPADONA"F,"et"al."Uric"acid"and"angiotensin"Ⅱ"additively"promote"inflammation"and"oxidative"stress"in"human"proximal"tubule"cells"by"activation"of"Toll-like"receptor"4[J]."J"Cell"Physiol,"2019,"234(7):"10868–10876.
[18] SETYANINGSIH"W"A"W,"ARFIAN"N,"SURYADI"E,""et"al."Hyperuricemia"induces"Wnt5a/Ror2"gene"expression,"epithelial-mesenchymal"transition,"and"kidney"tubular"injury"in"mice[J]."Iran"J"Med"Sci,"2018,"43(2):"164-173.
[19] KO"J,"KANG"H"J,"KIM"D"A,"et"al."Uric"acid"induced"the"phenotype"transition"of"vascular"endothelial"cells"via"induction"of"oxidative"stress"and"glycocalyx"shedding[J]."FASEB"J,"2019,"33(12):"13334–13345.
[20] LI"S,"SUN"Z,"ZHANG"Y,"et"al."COX-2/mPGES-1/PGE2"cascadenbsp;activation"mediates"uric"acid-induced"mesangial"cell"proliferation[J]."Oncotarget,"2017,"8(6):"10185–10198.
[21] ZHUANG"Y,"FENG"Q,"DING"G,"et"al."Activation"of"ERK1/2"by"NADPH"oxidase-originated"reactive"oxygen"species"mediates"uric"acid-induced"mesangial"cell"proliferation[J]."Am"J"Physiol"Renal"Physiol,"2014,"307(4):"F396–F406.
[22] GON?ALVES"D"L"N,"MOREIRA"T"R,"DA"SILVA"L"S."A"systematic"review"and"Meta-analysis"of"the"association"between"uric"acid"levels"and"chronic"kidney"disease[J]."Sci"Rep,"2022,"12(1):"6251.
[23] ZHOU"Q,"KE"S,"YAN"Y,"et"al."Serum"uric"acid"is"associated"with"chronic"kidney"disease"in"elderly"Chinese"patients"with"diabetes[J]."Ren"Fail,"2023,"45(1):"2238825.
[24] SCHWARTZ"G"J,"ROEM"J"L,"HOOPER"S"R,"et"al."Longitudinal"changes"in"uric"acid"concentration"and"their"relationship"with"chronic"kidney"disease"progression"in"children"and"adolescents[J]."Pediatr"Nephrol,"2023,"38(2):"489–497.
[25] JORDAN"D"M,"CHOI"H"K,"VERBANCK"M,"et"al."No"causal"effects"of"serum"urate"levels"on"the"risk"of"chronic"kidney"disease:"A"Mendelian"randomization"study[J]."PLoS"Med,"2019,"16(1):"e1002725.
[26] OHASHI"Y,"KURIYAMA"S,"NAKANO"T,"et"al."Urate"transporter"ABCG2"function"and"asymptomatic"hyperuricemia:"A"retrospective"cohort"study"of"CKD"progression[J]."Am"J"Kidney"Dis,"2023,"81(2):"134–144.
[27] 方寧遠,"呂力為,"呂曉希,"等."中國高尿酸血癥相關(guān)疾病診療多學(xué)科專家共識(2023年版)[J]."中國實用內(nèi)科雜志,"2023,"43(6):"461–480.
[28] CHEN"Q,"WANG"Z,"ZHOU"J,"et"al."Effect"of"urate-lowering"therapy"on"cardiovascular"and"kidney"outcomes:"A"systematic"review"and"Meta-analysis[J]."Clin"J"Am"Soc"Nephrol,"2020,"15(11):"1576–1586.
[29] LUO"Y,"SONG"Q,"LI"J,"et"al."Effects"of"uric"acid-lowering"therapy"(ULT)"on"renal"outcomes"in"CKD"patients"with"asymptomatic"hyperuricemia:"A"systematic"review"and"Meta-analysis[J]."BMC"Nephrol,"2024,"25(1):"63.
[30] KIMURA"K,"HOSOYA"T,"UCHIDA"S,"et"al."Febuxostat"therapy"for"patients"with"stage"3"CKD"and"asymptomatic"hyperuricemia:"A"randomized"trial[J]."Am"J"Kidney"Dis,"2018,"72(6):"798–810.
[31] BADVE"S"V,"PASCOE"E"M,"TIKU"A,"et"al."Effects"of"allopurinol"on"the"progression"of"chronic"kidney"disease[J]."N"Engl"J"Med,"2020,"382(26):"2504–2513.
[32] DORIA"A,"GALECKI"A"T,"SPINO"C,"et"al."Serum"urate"lowering"with"allopurinol"and"kidney"function"in"type"1"diabetes[J]."N"Engl"J"Med,"2020,"382(26):"2493–2503.
[33] KOJIMA"S,"MATSUI"K,"HIRAMITSU"S,"et"al."Febuxostat"for"cerebral"and"cardiorenovascular"events"PrEvEntion"study[J]."Eur"Heart"J,"2019,"40(22):"1778–1786.
[34] YU"H,"LIU"X,"SONG"Y,"et"al."Safety"and"efficacy"of"benzbromarone"and"febuxostat"in"hyperuricemia"patients"with"chronic"kidney"disease:"A"prospective"pilot"study[J]."Clin"Exp"Nephrol,"2018,"22(6):"1324-1330.
[35] YANG"H,"LI"R,"LI"Q,"et"al."Effects"of"febuxostat"on"delaying"chronic"kidney"disease"progression:"A"randomized"trial"in"China[J]."Int"Urol"Nephrol,"2023,"55(5):"1343–1352.
[36] WADA"T,"HOSOYA"T,"HONDA"D,"et"al."Uric"acid-lowering"and"renoprotective"effects"of"topiroxostat,"a"selective"xanthine"oxidoreductase"inhibitor,"in"patients"with"diabetic"nephropathy"and"hyperuricemia:"A"randomized,"double-blind,"placebo-controlled,"parallel-group"study"(UPWARD"study)[J]."Clin"Exp"Nephrol,"2018,"22(4):"860–870.
[37] ZHANG"Y,"FUKUSUMI"Y,"KAYABA"M,"et"al."Xanthine"oxidoreductase"inhibitor"topiroxostatnbsp;ameliorates"podocyte"injury"by"inhibiting"the"reduction"of"nephrin"and"podoplanin[J]."Nefrologia"(Engl"Ed),"2021,"41(5):"539–547.
[38] AMANO"H,"KOBAYASHI"S,"TERAWAKI"H."Dotinurad"restores"exacerbated"kidney"dysfunction"in"hyperuricemic"patients"with"chronic"kidney"disease[J]."BMC"Nephrol,"2024,"25(1):"97.
[39] YANAI"K,"HIRAI"K,"KANEKO"S,"et"al."The"efficacy"and"safety"of"dotinurad"on"uric"acid"and"renal"function"in"patients"with"hyperuricemia"and"advanced"chronic"kidney"disease:"A"single"center,"retrospective"analysis[J]."Drug"Des"Devel"Ther,"2023,"17:"3233–3248.
[40] BAKRIS"G"L,"MIKAMI"H,"HIRATA"M,"et"al."A"non-purine"xanthine"oxidoreductase"inhibitor"reduces"albuminuria"in"patients"with"DKD:"A"randomized"controlled"trial[J]."Kidney360,"2021,"2(8):"1240–1250.
(收稿日期:2024–12–06)
(修回日期:2025–03–19)