[摘要]"自噬是一種經(jīng)過進化保留的溶酶體降解機制,通過去除聚集的蛋白質(zhì)和受損的細胞器,幫助維持生物體內(nèi)的代謝平衡。研究表明自噬機制在脊髓損傷(spinal"cord"injury,SCI)過程中具有關(guān)鍵作用。在SCI情況下,自噬的激活與損傷恢復(fù)之間的關(guān)系仍存在爭論。研究證實自噬的啟動及對細胞凋亡的抑制在SCI中可提供一定的神經(jīng)保護作用。部分研究表明在SCI發(fā)生后,自噬的出現(xiàn)可導(dǎo)致受損區(qū)域的神經(jīng)細胞進一步死亡,阻礙SCI后的恢復(fù)進程。本文對SCI的病理生理機制和自噬的生理機制進行介紹,并對SCI中的自噬作用進行綜述。本文討論激活或抑制自噬在促進SCI功能恢復(fù)中的治療作用,為通過調(diào)控自噬促進SCI后的功能修復(fù)提供理論依據(jù)。
[關(guān)鍵詞]"脊髓損傷;自噬;自噬調(diào)控;生物學(xué)功能,治療靶點
[中圖分類號]"R651.2""""""[文獻標識碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2025.06.025
自噬是一個降解系統(tǒng),同時也是一個動態(tài)的、持續(xù)的過程。細胞內(nèi)的自噬水平通常較低,但在饑餓、營養(yǎng)缺乏、氧氣壓力和炎癥等外部因素刺激作用下自噬水平可提高。當自噬水平過高時,細胞可因過度攝取細胞內(nèi)的物質(zhì)導(dǎo)致自我消亡[1-2]。研究表明細胞自噬在脊髓損傷(spinal"cord"injury,SCI)中扮演關(guān)鍵角色。自噬是SCI后重要的恢復(fù)機制,但另一些研究顯示過度的自噬可導(dǎo)致不受控制的細胞死亡,加重SCI[3]。本文對SCI的病理生理機制、自噬的病理生理機制及二者之間的潛在聯(lián)系進行綜述,以期為SCI的治療提供新的突破口。
1""SCI的研究現(xiàn)狀
1.1""SCI的概述
SCI是全球最重要的神經(jīng)系統(tǒng)健康問題之一,給臨床醫(yī)學(xué)和基礎(chǔ)研究帶來巨大挑戰(zhàn),給患者和社會帶來沉重的負擔(dān)[4-6]。SCI是世界上最具破壞性的創(chuàng)傷事件,其對脊髓結(jié)構(gòu)造成損害,引發(fā)包括軸突斷裂、神經(jīng)元變性壞死、炎癥反應(yīng)和髓鞘脫失在內(nèi)的一系列病理變化,最終導(dǎo)致嚴重的神經(jīng)功能障礙[7-9]。此外,SCI常導(dǎo)致感覺運動障礙、自主神經(jīng)改變和頑固性疼痛,還可能影響呼吸、泌尿和胃腸道功能,進而嚴重影響患者的生活質(zhì)量[4,10-11]。
1.2""SCI的病理生理機制
SCI可分為原發(fā)性SCI和繼發(fā)性SCI。原發(fā)性SCI是外部力量直接作用于脊髓導(dǎo)致的組織細胞損傷和壞死;繼發(fā)性SCI是原發(fā)性損傷后發(fā)生的以脊髓出血、水腫、缺血、游離氧損傷、電解質(zhì)紊亂、炎癥反應(yīng)導(dǎo)致大量神經(jīng)元死亡、殘余神經(jīng)纖維脫髓鞘等生物事件為主要特征的生理生化改變[12-14]。
1.3""SCI的治療現(xiàn)狀
目前有多種治療手段可減輕SCI的終身殘疾,如手術(shù)干預(yù)、藥物治療、細胞移植治療等[15-16];但這些治療手段仍存在諸多不足,如SCI患者最佳手術(shù)時機的選擇仍有待商榷、藥物的使用劑量和使用時間仍存在較大爭議等[17]。了解SCI的病理機制并尋找促進損傷后修復(fù)的新治療思路是目前研究的熱點;研究表明減少SCI后的組織細胞大量死亡是SCI后功能恢復(fù)的關(guān)鍵[18-20]。因此減少神經(jīng)細胞大量死亡對SCI后神經(jīng)功能修復(fù)意義重大。
2""自噬的研究現(xiàn)狀
2.1""自噬的概述
自噬是細胞自我降解和再循環(huán)利用的一種機制,通過這一過程細胞可清除受損的細胞器和蛋白質(zhì)。自噬在細胞發(fā)育、抗衰老、腫瘤發(fā)生、神經(jīng)退行性疾病及多種生理和病理過程中均發(fā)揮關(guān)鍵作用,有助于維持細胞內(nèi)環(huán)境的穩(wěn)定[21-22]。因此,調(diào)控自噬的機制研究是生物醫(yī)學(xué)研究的重要領(lǐng)域。
2.2""自噬的類型
根據(jù)細胞內(nèi)底物運送到溶酶體腔的方式不同,哺乳動物細胞的自噬可分為3種主要類型:巨自噬(宏自噬)、小自噬(微自噬)和分子伴侶介導(dǎo)的自噬。人們對巨自噬的研究較為充分,巨自噬的過程包括形成一個雙層膜結(jié)構(gòu)(自噬體),包裹細胞內(nèi)的物質(zhì),然后與溶酶體融合形成自噬溶酶體,最終降解包裹的物質(zhì)。巨自噬可清除細胞內(nèi)的受損細胞器、蛋白質(zhì)聚集體等。
3""SCI與自噬
3.1""SCI中自噬水平的變化
Kanno等[23]首次報道在SCI組織中觀察到的自噬體結(jié)構(gòu)。研究發(fā)現(xiàn)自噬體具有雙層膜結(jié)構(gòu),這表明在SCI的過程中,細胞可通過自噬途徑調(diào)節(jié)和處理受損的細胞組分。另一項研究表明大鼠SCI部位組織的自噬相關(guān)分子如重組人自噬效應(yīng)蛋白Beclin"1、微管相關(guān)蛋白1輕鏈3-Ⅱ(microtubule-"associated"protein"1"light"chain"3-Ⅱ,LC3-Ⅱ)顯著升高,提示脊髓組織的自噬水平在損傷后呈上升趨勢[24]。綜上,在SCI的初期,自噬明顯被激活且損傷區(qū)域的自噬水平伴隨時間推移發(fā)生變化,這一現(xiàn)象進一步確認自噬與SCI進展之間的關(guān)聯(lián)。
3.2""自噬通路對SCI的調(diào)節(jié)
3.2.1""unc-51樣激酶1對自噬的調(diào)控""""unc-51樣激酶1(unc-51-like"kinase"1,ULK1)是一個具有絲氨酸/蘇氨酸激酶活性的分子,其翻譯后修飾,如磷酸化和泛素化是誘導(dǎo)自噬的關(guān)鍵。當營養(yǎng)物質(zhì)耗盡或生長因子被剝奪時ULK1被去磷酸化,導(dǎo)致ULK1激活自噬。此外,ULK1可與自噬相關(guān)蛋白(autophagy-"related"protein,Atg)13、Atg101和黏著斑激酶家族相互作用蛋白200kD形成穩(wěn)定的復(fù)合物,該復(fù)合體通過檢測細胞的營養(yǎng)狀況調(diào)節(jié)哺乳動物細胞自噬的起始和終止[25]。此外,Ribas等[26]研究發(fā)現(xiàn)腺相關(guān)病毒介導(dǎo)的ULK1抑制在體外和體內(nèi)促進中樞神經(jīng)系統(tǒng)的軸突再生。
3.2.2""腺苷酸活化蛋白激酶信號通路對自噬的調(diào)控""""腺苷酸活化蛋白激酶(adenosine"5'-monophosphate-"activated"protein"kinase,AMPK)通路作為細胞能量傳感器,在調(diào)節(jié)自噬起始過程中發(fā)揮重要作用。AMPK通過兩種方式調(diào)節(jié)體內(nèi)的自噬。首先,AMPK通過磷酸化ULK1并激活促進自噬;其次,AMPK可通過結(jié)節(jié)性硬化癥復(fù)合體1/2和腦富集的Ras同源蛋白途徑抑制哺乳動物雷帕霉素靶蛋白復(fù)合物1(mechanistic"target"of"rapamycin"complex"1,mTORC1)的活性,激活或促進自噬。當營養(yǎng)充足時,AMPK失活,mTOR結(jié)合ULK1"Ser757,抑制ULK1-AMPK之間的相互作用,導(dǎo)致ULK1失活,抑制自噬。然而,當細胞處于饑餓狀態(tài)時,AMPK被激活,mTOR失活,激活的AMPK催化ULK1在Ser317、Ser467等7位點的磷酸化促進自噬[27-28]。研究表明神經(jīng)軸突導(dǎo)向因子1通過激活SCI大鼠的AMPK/mTOR信號通路,調(diào)節(jié)自噬促進功能恢復(fù)[29]。
3.2.3""mTOR信號通路對自噬的調(diào)控""mTOR是自噬的負調(diào)節(jié)因子和門控分子。mTOR由mTORC1和mTORC2組成,它們與ULK1的絲氨酸757結(jié)合,抑制AMPK-ULK1相互作用,導(dǎo)致ULK1失活,抑制自噬[30]。研究發(fā)現(xiàn)槲皮素可通過mTOR影響自噬[31];米諾環(huán)素通過抑制磷脂酰肌醇3-激酶/蛋白激酶B/哺乳動物雷帕霉素靶蛋白(phosphatidylinositol"3-kinase/"protein"kinase"B/mammalian"target"of"rapamycin,PI3K/"Akt/mTOR)通路激活自噬,從而緩解SCI大鼠的神經(jīng)性疼痛[32]。
3.3""SCI中自噬的雙重影響
目前SCI的諸多研究重點是自噬對SCI病理過程的影響[33]。學(xué)術(shù)界對自噬在SCI中的作用仍存在爭議。自噬對SCI的作用被視作一把“雙刃劍”。
3.3.1""自噬在SCI中的保護作用""研究發(fā)現(xiàn)自噬不僅可促進神經(jīng)保護和功能的恢復(fù),還可阻止神經(jīng)細胞的死亡。Gao等[34]研究發(fā)現(xiàn)阿托伐他汀可激活SCI大鼠中的自噬相關(guān)蛋白Beclin-1和LC3-Ⅱ,預(yù)防細胞死亡并促進神經(jīng)功能恢復(fù)。Zhao等[35]研究表明白藜蘆醇通過AMPK/SIRT1信號通路促進自噬,對SCI具有保護神經(jīng)功能的效果。研究表明3,4-二甲氧基查爾酮可通過增強轉(zhuǎn)錄因子EB介導(dǎo)的自噬減輕SCI后的細胞焦亡和壞死性凋亡,促進SCI后的恢復(fù)[36];依達拉奉可通過抑制自噬減輕SCI后血–腦脊髓屏障的破壞[37]。
3.3.2""自噬在SCI中的有害作用""研究發(fā)現(xiàn)降低損傷部位的自噬水平有助于提升SCI后的修復(fù)效果。在SCI的發(fā)展過程中,過度激活的自噬可導(dǎo)致受損組織炎癥加重,進而引發(fā)細胞自噬性死亡,或通過激活其他細胞死亡機制造成大量神經(jīng)元的損失,這一現(xiàn)象被稱為“自噬性死亡”或“自噬死亡”[38]。Chen等[39]通過動物實驗指出SCI后機體自噬機制被激活,然而若過度激活則可能導(dǎo)致神經(jīng)元的自噬性死亡,阻礙神經(jīng)功能的恢復(fù)。Wang等[40]研究指出人參皂苷在處理SCI時通過抑制自噬過程發(fā)揮保護神經(jīng)的作用。Bisicchia等[41]研究發(fā)現(xiàn)抑制自噬小體的形成可顯著減輕脊髓遠端的退化,并有助于改善SCI后的功能恢復(fù)。
3.4""靶向自噬治療SCI
SCI的治療包括保守、手術(shù)和聯(lián)合治療,這些治療最多只起到支持性作用,缺乏更好的治療方案。神經(jīng)電刺激、治療性低溫和細胞治療被用作SCI患者的實驗性治療方法。但這些治療的效果不盡如人意,治療后仍出現(xiàn)一系列并發(fā)癥。因此開發(fā)創(chuàng)新的治療靶點和療法至關(guān)重要。綜上,促進或抑制自噬可能是一種治療SCI的有前景治療策略[42]。
3.4.1""促進自噬治療SCI""研究表明黃芩素可通過激活PI3K通路,促進SCI后神經(jīng)元的自噬,這一機制有助于降低神經(jīng)元的凋亡,并增強SCI小鼠的恢復(fù)能力[43]。Zhang等[44]研究表明二甲雙胍在大鼠中可誘導(dǎo)AMPK的活性提升,同時,黃芩素則降低下游的mTOR信號傳導(dǎo),這一聯(lián)合作用抑制自噬活動,減少神經(jīng)細胞的損失,促進SCI大鼠功能的恢復(fù)。研究表明姜黃素有助于通過增強自噬過程改善SCI大鼠的恢復(fù)結(jié)果[45];雷公藤內(nèi)酯被發(fā)現(xiàn)可通過促進神經(jīng)元細胞自噬和抑制細胞凋亡而改善SCI[46];番茄紅素可有效增強損傷區(qū)域的組織細胞自噬,進而在SCI大鼠中展現(xiàn)出保護神經(jīng)的作用[47];非瑟酮通過增強促炎神經(jīng)膠質(zhì)細胞中的自噬協(xié)調(diào)神經(jīng)炎癥消退并促進SCI恢復(fù)[48];N-(1,3,4-噻二唑基)煙酰胺通過增強星形膠質(zhì)細胞自噬減輕炎癥,從而改善SCI后的運動功能障礙[49]。因此,激活自噬機制被認為是一種極具潛力的神經(jīng)保護策略。
3.4.2""抑制自噬治療SCI""甲基強的松龍作為臨床上最常應(yīng)用治療SCI的抗炎、抗氧化藥物,其通過抑制自噬和細胞凋亡減輕神經(jīng)細胞的氧化損傷[50]。此外在不同的實驗中,通過抑制自噬可減輕神經(jīng)組織損傷促進神經(jīng)功能的修復(fù)。Hao等[51]研究發(fā)現(xiàn)在通過腹腔注射2-丙戊酸鈉(valproic"acid,VPA)治療SCI大鼠的過程中,VPA可顯著抑制損傷部位的自噬水平,緩解髓鞘的損傷,增加脊髓神經(jīng)元,促進SCI大鼠功能的恢復(fù)。17β-雌二醇已被發(fā)現(xiàn)可改善SCI大鼠的運動功能,通過抑制自噬的發(fā)生減少運動神經(jīng)元的損失[52]。研究表明作為疾病治療新手段的氫氣吸入可通過抑制SCI大鼠受損組織中的細胞自噬水平有效促進大鼠在SCI后的運動功能恢復(fù)[53]。綜上,通過抑制SCI后自噬的發(fā)生同樣是治療SCI的一種很有前景的治療策略。
4""小結(jié)與展望
盡管目前關(guān)于自噬與SCI之間的關(guān)系已有較多研究,但仍需對一些待解的問題進行更深入的探討。有必要進一步研究針對自噬精準治療SCI的方法,如探討自噬通路在不同細胞類型(如神經(jīng)元、膠質(zhì)細胞)中的差異性調(diào)節(jié)及在不同SCI階段的應(yīng)用潛力,減少潛在的細胞損害;深入探討自噬與其他細胞死亡機制(如凋亡和壞死)及炎癥反應(yīng)之間的相互關(guān)聯(lián),從而獲得對其在損傷加重及修復(fù)過程中的角色更加全面的認知。自噬在SCI的不同時期表現(xiàn)出不同的變化和作用,目前研究較多的是在急性期的細胞保護和炎癥調(diào)控作用,但在亞急性期及慢性恢復(fù)期的研究較少,因此進一步深入探討自噬在不同時期的變化,有助于開發(fā)針對不同階段的精準治療策略,為SCI的治療提供新的思路和方法。目前針對SCI尚無有效的治療策略。無論自噬在SCI中是發(fā)揮負面作用還是正面作用,其激活與抑制均可能成為治療的關(guān)鍵靶點。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻]
[1] VARGAS"J"N"S,"HAMASAKI"M,"KAWABATA"T,"et"al."The"mechanisms"and"rolesnbsp;of"selective"autophagy"in"mammals[J]."Nat"Rev"Mol"Cell"Biol,"2023,"24(3):"167–185.
[2] LIU"S,"YAO"S,"YANG"H,"et"al."Autophagy:"Regulator"of"cell"death[J]."Cell"Death"Dis,"2023,"14(10):"648.
[3] LI"Z,"CHEN"T,"CAO"Y,"et"al."Pros"and"cons:"Autophagy"in"acute"spinal"cord"injury[J]."Neurosci"Bull,"2019,"35(5):"941–945.
[4] JO"H"J,"PEREZ"M"A."Corticospinal-motor"neuronal"plasticity"promotes"exercise-mediated"recovery"in"humans"with"spinal"cord"injury[J]."Brain,"2020,"143(5):"1368–1382.
[5] HU"X,"XU"W,"REN"Y,"et"al."Spinal"cord"injury:"Molecular"mechanisms"and"therapeutic"interventions[J]."Signal"Transduct"Target"Ther,"2023,"8(1):"245.
[6] SUNSHINE"M"D,"BINDI"V"E,"NGUYEN"B"L,"et"al."Oxygen"therapy"attenuates"neuroinflammation"after"spinal"cord"injury[J]."J"Neuroinflammation,"2023,"20(1):"303.
[7] CHEN"Z,"SUN"Z,"FAN"Y,"et"al."Mimicked"spinal"cord"fibers"trigger"axonal"regeneration"and"remyelination"after"injury[J]."ACS"Nano,"2023,"17(24):"25591–25613.
[8] NEMETH"C,"BANIK"N"L,"HAQUE"A."Disruption"of"neuromuscular"junction"following"spinal"cord"injury"and"motor"neuron"diseases[J]."Int"J"Mol"Sci,"2024,"25(6):"3520.
[9] VISMARA"I,"PAPA"S,"VENERUSO"V,"et"al."Selective"modulation"of"A1"astrocytes"by"drug-loaded"nano-structured"gel"in"spinal"cord"injury[J]."ACS"Nano,"2020,"14(1):"360–371.
[10] DOWLER"R"N,"HARRINGTON"D"L,"HAALAND"K"Y,"et"al."Profiles"of"cognitive"functioning"in"chronic"spinal"cord"injury"and"the"role"of"moderating"variables[J]."J"Int"Neuropsychol"Soc,"1997,"3(5):"464–472.
[11] ERLICH"S,"ALEXANDROVICH"A,"SHOHAMI"E,"et"al."Rapamycin"is"a"neuroprotective"treatment"for"traumatic"brain"injury[J]."Neurobiol"Dis,"2007,"26(1):"86–93.
[12] LIU"Z,"YAO"X,"JIANG"W,"et"al."Advanced"oxidation"protein"products"induce"microglia-mediated"neuroinflammation"via"MAPKs-NF-κB"signaling"pathway"and"pyroptosis"after"secondary"spinal"cord"injury[J]."J"Neuroinflammation,"2020,"17(1):"90.
[13] PINHO"A"G,"CIBR?O"J"R,"LIMA"R,"et"al."Immunomodulatory"and"regenerative"effects"of"the"full"and"fractioned"adipose"tissue"derived"stem"cells"secretome"in"spinal"cord"injury[J]."Exp"Neurol,"2022,"351:"113989.
[14] ANJUM"A,"YAZID"M"D,"FAUZI"DAUD"M,"et"al."Spinal"cord"injury:"Pathophysiology,"multimolecular"interactions,"and"underlying"recovery"mechanisms[J]."Int"J"Mol"Sci,"2020,"21(20):"7533.
[15] ASSINCK"P,"DUNCAN"G"J,"HILTON"B"J,"et"al."Cell"transplantation"therapy"for"spinal"cord"injury[J]."Nat"Neurosci,"2017,"20(5):"637–647.
[16] SNYDER"R,"VERLA"T,"ROPPER"A"E."Practical"application"of"recent"advances"in"diagnostic,"prognostic,"and"therapeutic"modalities"for"spinal"cord"injury[J]."World"Neurosurg,"2020,"136:"330–336.
[17] TIAN"T,"ZHANG"S,"YANG"M."Recent"progress"and"challenges"in"the"treatment"of"spinal"cord"injury[J]."Protein"Cell,"2023,"14(9):"635–652.
[18] WU"J,"STOICA"B"A,"FADEN"A"I."Cell"cycle"activation"and"spinal"cord"injury[J]."Neurotherapeutics,"2011,"8(2):"221–228.
[19] TORRES-ESPíN"A,nbsp;FORERO"J,"FENRICH"K"K,"et"al."Eliciting"inflammation"enables"successful"rehabilitative"training"in"chronic"spinal"cord"injury[J]."Brain,"2018,"141(7):"1946–1962.
[20] TRAN"A"P,"WARREN"P"M,"SILVER"J."The"biology"of"regeneration"failure"and"success"after"spinal"cord"injury[J]."Physiol"Rev,"2018,"98(2):"881–917.
[21] PARZYCH"K"R,"KLIONSKY"D"J."An"overview"of"autophagy:"Morphology,"mechanism,"and"regulation[J]."Antioxid"Redox"Signal,"2014,"20(3):"460–473.
[22] AVIN-WITTENBERG"T."Autophagy"and"its"role"in"plant"abiotic"stress"management[J]."Plant"Cell"Environ,"2019,"42(3):"1045–1053.
[23] KANNO"H,"OZAWA"H,"SEKIGUCHI"A,"et"al."Induction"of"autophagy"and"autophagic"cell"death"in"damaged"neural"tissue"after"acute"spinal"cord"injury"in"mice[J]."Spine,"2011,"36(22):"1427–1434.
[24] ZANG"L,"FU"D,"ZHANG"F,"et"al."Tenuigenin"activates"the"IRS1/Akt/mTOR"signaling"by"blocking"PTPN1"to"inhibit"autophagy"and"improve"locomotor"recovery"in"spinal"cord"injury[J]."J"Ethnopharmacol,"2023,"317:"116841.
[25] KIM"J,"KUNDU"M,"VIOLLET"B,"et"al."AMPK"and"mTOR"regulate"autophagy"through"direct"phosphorylation"of"ULK1[J]."Nat"Cell"Biol,"2011,"13(2):"132–141.
[26] RIBAS"V"T,"VAHSEN"B"F,"TATENHORST"L,"et"al."AAV-mediated"inhibition"of"ULK1"promotes"axonal"regeneration"in"the"central"nervous"system"in"vitro"and"in"vivo[J]."Cell"Death"Dis,"2021,"12(2):"213.
[27] GE"Y,"ZHOU"M,"CHEN"C,"et"al."Role"of"AMPK"mediated"pathways"in"autophagy"and"aging[J]."Biochimie,"2022,"195:"100–113.
[28] HU"Y,"CHEN"H,"ZHANG"L,"et"al."The"AMPK-MFN2"axis"regulates"MAM"dynamics"and"autophagy"induced"by"energy"stresses[J]."Autophagy,"2021,"17(5):"1142–1156.
[29] BAI"L,"MEI"X,"SHEN"Z,"et"al."Netrin-1"improves"functional"recovery"through"autophagy"regulation"by"activating"the"AMPK/mTOR"signaling"pathway"in"rats"with"spinal"cord"injury[J]."Sci"Rep,"2017,"7:"42288.
[30] KHALIL"M"I,"ALI"M"M,"HOLAIL"J,"et"al."Growth"or"death?"Control"of"cell"destiny"by"mTOR"and"autophagy"pathways[J]."Prog"Biophys"Mol"Biol,"2023,"185:"39–55.
[31] WANG"X,"FU"Y,"BOTCHWAY"B,"et"al."Quercetin"can"improve"spinal"cord"injury"by"regulating"the"mTOR"signaling"pathway[J]."Front"Neurol,"2022,"13:"905640.
[32] QIAO"L,"TANG"Q,"AN"Z,"et"al."Minocycline"relieves"neuropathic"pain"in"rats"with"spinal"cord"injury"via"activation"of"autophagy"and"suppression"of"PI3K/Akt/mTOR"pathway[J]."J"Pharmacol"Sci,"2023,"153(1):"12–21.
[33] RAY"S"K."Modulation"of"autophagy"for"neuroprotection"and"functional"recovery"in"traumatic"spinal"cord"injury[J]."Neural"Regen"Res,"2020,"15(9):"1601–1612.
[34] GAO"S,"ZHANG"Z"M,"SHEN"Z"L,nbsp;et"al."Atorvastatin"activates"autophagy"and"promotes"neurological"function"recovery"after"spinal"cord"injury[J]."Neural"Regen"Res,"2016,"11(6):"977–982.
[35] ZHAO"H,"CHEN"S,"GAO"K,"et"al."Resveratrol"protects"against"spinal"cord"injury"by"activating"autophagy"and"inhibiting"apoptosis"mediated"by"the"SIRT1/AMPK"signaling"pathway[J]."Neuroscience,"2017,"348:"241–251.
[36] ZHANG"H,"NI"W,"YU"G,"et"al."3,"4-Dimethoxychalcone,"a"caloric"restriction"mimetic,"enhances"TFEB-mediated"autophagy"and"alleviates"pyroptosis"and"necroptosis"after"spinal"cord"injury[J]."Theranostics,"2023,"13(2):"810–832.
[37] XU"B,"FANG"J,"WANG"J,"et"al."Inhibition"of"autophagy"and"RIP1/RIP3/MLKL-mediated"necroptosis"by"edaravone"attenuates"blood"spinal"cord"barrier"disruption"following"spinal"cord"injury[J]."Biomed"Pharmacother,"2023,"165:"115165.
[38] DUPONT"N,"JIANG"S,"PILLI"M,"et"al."Autophagy-"based"unconventional"secretory"pathway"for"extracellular"delivery"of"IL-1β[J]."EMBO"J,"2011,"30(23):"4701–4711.
[39] CHEN"H"C,"FONG"T"H,"LEE"A"W,"et"al."Autophagy"is"activated"in"injured"neurons"and"inhibited"by"methylprednisolone"after"experimental"spinal"cord"injury[J]."Spine,"2012,"37(6):"470–475.
[40] WANG"P,"LIN"C,"WU"S,"et"al."Inhibition"of"autophagy"is"involved"in"the"protective"effects"of"ginsenoside"Rb1"on"spinal"cord"injury[J]."Cell"Mol"Neurobiol,"2018,"38(3):"679–690.
[41] BISICCHIA"E,"LATINI"L,"CAVALLUCCI"V,"et"al."Autophagy"inhibition"favors"survival"of"rubrospinal"neurons"after"spinal"cord"hemisection[J]."Mol"Neurobiol,"2017,"54(7):"4896–4907.
[42] 王奕鑫."夾脊溫針對大鼠脊髓半切損傷后運動功能及細胞自噬的影響[D]."長沙:"湖南中醫(yī)藥大學(xué),"2024.
[43] WU"C,"XU"H,"LI"J,"et"al."Baicalein"attenuates"pyroptosis"and"endoplasmic"reticulum"stress"following"spinal"cord"ischemia-reperfusion"injury"via"autophagy"enhancement[J]."Front"Pharmacol,"2020,"11:"1076.
[44] ZHANG"D,"XUAN"J,"ZHENG"B"B,"et"al."Metformin"improves"functional"recovery"after"spinal"cord"injury"via"autophagy"flux"stimulation[J]."Mol"Neurobiol,"2017,"54(5):"3327–3341.
[45] GU"G,"REN"J,"ZHU"B,"et"al."Multiple"mechanisms"of"curcumin"targeting"spinal"cord"injury[J]."Biomed"Pharmacother,"2023,"159:"114224.
[46] ZHU"N,"RUAN"J,"YANG"X,"et"al."Triptolide"improves"spinal"cord"injury"by"promoting"autophagy"and"inhibiting"apoptosis[J]."Cell"Biol"Int,"2020,"44(3):"785–794.
[47] 趙琳,"許圣琳,"賈鯤鵬,"等."番茄紅素對大鼠脊髓損傷后神經(jīng)元自噬的影響[J]."中國臨床藥理學(xué)雜志,"2021,"37(5):"552–555.
[48] LIU"Y,"CHU"W,"MA"H,"et"al."Fisetin"orchestrates"neuroinflammation"resolution"and"facilitates"spinal"cord"injury"recovery"through"enhanced"autophagy"in"pro-inflammatory"glial"cells[J]."Int"Immunopharmacol,"2024,"130:"111738.
[49] KONG"J,"ZHANG"Q,"ZHENG"H,"et"al."TGN-020"ameliorates"motor"dysfunction"post-spinal"cord"injury"via"enhancing"astrocyte"autophagy"and"mitigating"inflammation"by"activating"AQP4/PPAR-γ/mTOR"pathway[J]."Exp"Neurol,"2024,"382:"114975.
[50] SáMANO"C,"NISTRI"A."Mechanism"of"neuroprotection"against"experimental"spinal"cordnbsp;injury"by"riluzole"or"methylprednisolone[J]."Neurochem"Res,"2019,"44(1):"200–213.
[51] HAO"H"H,"WANG"L,"GUO"Z"J,"et"al."Valproic"acid"reduces"autophagy"and"promotes"functional"recovery"after"spinal"cord"injury"in"rats[J]."Neurosci"Bull,"2013,"29(4):"484–492.
[52] SHVETCOV"A,"RUITENBERG"M"J,"DELERUE"F,"et"al."The"neuroprotective"effects"of"estrogen"and"estrogenic"compounds"in"spinal"cord"injury[J]."Neurosci"Biobehav"Rev,"2023,"146:"105074.
[53] 吳杰."吸入性氫氣對大鼠脊髓損傷后自噬及神經(jīng)功能的影響[D]."太原:"山西醫(yī)科大學(xué),"2024.
(收稿日期:2024–10–21)
(修回日期:2025–02–11)