【摘要】 心力衰竭患者容易罹患抑郁,二者相互影響,導(dǎo)致患者生活質(zhì)量降低與預(yù)后不良。腸道菌群作為人體最大的微生態(tài)系統(tǒng),其組成、結(jié)構(gòu)及功能變化與宿主的生理和病理狀態(tài)密切相關(guān)。目前,“腸-心/腦軸”已用于解釋腸道微生物、血管疾病及情緒狀態(tài)之間的聯(lián)系,是心力衰竭與抑郁的重要共病基礎(chǔ)。本文綜述了腸道微生物、代謝產(chǎn)物、迷走神經(jīng)等在心力衰竭與抑郁發(fā)生、發(fā)展中的作用機制,提出地中海飲食、益生菌、菌群移植等具有改善微生物-腸-心/腦軸的潛力,為心力衰竭共病抑郁患者的治療提供了新的切入點。
【關(guān)鍵詞】 心力衰竭;抑郁;腸道菌群;代謝產(chǎn)物;綜述
【中圖分類號】 R 541.62 【文獻(xiàn)標(biāo)識碼】 A DOI:10.12114/j.issn.1007-9572.2023.0638
Advances in Gut Microbiota in Heart Failure Combined with Depression
HUANG Kai1,ZHANG Yi1,YANG Chun2,YANG Ling1*
1.Department of Cardiology,the Third Affiliated Hospital of Soochow University,Changzhou 213000,China
2.Department of Anesthesiology and Perioperative Medicine,the First Affiliated Hospital of Nanjing Medical University,Nanjing 210000,China
*Corresponding author:YANG Ling,Chief physician/Doctoral supervisor;E-mail:linda_yl@sina.com
【Abstract】 Heart failure patients are prone to depression,and interact with each other,leading to lower quality of life and poor prognosis of patients. As the largest microecosystem in the human body,changes in the composition,structure and function of the gut microbiota are closely related to the physiological and pathological states of the host. Currently,the “gut-heart/brain axis” has been used to explain the link between gut microbiota,cardiovascular diseases,and mood states,which is an important comorbid basis for heart failure and depression. In this paper,we reviewed the mechanisms of gut microbiota,metabolites,and vagus nerve in the development of heart failure and depression,and propose that mediterranean diet,probiotics,and microbiota transplantation have the potential to improve the “microbiota-gut-heart/brain axis”,providing a new perspective for the treatment of heart failure patients comorbid with depression.
【Key words】 Heart failure;Depression;Gut microbiota;Metabolite;Review
近年來,隨著人口老齡化和心血管危險因素的持續(xù)流行,心力衰竭(以下簡稱心衰)在我國的發(fā)病率始終居高不下,給患者及社會醫(yī)療帶來巨大負(fù)擔(dān)[1]。盡管心衰的規(guī)范化診療取得了一定的進(jìn)展,但鑒于各種合并癥的伴發(fā),當(dāng)前指南在精神心理支持、自我管理、運動康復(fù)等方面對醫(yī)生及患者提出了更高的要求[2-3]。抑郁是一種常見的精神障礙,心境低落、自殺觀念或行為等是其常見的臨床特征[4]。一項前瞻性研究表明,與正常人群相比,抑郁患者更容易發(fā)生心血管事件甚至進(jìn)展為心衰(HR=1.41,95%CI=1.07~1.87)[5]。此外,心衰患者同樣容易罹患抑郁,且抑郁嚴(yán)重程度與心衰患者心血管事件及不良預(yù)后相關(guān)(HR=1.40,95%CI=1.22~1.60)[6]。心衰與抑郁的發(fā)病機制涉及諸多危險因素,包括性別、血小板活化反應(yīng)、炎癥、神經(jīng)內(nèi)分泌失調(diào)等,目前尚無普遍適用且有效的診療手段識別或治療心衰共病抑郁患者[7-8]。因此,迫切需要探究心衰與抑郁的具體共病機制,以提供新的診療策略。近年來,多項研究表明腸道微生物及其代謝產(chǎn)物通過腸-心或腸-腦軸參與心血管疾病或精神疾病的發(fā)生發(fā)展[9-10]。因此,本文就心衰與抑郁患者中腸道菌群及其代謝產(chǎn)物改變及作用機制做一綜述,以期為“腸-心/腦軸”的理論提供有力補充,為臨床上識別和減輕心衰患者抑郁癥狀提供新的見解。
1 文獻(xiàn)檢索策略
以“Heart failure”and“Depression”“Heart failure”and“Gut microbiota” “Depression”and"“Gut microbiota”“Heart failure”and“Metabolite”“Depression”and“Metabolite”為英文檢索詞,檢索PubMed、Web of Science數(shù)據(jù)庫;以“心力衰竭”“抑郁”“腸道菌群”“代謝產(chǎn)物”為中文檢索詞,檢索中國知網(wǎng)、萬方數(shù)據(jù)知識服務(wù)平臺。檢索時間為2008年1月—2023年3月。納入標(biāo)準(zhǔn):(1)以腸道微生物及其代謝產(chǎn)物與心力衰竭或抑郁相關(guān)的文獻(xiàn);(2)論點、論據(jù)真實可靠,與主題關(guān)聯(lián)度高的文獻(xiàn)。排除標(biāo)準(zhǔn):邏輯嚴(yán)謹(jǐn)性低且可信度差的文獻(xiàn)。最終納入相關(guān)文獻(xiàn)76篇。
2 腸道菌群
人類腸道是一個動態(tài)的、復(fù)雜的微生態(tài)系統(tǒng),包含數(shù)百種細(xì)菌,數(shù)量約為1×1014個[11]。正常的腸道菌群主要由6門類細(xì)菌組成,即擬桿菌門、厚壁菌門、變形菌門、放線菌門、梭桿菌門和疣微菌門[12]。在不同個體中,這些菌群的結(jié)構(gòu)和比例并不相同,而這種多樣性主要受宿主因素(遺傳差異、年齡與性別)與環(huán)境因素(生活方式、飲食與抗生素的使用)影響[13-14]。
腸道菌群參與體內(nèi)食物的消化吸收,主要通過糖分解和蛋白水解2種代謝途徑來實現(xiàn)[15]。在糖分解途徑中,菌群通過酵解機體難以消化吸收的膳食纖維,產(chǎn)生人體大部分的短鏈脂肪酸(short-chain fatty acids,SCFAs)和少量支鏈脂肪酸(branch chain fatty acids,BCFAs)[16]。在蛋白水解途徑中,除了生成SCFAs和BCFAs,還會產(chǎn)生氨、胺、硫醇、酚、吲哚等多種生物活性化合物[17]。除幫助宿主消化食物外,腸道菌群還能通過多種途徑與宿主相互影響,如調(diào)節(jié)腸道黏膜屏障功能,協(xié)助免疫組織激活,影響腸內(nèi)容物抗原耐受能力,阻止病原微生物繁殖等[18-19]。此外,腸道菌群借助各種信號分子與腸道黏膜表面的模式識別受體結(jié)合,觸發(fā)多種下游信號傳導(dǎo)通路,刺激機體產(chǎn)生炎癥或抗炎免疫應(yīng)答[20]。因此,菌群失調(diào)是多種疾病發(fā)生發(fā)展的推動力量。
3 腸道微生態(tài)失調(diào)與心衰、抑郁的聯(lián)系
心衰患者體內(nèi)血液再分配可導(dǎo)致結(jié)合珠蛋白2前體表達(dá)上調(diào)、緊密連接蛋白1表達(dá)下調(diào),造成腸道通透性增加及腸上皮屏障功能受損,導(dǎo)致腸道菌群豐度改變,代謝產(chǎn)物及內(nèi)毒素等釋放入血[21-22]。易位的菌群及代謝產(chǎn)物激發(fā)炎癥反應(yīng),影響循環(huán)及中樞神經(jīng)系統(tǒng)功能,形成惡性循環(huán)[23]。
3.1 菌群多樣性改變
目前,隨著16S rRNA、宏基因組等測序技術(shù)的發(fā)展,對于心衰、抑郁患者中腸道微生態(tài)的變化也有了更全面的認(rèn)識。早期研究發(fā)現(xiàn),與健康人群相比,心衰患者腸道菌群多樣性降低,主要微生物發(fā)生移位,其中科里桿菌科、丹毒絲菌科和瘤胃球菌科豐度顯著減少[24]。隨后的組學(xué)研究進(jìn)一步證實心衰患者中有益菌豐度顯著降低(產(chǎn)丁酸鹽菌及乳酸桿菌等),而致病菌豐度顯著增加(柯林斯菌屬、彎曲桿菌屬及志賀菌屬等)[25-26]。另一方面,抑郁癥與腸道紊亂同樣存在關(guān)聯(lián)。YANG等[27]通過宏基因測序發(fā)現(xiàn)重度抑郁患者腸道內(nèi)多種噬菌體及菌種發(fā)生改變,其中布勞特菌屬和優(yōu)桿菌屬的豐度減少與抑郁癥狀顯著相關(guān)。此外,一項薈萃分析顯示擬桿菌屬、副桿菌屬、Barnesiella屬等在抑郁患者中富集,而厚壁菌門、顫螺旋菌科(UCG 003、UCG 002)與普通擬桿菌屬則顯著耗竭[28]。更重要的是,KELLY等[29]發(fā)現(xiàn)將“抑郁性菌群”移植到無菌小鼠體內(nèi)可誘導(dǎo)抑郁樣行為及特征,包括快感缺乏以及絕望狀態(tài)等。綜上所述,特定微生物改變與心衰或抑郁的疾病易感性存在關(guān)聯(lián)。
3.2 SCFAs
SCFAs主要由腸道有益菌代謝膳食纖維產(chǎn)生,在腸內(nèi)及腸外(心血管、大腦等)參與諸多生物過程。研究顯示,SCFAs可結(jié)合G蛋白偶聯(lián)受體通過內(nèi)皮依賴的方式介導(dǎo)血壓改變[30]。另一項研究表明,心衰患者心肌線粒體肉堿棕櫚酰轉(zhuǎn)移酶1活性降低常導(dǎo)致長鏈脂肪酸氧化受損,而SCFAs相關(guān)能量代謝獨立于該途徑,可作為氧化ATP生成的替代碳源[31]。一項臨床研究顯示,與非抑郁人群相比,抑郁患者腸道乙酸鹽與丙酸鹽濃度顯著降低,且在傾向性匹配后,丙酸鹽濃度與抑郁評分呈負(fù)相關(guān)[32]。SONG等[33]發(fā)現(xiàn)腸道丙酸鹽或丁酸鹽可穿過血腦屏障降低無菌小鼠小膠質(zhì)細(xì)胞活化、促進(jìn)大腦中Ac-H3K9表達(dá),改善神經(jīng)炎癥及抑郁癥狀。此外,SCFAs還可以作為信號分子影響白色脂肪組織、胰島細(xì)胞及炎癥反應(yīng)細(xì)胞等,從而參與心衰與抑郁疾病的發(fā)生發(fā)展[34]。
3.3 氧化三甲胺(trimethylamine N-oxide,TMAO)
TMAO是常見的腸源性代謝產(chǎn)物之一,主要由膽堿經(jīng)腸道菌群裂解及肝臟黃素單加氧酶氧化生成。2014年研究人員首次在心衰患者中觀察到血漿TMAO水平升高,且高水平TMAO與患者全因死亡風(fēng)險增高獨立相關(guān)(HR=2.2,95%CI=1.42~3.43,Plt;0.001)[35]。隨后的臨床前實驗表明,TMAO可通過誘導(dǎo)心肌纖維化、內(nèi)皮細(xì)胞炎癥以及心肌線粒體功能障礙直接影響心臟,從而加重心衰的進(jìn)展[36-37]。近期研究發(fā)現(xiàn),心肌梗死后精神障礙嚴(yán)重患者血漿TMAO顯著升高[38]。此外,TMAO可降低血腦屏障上緊密連接蛋白的表達(dá)[39],通過刺激小膠質(zhì)細(xì)胞激活和神經(jīng)炎癥增加,進(jìn)一步加劇認(rèn)知功能障礙[40]。
3.4 色氨酸
色氨酸是人體必需氨基酸,受腸道微生物直接或間接調(diào)節(jié),其代謝產(chǎn)物具有免疫、代謝、神經(jīng)調(diào)節(jié)等功能。研究表明,超過90%的5-羥色胺由色氨酸經(jīng)腸色素細(xì)胞生產(chǎn),其通過腸道迷走神經(jīng)突觸受體與腦干神經(jīng)元通信繼而發(fā)揮改善抑郁癥狀作用[41]。此外,LUKI?等[42]觀察到無菌小鼠海馬體和前額葉皮層中色氨酸和血清素水平大幅降低,抑郁行為顯著增加。另一方面,腸道菌群可促進(jìn)吲哚胺2,3-雙加氧酶1的表達(dá)影響色氨酸-犬尿氨酸代謝途徑,導(dǎo)致循環(huán)中犬尿氨酸水平增高誘導(dǎo)抑郁樣行為[43]。值得注意的是,循環(huán)犬尿氨酸及其代謝物可影響內(nèi)皮依賴性血管舒張、誘導(dǎo)氧化應(yīng)激,參與心血管疾病的發(fā)生、發(fā)展[44]。一項臨床研究觀察到慢性心衰患者中血清犬尿氨酸水平與高敏C反應(yīng)蛋白及白細(xì)胞呈正相關(guān),單因素回歸分析提示血清犬尿氨酸可預(yù)測心衰患者出院后不良心血管事件(HR=1.43,P=0.033)[45]。
3.5 脂多糖
脂多糖是革蘭陰性細(xì)菌細(xì)胞壁特有的成分,主要由腸道微生物死亡裂解后釋放到腸道微環(huán)境并進(jìn)入血液循環(huán)系統(tǒng)。與心衰-腸道假說一致的是,失代償性心衰患者血液中脂多糖的水平明顯升高,這種與心衰相關(guān)的內(nèi)毒素血癥可能參與心衰患者的全身性炎癥[46]。另一方面,脂多糖可通過刺激線粒體功能障礙與巨噬細(xì)胞極化誘導(dǎo)心臟內(nèi)炎癥因子表達(dá)[47]。QIN等[48]研究發(fā)現(xiàn),脂多糖可激活小膠質(zhì)細(xì)胞并增加其谷氨酰胺酶的合成,后者導(dǎo)致抑郁狀態(tài)下丘腦-垂體-腎上腺軸的過度激活。此外,近期一項動物研究表明,脂多糖可以通過Toll樣受體4加重心衰后大鼠的神經(jīng)炎癥[49],其可能是心衰共病抑郁的潛在機制之一。
3.6 γ-氨基丁酸(γ-aminobutyric acid,GABA)
GABA是一種來源于腸道的重要神經(jīng)遞質(zhì),主要由食物中谷氨酸代謝合成。CHEN等[50]發(fā)現(xiàn)外源性補充GABA可抑制心臟Bax/Bak的凋亡通路,減輕自發(fā)性高血壓大鼠的心肌細(xì)胞凋亡。研究表明,左心肥厚大鼠中樞GABA能神經(jīng)元受到抑制,后者進(jìn)一步介導(dǎo)自主神經(jīng)功能紊亂,增加心肌工作負(fù)荷,加速心衰進(jìn)展[51]。另一方面,GABA同樣參與了抑郁癥的發(fā)生發(fā)展。STRANDWITZ等[52]通過16S rRNA發(fā)現(xiàn)產(chǎn)GABA菌群水平降低與抑郁癥密切相關(guān)。值得注意的是,增強GABA能神經(jīng)元活性、提升GABA神經(jīng)遞質(zhì)水平在治療抑郁癥在動物模型中已取得了令人鼓舞的效果[53]。綜上所述,腸道GABA代謝與心衰共病抑郁密切相關(guān)。
4 迷走神經(jīng)通路
迷走神經(jīng)是“腸-腦軸”中重要的信息調(diào)節(jié)通路,該通路的中斷或紊亂,可能導(dǎo)致精神障礙,如認(rèn)知、行為、情感等[54]。NEUFELD等[55]發(fā)現(xiàn),與腸道微生態(tài)健全的小鼠相比,無菌小鼠在應(yīng)激后下丘腦-垂體-腎上腺軸呈高反應(yīng)性,且循環(huán)皮質(zhì)醇水平增高。此外,心衰患者抑郁癥狀的嚴(yán)重程度與外周血單個核細(xì)胞的免疫遷移相關(guān),后者增加β-腎上腺素受體的敏感性[56]。增高的皮質(zhì)醇水平及β-腎上腺素受體敏感性降低了迷走神經(jīng)張力,進(jìn)一步加重外周及中樞炎癥[57-58]??紤]SCFAs受體、神經(jīng)遞質(zhì)受體、腸肽等在迷走神經(jīng)傳入中大量表達(dá),迷走神經(jīng)通路可能參與腸道代謝分子對心臟、大腦的遠(yuǎn)程調(diào)節(jié)[59-60]。值得注意的是,長雙歧桿菌等益生菌對小鼠情緒行為和中樞神經(jīng)受體的改善作用同樣依賴迷走神經(jīng)的傳入[61-62]。此外,HAN等[63]通過神經(jīng)元投射與標(biāo)記證實腸迷走神經(jīng)傳入調(diào)節(jié)的臂旁黑質(zhì)背外側(cè)通路在獎賞行為和多巴胺活動中起著關(guān)鍵作用。
5 調(diào)節(jié)腸道微生態(tài)
腸道微生態(tài)失衡與心衰、抑郁的發(fā)生發(fā)展密切相關(guān)?;謴?fù)菌群結(jié)構(gòu),改善微生物-腸-心/腦軸,為心衰共病抑郁患者提供了新的治療切入點。本文主要從地中海飲食、益生菌、益生元、菌群移植等方面,探討通過調(diào)節(jié)腸道菌群治療心衰共病抑郁患者的可行性。
5.1 地中海飲食
地中海飲食是現(xiàn)代營養(yǎng)學(xué)推薦的一種飲食模式,其強調(diào)膳食纖維、不飽和脂肪酸及優(yōu)質(zhì)蛋白質(zhì)的攝入。2019年美國心力衰竭協(xié)會發(fā)表的共識聲明強調(diào)地中海飲食模式對有心衰風(fēng)險或已確診心衰的患者是合適、有益的選擇[64]。一項多中心干預(yù)研究發(fā)現(xiàn)堅持地中海飲食模式的心衰患者心肺功能及活動意愿較高[65]。此外,WALKER等[66]評估Framingham心臟研究數(shù)據(jù)發(fā)現(xiàn)堅持地中海飲食有助于維持神經(jīng)認(rèn)知健康、減輕心臟重塑。類似地,一項病例對照研究發(fā)現(xiàn),對于焦慮或抑郁患者地中海飲食的高依從性與急性心肌梗死等心血管事件呈負(fù)相關(guān),提示地中海飲食可能是心血管疾病與抑郁共病患者的一個顯著保護因素[67]。
5.2 益生菌
益生菌主要指適量食用時對宿主健康有益的活微生物,包括乳酸桿菌、丁酸桿菌、鼠李糖乳桿菌等。一項薈萃分析顯示,服用益生菌可顯著降低受試者的抑郁評分(95%CI=-0.51~-0.09,P=0.005)[68]。另一項實驗發(fā)現(xiàn),喂養(yǎng)鼠李糖乳桿菌6周后,實驗鼠腦部GABA受體基因表達(dá)顯著提升,有助于促進(jìn)腦內(nèi)GABA分泌,繼而緩解了動物焦慮、抑郁相關(guān)行為[62]。同樣地,補充鼠李糖乳桿菌可減弱缺血性心衰大鼠左心室肥厚,改善左心室收縮和舒張功能,并且在停止喂養(yǎng)后其相關(guān)益處仍可長期持續(xù)[69]。需要強調(diào)的是,盡管益生菌在輔助治療方面取得了一定的進(jìn)展,然而益生菌劑量、服用時間及與藥物相互作用等額外因素還沒有徹底地闡明,需要行進(jìn)一步的科學(xué)研究。
5.3 益生元
益生元指一類可選擇性刺激腸道菌群活性及生長而對宿主產(chǎn)生有益的影響的膳食補充劑。一項動物實驗顯示,以發(fā)酵麥麩為基礎(chǔ)的益生元復(fù)合物可刺激心衰大鼠腸道乳酸桿菌生長,改善腸道生態(tài)失調(diào)、減輕內(nèi)毒素血癥[70]。此外,半乳聚糖可通過抑制凋亡級聯(lián)來減輕心肌梗死大鼠心肌損傷,改善心室重構(gòu)[71]。另一項隨機對照研究表明,補充菊粉可協(xié)助鼠李糖乳桿菌降低冠心病患者循環(huán)炎癥因子水平及抑郁評分[72]。類似地,秋葵多糖可通過緩解腸道菌群失調(diào),降低結(jié)腸、血清及海馬炎癥水平,改善慢性應(yīng)激誘導(dǎo)的抑郁樣行為[73]。
5.4 菌群移植
菌群移植主要通過植入健康糞便中功能菌群,重塑菌群結(jié)構(gòu),協(xié)助疾病的治療。動物研究表明,菌群移植通過恢復(fù)5-羥色胺水平、抑制腦膠質(zhì)細(xì)胞活化,從而緩解抑郁樣行為[74]。臨床試驗顯示,與安慰劑組患者相比,菌群移植組患者腸道多樣性得到改善,抑郁評分顯著降低[75]。在心血管疾病方面,ZHANG等[76]發(fā)現(xiàn)心房顫動易感老年大鼠的腸道微生態(tài)和心房炎癥小體活性可通過移植年輕大鼠的健康菌群得到恢復(fù),從而預(yù)防心房顫動的發(fā)生發(fā)展。此外,ZHONG等[77]證實水洗菌群移植治療對高血壓患者有較好的降壓作用,且降壓持續(xù)時間長于常規(guī)口服藥物。遺憾的是,目前尚無心衰共病抑郁動物及臨床相關(guān)的菌群移植試驗,未來仍需要進(jìn)一步研究以推動腸道菌群治療在心衰共病抑郁患者中的應(yīng)用。
6 總結(jié)
隨著研究深入,腸道菌群參與心衰與抑郁共病的機制逐步闡明,以“腸-心/腦軸”為核心調(diào)節(jié)為治療提供了新切入點。心衰時腸道血流灌注減少、腸道屏障被破壞,導(dǎo)致菌群失調(diào),諸多腸道功能產(chǎn)物代謝紊亂,如SCFAs、色氨酸、GABA含量降低,LPS、TMAO反向升高。上述代謝產(chǎn)物直接或間接(迷走神經(jīng)通路)引起外周及神經(jīng)炎癥、心肌細(xì)胞氧化應(yīng)激、膠質(zhì)細(xì)胞活化,進(jìn)而引起心功能惡化、誘導(dǎo)抑郁行為或情緒的產(chǎn)生。另一方面,抑郁進(jìn)一步加重了菌群紊亂,最終形成惡性循環(huán)。需要強調(diào)的是,盡管地中海飲食、益生菌、益生元、菌群移植等治療方式在心衰或抑郁患者中展現(xiàn)出不俗的治療效果,但其具體治療機制、潛在不良反應(yīng)尚不明確?;诖?,未來需要更多的研究以明確和建立“微生物-腸-心/腦軸”的關(guān)系網(wǎng)絡(luò),實現(xiàn)通過菌群調(diào)控協(xié)助改善心衰共病抑郁患者的臨床癥狀及預(yù)后。
作者貢獻(xiàn):黃凱、張浥進(jìn)行文章的構(gòu)思與設(shè)計,撰寫論文;楊春、楊玲進(jìn)行論文的修訂,負(fù)責(zé)文章的質(zhì)量控制及審校,對文章整體負(fù)責(zé)、監(jiān)督管理。
本文無利益沖突。
黃凱:https://orcid.org/0009-0008-8977-6038
楊玲:https://orcid.org/0000-0002-7885-3287
參考文獻(xiàn)
WANG H,CHAI K,DU M H,et al. Prevalence and incidence of heart failure among urban patients in China:a national population-based analysis[J]. Circ Heart Fail,2021,14(10):e008406. DOI:10.1161/CIRCHEARTFAILURE.121.008406.
中華醫(yī)學(xué)會心血管病學(xué)分會心力衰竭學(xué)組,中國醫(yī)師協(xié)會心力衰竭專業(yè)委員會,中華心血管病雜志編輯委員會. 中國心力衰竭診斷和治療指南2018[J]. 中華心血管病雜志,2018,
46(10):760-789. DOI:10.3760/cma.j.issn.0253-3758.2018.10.004.
BURG M M. Depression and HeartFailure:what then must we do?[J]. JACC Heart Fail,2022,10(4):263-265. DOI:10.1016/j.jchf.2021.12.003.
SMITH K. Mental health:a world of depression[J]. Nature,2014,515(7526):181. DOI:10.1038/515180a.
GUSTAD L T,LAUGSAND L E,JANSZKY I,et al. Symptoms of anxiety and depression and risk of heart failure:the HUNT Study[J]. Eur J Heart Fail,2014,16(8):861-870. DOI:10.1002/ejhf.133.
REGAN J A,KITZMAN D W,LEIFER E S,et al. Impact of age on comorbidities and outcomes in HeartFailure with ReducedEjection fraction[J]. JACC Heart Fail,2019,7(12):1056-1065. DOI:10.1016/j.jchf.2019.09.004.
SBOLLI M,F(xiàn)IUZAT M,CANI D,et al. Depression and heart failure:the lonely comorbidity[J]. Eur J Heart Fail,2020,
22(11):2007-2017. DOI:10.1002/ejhf.1865.
CHEN Z J,WU Y S,DUAN J H,et al. The cholinergic anti-inflammatory pathway could be an important mechanism underling the comorbidity of depression and cardiovascular disease:a comment to Shao et al[J]. Psychiatry Res,2020,286:112881. DOI:10.1016/j.psychres.2020.112881.
TR?SEID M,ANDERSEN G ?,BROCH K,et al. The gut microbiome in coronary artery disease and heart failure:current knowledge and future directions[J]. EBioMedicine,2020,52:102649. DOI:10.1016/j.ebiom.2020.102649.
薛炳清,李春艷,朱燦. 腸道菌群對心血管疾病患者合并焦慮抑郁影響的研究進(jìn)展[J]. 吉首大學(xué)學(xué)報(自然科學(xué)版),2021,42(1):83-89. DOI:10.13438/j.cnki.jdzk.2021.01.013.
BERMON S,PETRIZ B,KAJ?NIEN? A,et al. The microbiota:an exercise immunology perspective[J]. Exerc Immunol Rev,2015,21:70-79.
SENDER R,F(xiàn)UCHS S,MILO R. Revised estimates for the number of human and bacteria cells in the body[J]. PLoS Biol,2016,14(8):e1002533. DOI:10.1371/journal.pbio.1002533.
COSTELLO E K,LAUBER C L,HAMADY M,et al. Bacterial community variation in human body habitats across space and time[J]. Science,2009,326(5960):1694-1697. DOI:10.1126/science.1177486.
CARMODY R N,GERBER G K,LUEVANO J M Jr,et al. Diet dominates host genotype in shaping the murine gut microbiota[J]. Cell Host Microbe,2015,17(1):72-84. DOI:10.1016/j.chom.2014.11.010.
SEKIROV I,RUSSELL S L,ANTUNES L C,et al. Gut microbiota in health and disease[J]. Physiol Rev,2010,90(3):859-904. DOI:10.1152/physrev.00045.2009.
TREMAROLI V,B?CKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature,2012,
489(7415):242-249. DOI:10.1038/nature11552.
TANG W H W,LI D Y,HAZEN S L. Dietary metabolism,the gut microbiome,and heart failure[J]. Nat Rev Cardiol,2019,
16(3):137-154. DOI:10.1038/s41569-018-0108-7.
HAMILTON M K,BOUDRY G,LEMAY D G,et al. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent[J]. Am J Physiol Gastrointest Liver Physiol,2015,308(10):G840-G851. DOI:10.1152/ajpgi.00029.2015.
BUNKER J J,F(xiàn)LYNN T M,KOVAL J C,et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A[J]. Immunity,2015,43(3):541-553. DOI:10.1016/j.immuni.2015.08.007.
DE OLIVEIRA G L V,LEITE A Z,HIGUCHI B S,et al. Intestinal dysbiosis and probiotic applications in autoimmune diseases[J]. Immunology,2017,152(1):1-12. DOI:10.1111/imm.12765.
MEINITZER S,BARANYI A,HOLASEK S,et al. Sex-specific associations of trimethylamine-N-oxide and zonulin with signs of depression in carbohydrate malabsorbers and nonmalabsorbers[J]. Dis Markers,2020,2020:7897240. DOI:10.1155/2020/7897240.
DU Q,WANG Y H,ZHAO H Q,et al. Damages and its mechanism of the blood brain barrier in rats with diabetes mellitus with depression[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi,2016,32(6):558-562. DOI:10.13459/j.cnki.cjap.2016.06.016.
HOU K J,WU Z X,CHEN X Y,et al. Microbiota in health and diseases[J]. Signal Transduct Target Ther,2022,7(1):135. DOI:10.1038/s41392-022-00974-4.
LUEDDE M,WINKLER T,HEINSEN F A,et al. Heart failure is associated with depletion of core intestinal microbiota[J]. ESC Heart Fail,2017,4(3):282-290. DOI:10.1002/ehf2.12155.
JIN L,SHI X M,YANG J,et al. Gut microbes in cardiovascular diseases and their potential therapeutic applications[J]. Protein Cell,2021,12(5):346-359. DOI:10.1007/s13238-020-00785-9.
SUN W J,DU D B,F(xiàn)U T Z,et al. Alterations of the gut microbiota in patients with severe chronic heart failure[J]. Front Microbiol,2021,12:813289. DOI:10.3389/fmicb.2021.813289.
YANG J,ZHENG P,LI Y F,et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders[J]. Sci Adv,2020,6(49):eaba8555. DOI:10.1126/sciadv.aba8555.
LIANG S S,SIN Z Y,YU J L,et al. Multi-cohort analysis of depression-associated gut bacteria sheds insight on bacterial biomarkers across populations[J]. Cell Mol Life Sci,2022,
80(1):9. DOI:10.1007/s00018-022-04650-2.
KELLY J R,BORRE Y,O' BRIEN C,et al. Transferring the blues:depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. J Psychiatr Res,2016,82:109-118. DOI:10.1016/j.jpsychires.2016.07.019.
LI B,WANG H Y,HUANG J H,et al. Polysaccharide,the active component of Dendrobium officinale,ameliorates metabolic hypertension in rats via regulating intestinal flora-SCFAs-vascular axis[J]. Front Pharmacol,2022,13:935714. DOI:10.3389/fphar.2022.935714.
CARLEY A N,MAURYA S K,F(xiàn)ASANO M,et al. Short-chain fatty acids outpace ketone oxidation in the failing heart[J]. Circulation,2021,143(18):1797-1808. DOI:10.1161/CIRCULATIONAHA.120.052671.
SKONIECZNA-?YDECKA K,GROCHANS E,MACIEJEWSKA D,et al. Faecal short chain fatty acids profile is changed in Polish depressive women[J]. Nutrients,2018,10(12):1939. DOI:10.3390/nu10121939.
SONG L J,SUN Q H,ZHENG H N,et al. Roseburia hominis alleviates neuroinflammation via short-chain fatty acids through histone deacetylase inhibition[J]. Mol Nutr Food Res,2022,66(18):e2200164. DOI:10.1002/mnfr.202200164.
SELBER-HNATIW S,SULTANA T,TSE W,et al. Metabolic networks of the human gut microbiota[J]. Microbiology,2020,166(2):96-119. DOI:10.1099/mic.0.000853.
WILSON TANG W H,WANG Z N,F(xiàn)AN Y Y,et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure:refining the gut hypothesis[J]. J Am Coll Cardiol,2014,64(18):1908-1914. DOI:10.1016/j.jacc.2014.02.617.
LI Z H,WU Z Y,YAN J Y,et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis[J]. Lab Invest,2019,99(3):346-357. DOI:10.1038/s41374-018-0091-y.
MAKRECKA-KUKA M,VOLSKA K,ANTONE U,et al. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria[J]. Toxicol Lett,2017,267:32-38. DOI:10.1016/j.toxlet.2016.12.017.
BARANYI A,ENKO D,VON LEWINSKI D,et al. Assessment of trimethylamine N-oxide(TMAO)as a potential biomarker of severe stress in patients vulnerable to posttraumatic stress disorder(PTSD)after acute myocardial infarction[J]. Eur J Psychotraumatol,2021,12(1):1920201. DOI:10.1080/20008198.2021.1920201.
HERNANDEZ L,WARD L J,AREFIN S,et al. Blood-brain barrier and gut barrier dysfunction in chronic kidney disease with a focus on circulating biomarkers and tight junction proteins[J]. Sci Rep,2022,12(1):4414. DOI:10.1038/s41598-022-08387-7.
MENG F Q,LI N,LI D L,et al. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats[J]. Behav Brain Res,2019,368:111902. DOI:10.1016/j.bbr.2019.111902.
LIANG S,WANG T,HU X,et al. Administration of Lactobacillus helveticus NS8 improves behavioral,cognitive,and biochemical aberrations caused by chronic restraint stress[J]. Neuroscience,2015,310:561-577. DOI:10.1016/j.neuroscience.2015.09.033.
LUKI? I,GETSELTER D,KOREN O,et al. Role of tryptophan in microbiota-induced depressive-like behavior:evidence from tryptophan depletion study[J]. Front Behav Neurosci,2019,13:123. DOI:10.3389/fnbeh.2019.00123.
KRAUTKRAMER K A,F(xiàn)AN J,B?CKHED F. Gut microbial metabolites as multi-Kingdom intermediates[J]. Nat Rev Microbiol,2021,19(2):77-94. DOI:10.1038/s41579-020-0438-4.
SONG P,RAMPRASATH T,WANG H,et al. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases[J]. Cell Mol Life Sci,2017,74(16):2899-2916. DOI:10.1007/s00018-017-2504-2.
DSCHIETZIG T B,KELLNER K H,SASSE K,et al. Plasma kynurenine predicts severity and complications of heart failure and associates with established biochemical and clinical markers of disease[J]. Kidney Blood Press Res,2019,44(4):765-776. DOI:10.1159/000501483.
CHAAR D,DUMONT B,VULESEVIC B,et al. Neutrophils pro-inflammatory and anti-inflammatory cytokine release in patients with heart failure and reduced ejection fraction[J]. ESC Heart Fail,2021,8(5):3855-3864. DOI:10.1002/ehf2.13539.
LI Y,F(xiàn)ENG Y F,LIU X T,et al. Songorine promotes cardiac mitochondrial biogenesis via Nrf2 induction during sepsis[J]. Redox Biol,2021,38:101771. DOI:10.1016/j.redox.2020.101771.
QIN X Y,SHAN Q H,F(xiàn)ANG H,et al. PSD-93 up-regulates the synaptic activity of corticotropin-releasing hormone neurons in the paraventricular nucleus in depression[J]. Acta Neuropathol,2021,142(6):1045-1064. DOI:10.1007/s00401-021-02371-7.
HUO J Y,JIANG W Y,YIN T,et al. Intestinal barrier dysfunction exacerbates neuroinflammation via the TLR4 pathway in mice with heart failure[J]. Front Physiol,2021,12:712338. DOI:10.3389/fphys.2021.712338.
CHEN B C,HUNG M Y,WANG H F,et al. GABA tea attenuates cardiac apoptosis in spontaneously hypertensive rats(SHR)by enhancing PI3K/Akt-mediated survival pathway and suppressing Bax/Bak dependent apoptotic pathway[J]. Environ Toxicol,2018,33(7):789-797. DOI:10.1002/tox.22565.
CAULEY E,WANG X,DYAVANAPALLI J,et al. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure[J]. Am J Physiol Heart Circ Physiol,2015,309(8):H1281-H1287. DOI:10.1152/ajpheart.00445.2015.
STRANDWITZ P,KIM K H,TEREKHOVA D,et al. GABA-modulating bacteria of the human gut microbiota[J]. Nat Microbiol,2019,4(3):396-403. DOI:10.1038/s41564-018-0307-3.
FUCHS T,JEFFERSON S J,HOOPER A,et al. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state[J]. Mol Psychiatry,2017,22(6):920-930. DOI:10.1038/mp.2016.188.
OSADCHIY V,MARTIN C R,MAYER E A. The gut-brain axis and the microbiome:mechanisms and clinical implications[J]. Clin Gastroenterol Hepatol,2019,17(2):322-332. DOI:10.1016/j.cgh.2018.10.002.
NEUFELD K M,KANG N,BIENENSTOCK J,et al. Reduced anxiety-like behavior and central neurochemical change in germ-free mice[J]. Neurogastroenterol Motil,2011,23(3):255-264,e119. DOI:10.1111/j.1365-2982.2010.01620.x.
REDWINE L S,WIRTZ P H,HONG S Z,et al. Depression as a potential modulator of Beta-adrenergic-associated leukocyte mobilization in heart failure patients[J]. J Am Coll Cardiol,2010,56(21):1720-1727. DOI:10.1016/j.jacc.2010.04.064.
ADELBORG K,SCHMIDT M,SUNDB?LL J,et al. Mortality risk among heart failure patients with depression:a nationwide population-based cohort study[J]. J Am Heart Assoc,
2016,5(9):e004137. DOI:10.1161/JAHA.116.004137.
WANG Y,ZHAN G F,CAI Z W,et al. Vagus nerve stimulation in brain diseases:therapeutic applications and biological mechanisms[J]. Neurosci Biobehav Rev,2021,127:37-53. DOI:10.1016/j.neubiorev.2021.04.018.
VADDER F D,KOVATCHEVA-DATCHARY P,GONCALVES D,et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits[J]. Cell,2014,156(1/2):84-96. DOI:10.1016/j.cell.2013.12.016.
EGEROD K L,PETERSEN N,TIMSHEL P N,et al. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms[J]. Mol Metab,2018,12:62-75. DOI:10.1016/j.molmet.2018.03.016.
BERCIK P,PARK A J,SINCLAIR D,et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication[J]. Neurogastroenterol Motil,2011,23(12):1132-1139. DOI:10.1111/j.1365-2982.2011.01796.x.
BRAVO J A,F(xiàn)ORSYTHE P,CHEW M V,et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve[J]. Proc Natl Acad Sci U S A,2011,108(38):16050-16055. DOI:10.1073/pnas.1102999108.
HAN W F,TELLEZ L A,PERKINS M H,et al. A neural circuit for gut-induced reward[J]. Cell,2018,175(3):887-888. DOI:10.1016/j.cell.2018.10.018.
VEST A R,CHAN M,DESWAL A,et al. Nutrition,obesity,and Cachexia in patients with heart failure:a consensus statement from the heart failure society of America scientific statements committee[J]. J Card Fail,2019,25(5):380-400. DOI:10.1016/j.cardfail.2019.03.007.
BAYERLE P,BEYER S,TEGTBUR U,et al. Exercise capacity,iron status,body composition,and Mediterranean diet in patients with chronic heart failure[J]. Nutrients,2022,
15(1):36. DOI:10.3390/nu15010036.
WALKER M E,O'DONNELL A A,HIMALI J J,et al. Associations of the mediterranean-dietary approaches to stop hypertension intervention for neurodegenerative delay diet with cardiac remodelling in the community:the Framingham Heart Study[J]. Br J Nutr,2021,126(12):1888-1896. DOI:10.1017/S0007114521000660.
GEORGOUSOPOULOU E N,KASTORINI C M,MILIONIS H J,et al. Association between Mediterranean diet and non-fatal cardiovascular events,in the context of anxiety and depression disorders:a case/case-control study[J]. Hellenike Kardiologike Epitheorese,2014,55(1):24-31.
HUANG R X,WANG K,HU J N. Effect of probiotics on depression:a systematic review and meta-analysis of randomized controlled trials[J]. Nutrients,2016,8(8):483. DOI:10.3390/nu8080483.
GAN X T,ETTINGER G,HUANG C X,et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat[J].
Circ Heart Fail,2014,7(3):491-499. DOI:10.1161/CIRCHEARTFAILURE.113.000978.
VLASOV A A,SHPERLING M I,TERKIN D A,et al. Effect of prebiotic complex on gut microbiota and endotoxemia in female rats with modeled heart failure[J]. Bull Exp Biol Med,2020,168(4):435-438. DOI:10.1007/s10517-020-04726-8.
LIM S H. Larch Arabinogalactan attenuates myocardial injury by inhibiting apoptotic cascades in a rat model of ischemia-reperfusion[J]. J Med Food,2017,20(7):691-699. DOI:10.1089/jmf.2016.3886.
MOLUDI J,KHEDMATGOZAR H,NACHVAK S M,et al. The effects of co-administration of probiotics and prebiotics on chronic inflammation,and depression symptoms in patients with coronary artery diseases:a randomized clinical trial[J]. Nutr Neurosci,2022,25(8):1659-1668. DOI:10.1080/1028415X.2021.1889451.
YAN T X,NIAN T T,LIAO Z Z,et al. Antidepressant effects of a polysaccharide from okra(Abelmoschus esculentus(L)Moench)by anti-inflammation and rebalancing the gut microbiota[J]. Int J Biol Macromol,2020,144:427-440. DOI:10.1016/j.ijbiomac.2019.12.138.
RAO J J,QIAO Y,XIE R N,et al. Fecal microbiota transplantation ameliorates stress-induced depression-like behaviors associated with the inhibition of glial and NLRP3 inflammasome in rat brain[J]. J Psychiatr Res,2021,137:147-157. DOI:10.1016/j.jpsychires.2021.02.057.
GUO Q Q,LIN H,CHEN P C,et al. Dynamic changes of intestinal flora in patients with irritable bowel syndrome combined with anxiety and depression after oral administration of enterobacteria capsules[J]. Bioengineered,2021,12(2):11885-11897. DOI:10.1080/21655979.2021.1999374.
ZHANG Y,ZHANG S,LI B L,et al. Gut microbiota dysbiosis promotes age-related atrial fibrillation by lipopolysaccharide and glucose-induced activation of NLRP3-inflammasome[J]. Cardiovasc Res,2022,118(3):785-797. DOI:10.1093/cvr/cvab114.
ZHONG H J,ZENG H L,CAI Y L,et al. Washed microbiota transplantation lowers blood pressure in patients with hypertension[J]. Front Cell Infect Microbiol,2021,11:679624. DOI:10.3389/fcimb.2021.679624.
(收稿日期:2023-08-10;修回日期:2023-12-06)
(本文編輯:賈萌萌)