摘要 潰瘍性結(jié)腸炎(UC)在全球范圍內(nèi)發(fā)病率不斷上升,但發(fā)病機(jī)制尚未明確?,F(xiàn)有研究認(rèn)為UC與遺傳易感性、腸上皮屏障受損、免疫反應(yīng)異常、腸道菌群失調(diào)以及環(huán)境因素密切相關(guān)。腸道菌群具有物質(zhì)代謝、營(yíng)養(yǎng)吸收、能量轉(zhuǎn)化、免疫調(diào)節(jié)以及維持腸道黏膜屏障的功能,在UC中發(fā)揮重要作用。本文就腸道菌群及其代謝物與UC的研究進(jìn)展作一綜述,以期為UC的診療提供理論基礎(chǔ)和新思路。
關(guān)鍵詞 結(jié)腸炎,潰瘍性; 腸道菌群; 代謝物; 發(fā)病機(jī)制; 治療
Progress of Research on Intestinal Flora and its Metabolites in Ulcerative Colitis HUANG Qiuling, HE Qiuyue, DU Yan. Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Yunnan Key Laboratory of Laboratory Medicine, Kunming (650032)
Correspondence to: DU Yan, Email: duyan_m@139.com
Abstract The incidence of ulcerative colitis (UC) is on the rise globally, but its pathogenesis has not yet been clarified. Existing studies suggest that UC is closely related to genetic susceptibility, impaired intestinal epithelial barrier, abnormal immune response, intestinal flora dysbiosis and environmental factors. Intestinal flora has the functions of substance metabolism, nutrient absorption, energy conversion, immune regulation and maintenance of intestinal mucosal barrier, and has been proved to play an important role in UC. This article reviewed the progress of research on intestinal flora and its metabolites in UC, thus providing theoretical basis and new ideas for the diagnosis and treatment of UC.
Key words Colitis, Ulcerative; Intestinal Flora; Metabolites; Pathogenesis; Therapy
潰瘍性結(jié)腸炎(ulcerative colitis, UC)是一種慢性特發(fā)性炎性腸病,表現(xiàn)為直腸至近端結(jié)腸程度不一的持續(xù)性黏膜炎癥。臨床上典型癥狀以反復(fù)發(fā)作的帶或不帶黏液的血性腹瀉、直腸急迫感、里急后重以及不同程度的腹痛為主,其中腹痛通??稍谂疟愫缶徑狻C好發(fā)年齡為20~40歲,男性和女性患病率相似。流行病學(xué)顯示,2023年全球UC的患病例數(shù)約為500萬(wàn)例,且全球發(fā)病率逐漸增加,亞洲的UC患病率預(yù)計(jì)將增加高達(dá)4倍[1] 。UC的發(fā)病機(jī)制尚未明確,通常認(rèn)為與遺傳易感性、腸上皮屏障受損、免疫調(diào)節(jié)異常、腸道菌群失調(diào)以及環(huán)境密切相關(guān)。隨著高通量基因測(cè)序的不斷發(fā)展,腸道菌群在UC發(fā)病中的重要作用逐漸顯現(xiàn)。因此,本文就腸道菌群及其代謝物與UC的研究進(jìn)展作一綜述,以期為UC的診療提供理論基礎(chǔ)和新思路。
一、腸道菌群概述
人體腸道內(nèi)復(fù)雜而豐富的微生物統(tǒng)稱為腸道菌群,包括細(xì)菌、古菌、真菌、病毒等。腸道菌群主要包括厚壁菌門、擬桿菌門、變形菌門以及放線菌門。健康個(gè)體以厚壁菌門和擬桿菌門為主,而其他菌門(變形菌門、放線菌門、藍(lán)菌門、疣微菌、梭菌門)的豐度較低[2]。炎癥性腸病患者腸道菌群的豐度和多樣性發(fā)生改變,有益菌(如乳桿菌和雙歧桿菌)減少,放線菌、變形桿菌等有害菌群增加[3] 。胃腸道由胃、小腸、盲腸、結(jié)腸以及直腸5個(gè)消化功能和營(yíng)養(yǎng)分布不同的區(qū)域構(gòu)成,因此獨(dú)特的生態(tài)系統(tǒng)促進(jìn)了不同的細(xì)菌以區(qū)域相關(guān)的方式定植。從胃到結(jié)腸,菌群的豐度和生物多樣性依次增加[4]。腸道菌群在人體內(nèi)發(fā)揮重要功能,不僅為宿主提供營(yíng)養(yǎng)和能量、維持腸黏膜屏障功能以及抵御病原體,亦參與宿主的免疫調(diào)節(jié)。腸道菌群失調(diào)不僅與胃腸道疾病有關(guān),還與其他慢性疾病,如糖尿病、癌癥、哮喘等有關(guān)[5] 。
二、腸道菌群與UC的發(fā)病機(jī)制
1. 維持腸道黏膜屏障功能:腸道黏膜屏障主要由上皮細(xì)胞組成,是抵御非致病性和致病性微生物的第一道防線。腸道黏液層由內(nèi)層和外層組成,內(nèi)層是無(wú)菌壞境,外層是共生細(xì)菌的棲息地。一旦腸腔內(nèi)微生物從被破壞的外層遷移至內(nèi)部,就會(huì)增加內(nèi)層的通透性、細(xì)菌的定植以及對(duì)上皮細(xì)胞的破壞,使黏液層的保護(hù)作用減弱。腸道黏膜屏障功能紊亂與多種腸道疾病密切相關(guān)。UC的最初發(fā)病階段是由腸道黏膜屏障被破壞所引起的[1]。UC患者腸道菌群的多樣性和穩(wěn)定性受損,厚壁菌門細(xì)菌減少,擬桿菌門細(xì)菌和兼性厭氧菌增加[6]。腸道菌群紊亂導(dǎo)致致病菌在腸道內(nèi)快速增殖,破壞腸黏膜屏障。腸道菌群移位可加劇腸黏膜屏障損傷,導(dǎo)致腸道內(nèi)環(huán)境惡性循環(huán),炎癥反應(yīng)加劇[6?7]。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),敲除白細(xì)胞介素?10(interleukin, IL?10)的無(wú)菌小鼠未發(fā)生結(jié)腸炎,而敲除IL?10的無(wú)特定病原體小鼠則發(fā)生結(jié)腸炎,表明腸道菌群參與UC發(fā)生[8]。此外,腸道菌群失調(diào)引起細(xì)胞炎癥反應(yīng),相關(guān)細(xì)胞因子會(huì)進(jìn)一步損傷腸道黏膜。樓麗霞等[9]的研究發(fā)現(xiàn),UC患者腸道乳桿菌減少,血清IL?4水平與乳桿菌數(shù)量呈正相關(guān),IL?17、IL?23與乳桿菌數(shù)量呈負(fù)相關(guān),提示腸道乳桿菌失調(diào)可能會(huì)導(dǎo)致炎性損傷,促進(jìn)UC發(fā)展。研究[10]指出,IL?23/IL?17炎癥軸參與了腸黏膜炎性損傷,是UC發(fā)生、發(fā)展的關(guān)鍵炎癥因子。IL?17是Th17細(xì)胞亞群的標(biāo)志性促炎細(xì)胞因子,可誘導(dǎo)集落刺激因子和趨化因子的釋放和表達(dá),激活、招募炎性細(xì)胞,促使腸道黏膜發(fā)生炎性損傷。同時(shí),腸道內(nèi)的致病菌產(chǎn)物可與各自Toll樣受體結(jié)合,誘導(dǎo)抗原細(xì)胞分泌IL?23,IL?23與相應(yīng)受體結(jié)合,繼而誘導(dǎo)IL?17表達(dá),加劇腸道黏膜的炎癥[11]。
2. 免疫調(diào)節(jié):腸道菌群可影響宿主免疫系統(tǒng)的發(fā)育、成熟和調(diào)節(jié)。當(dāng)腸道菌群在腸道黏膜轉(zhuǎn)移時(shí),先天性免疫細(xì)胞上的模式識(shí)別受體可識(shí)別腸道菌群?;罨南忍煨悦庖呒?xì)胞通過(guò)產(chǎn)生一氧化氮(NO)和活性氧,分泌細(xì)胞因子,呈遞抗原,從而促使T細(xì)胞增殖、分化以及誘導(dǎo)適應(yīng)性免疫。有研究[12]發(fā)現(xiàn),無(wú)菌小鼠腸道中調(diào)節(jié)性T細(xì)胞(Treg細(xì)胞)和Th17細(xì)胞缺乏。植入來(lái)自健康個(gè)體的糞便后,Treg細(xì)胞和Th17細(xì)胞數(shù)量增加。假小鏈雙歧桿菌可通過(guò)恢復(fù)Treg細(xì)胞與B細(xì)胞的平衡來(lái)抑制IL?17A和腫瘤壞死因子?α(TNF?α)分泌,從而減緩炎癥[13]。植物乳桿菌可通過(guò)抑制Th17細(xì)胞分化并降低IL?17、維甲酸相關(guān)孤兒受體γt(RORγt)表達(dá),同時(shí)促進(jìn)Treg細(xì)胞分化以及調(diào)節(jié)IL?10、Foxp3表達(dá)來(lái)緩解小鼠結(jié)腸炎癥[14]。青春雙歧桿菌可使CD4+ T細(xì)胞向Treg細(xì)胞擴(kuò)張,刺激巨噬細(xì)胞降低NO和IL?6分泌,增加IL?10分泌,從而發(fā)揮抗炎作用[15]。Th17細(xì)胞是已知的炎癥驅(qū)動(dòng)因子,可促進(jìn)炎癥發(fā)生。然而,Brockmann等[16]的研究發(fā)現(xiàn),用分節(jié)絲狀菌誘導(dǎo)的共生Th17細(xì)胞具有獨(dú)特的抗炎表型,其可通過(guò)調(diào)節(jié)轉(zhuǎn)錄因子c?MAF和IL?10的表達(dá)來(lái)抑制效應(yīng)T細(xì)胞的功能。該研究?jī)H限于動(dòng)物模型中的小鼠和共生微生物,對(duì)于共生Th17細(xì)胞在UC患者中是否具有抗炎作用仍有待研究。此外,腸道菌群亦可能影響Th1/Th2細(xì)胞免疫軸的平衡。動(dòng)物實(shí)驗(yàn)發(fā)現(xiàn),具核梭桿菌可通過(guò)AKT2信號(hào)通路促進(jìn)Th1細(xì)胞分泌干擾素?γ(IFN?γ),從而加劇小鼠結(jié)腸炎癥[17]。
三、腸道菌群代謝物與UC的發(fā)病機(jī)制
1. 短鏈脂肪酸(short?chain fatty acids, SCFAs):SCFAs主要為乙酸、丙酸以及丁酸,是腸道中最豐富的腸道菌群代謝產(chǎn)物,由腸道共生細(xì)菌發(fā)酵膳食纖維而來(lái),其對(duì)調(diào)節(jié)免疫功能和維持腸道穩(wěn)態(tài)具有重要影響。SCFAs影響免疫和腸道穩(wěn)態(tài)的機(jī)制是多種多樣的。SCFAs通過(guò)激活腸黏膜上皮細(xì)胞和免疫細(xì)胞中的G蛋白偶聯(lián)受體(GPCRs),如GPCR41、GPCR43,啟動(dòng)抗炎信號(hào)通路[18]。SCFAs還可通過(guò)抑制蛋白去乙?;竵?lái)增強(qiáng)腸上皮細(xì)胞的完整性[19]。SCFAs亦可作為免疫細(xì)胞的能量來(lái)源。如乙酸是調(diào)節(jié)B細(xì)胞和CD8+ T細(xì)胞的最佳能量底物[20]。此外,SCFAs對(duì)不同的免疫細(xì)胞類型(如巨噬細(xì)胞、樹(shù)突細(xì)胞、B細(xì)胞)表現(xiàn)出多效性作用,有助于腸道內(nèi)的抗炎壞境[21]。
研究[22?23]發(fā)現(xiàn),UC患者糞便中SCFAs水平顯著低于正常人,且SCFAs的代謝水平與疾病活動(dòng)性有關(guān)。SCFAs有緩解腸道炎癥的作用,可通過(guò)誘導(dǎo)CD4+ T細(xì)胞和先天性淋巴細(xì)胞產(chǎn)生IL?22抑制腸道炎癥[24]。丁酸可通過(guò)抑制氧化應(yīng)激和核因子?κB(NF?κB)/NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NLRP3)炎癥小體激活來(lái)減少炎性因子的分泌,從而緩解結(jié)腸炎[25]。
2. 色氨酸:色氨酸是一種人類必需的芳香族氨基酸,僅通過(guò)膳食來(lái)源獲得。色氨酸代謝主要涉及犬尿氨酸、5?羥色胺以及吲哚代謝途徑。腸道菌群在色氨酸代謝中起重要作用。腸道菌群(如厭氧菌、擬桿菌、梭狀芽孢桿菌)可直接將色氨酸轉(zhuǎn)化為吲哚及其衍生物,如吲哚?3?丙酮酸(indole?3?pyruvic acid, IPA)、吲哚?3?甲醛(indole?3?carboxaldehyde, 3?IAId)、吲哚?3?乙酸等,均是影響先天性和適應(yīng)性免疫的有效生物化合物。吲哚及其衍生物可通過(guò)激活芳香烴受體(aryl hydrocarbon receptor, AhR)來(lái)調(diào)節(jié)促炎和抗炎細(xì)胞因子的表達(dá)[26]。AhR是配體依賴性轉(zhuǎn)錄因子,是調(diào)節(jié)腸道炎癥的關(guān)鍵因子。AhR激活可直接抑制Th1細(xì)胞分泌IL?22,減輕炎性損傷[27]。此外,Aoki等[28]的研究發(fā)現(xiàn),IPA在體外和體內(nèi)均可使AhR表現(xiàn)出最強(qiáng)的激活能力,IPA可通過(guò)下調(diào)編碼Th1細(xì)胞因子的基因表達(dá),并上調(diào)IL?10基因表達(dá)來(lái)緩解結(jié)腸炎。
色氨酸及其代謝物參與了UC進(jìn)展。Alexeev等[29]發(fā)現(xiàn),UC患者血清IPA水平減少,口服IPA可顯著緩解小鼠結(jié)腸炎癥,IPA可能作為疾病緩解的生物學(xué)標(biāo)志物。此外,Liu等[30]的研究發(fā)現(xiàn),3?IAId可通過(guò)抑制TLR4/NF?κB/p38信號(hào)通路來(lái)降低TNF?ɑ、IL?6以及IL?1β分泌,從而緩解結(jié)腸炎小鼠的腸道功能障礙和炎癥反應(yīng)。上述研究表明,吲哚及其代謝物有望作為治療UC的新靶點(diǎn)。然而,有研究結(jié)果顯示,吲哚及其代謝物可促進(jìn)腸道炎癥。Wojciech等[31]發(fā)現(xiàn)吲哚?3?乙醛(indole?3?acetaldehyde, I3AA)可抑制Treg細(xì)胞增殖和促進(jìn)Th17細(xì)胞極化,同時(shí)影響CD4+ T細(xì)胞對(duì)自身菌群抗炎的識(shí)別,從而加劇小鼠結(jié)腸炎癥。但目前對(duì)于I3AA的研究?jī)H基于動(dòng)物模型,其在臨床上是否可作為觀察UC發(fā)生、發(fā)展的指標(biāo)仍有待研究。
3. 膽汁酸:膽汁酸在肝臟中合成并分泌進(jìn)入腸道,是膽固醇分解代謝的最終產(chǎn)物。肝細(xì)胞產(chǎn)生初級(jí)膽汁酸,初級(jí)膽汁酸在回腸中不被重吸收,而被腸道微生物代謝轉(zhuǎn)化為次級(jí)膽汁酸,如石膽酸(lithocholic acid, LCA)、脫氧膽酸(deoxy?cholic acid, DCA)。研究[32]顯示,UC患者糞便初級(jí)膽汁酸(如膽酸、甘氨膽酸、?;悄懰帷ⅨZ脫氧膽酸)高于正常人群,而次級(jí)膽汁酸(如LCA、DCA)低于正常人群,提示糞便膽汁酸紊亂與UC有關(guān)。Sinha等[33]的研究發(fā)現(xiàn),LCA和DCA能夠緩解小鼠結(jié)腸炎,而鵝脫氧膽酸無(wú)此效應(yīng),表明次級(jí)膽汁酸可能具有緩解UC的作用。
膽汁酸是特別有效的信號(hào)分子,可通過(guò)激活G蛋白偶聯(lián)膽汁酸受體1(G protein?coupled bile acid receptor 1, GPBAR1)、法尼酯X受體(farnesoid X receptor, FXR)、RORγt等多種受體作用于免疫細(xì)胞。GPBAR1、FXR以及RORγt在先天性和適應(yīng)性免疫細(xì)胞中高表達(dá),在免疫反應(yīng)中發(fā)揮關(guān)鍵作用。次級(jí)膽汁酸是GPBAR1的主要配體,GPBAR1可抑制免疫激活。有研究[34]顯示,GPBAR1可使結(jié)腸巨噬細(xì)胞從M1促炎表型轉(zhuǎn)變?yōu)镸2抗炎表型,緩解小鼠結(jié)腸炎。FXR是一種由初級(jí)膽汁酸激活的核轉(zhuǎn)錄因子,F(xiàn)XR激活可下調(diào)腸道TNF?α表達(dá),從而減輕炎癥[35?36]。此外,Hang等[37]的研究發(fā)現(xiàn),LCA的衍生物3?oxoLCA和isoalloLCA可分別通過(guò)結(jié)合RORγt、抑制Th17細(xì)胞分化和產(chǎn)生線粒體活性氧、促進(jìn)Treg細(xì)胞分化來(lái)控制炎癥。以上研究表明膽汁酸受體在免疫調(diào)節(jié)中起著重要作用,但仍需深入研究各種膽汁酸受體在免疫調(diào)節(jié)中的作用,從而為UC的治療提供新思路。
4. 三甲胺N?氧化物(trimethylamine N?oxide, TMAO):TMAO是一種由膽堿、甜菜堿、肉堿通過(guò)腸道微生物代謝產(chǎn)生的分子。TMAO能夠通過(guò)激活NLRP3炎癥小體和NF?κB來(lái)促進(jìn)炎癥[38?39]。Sun等[40]的研究顯示,UC患者血漿TMAO水平明顯高于正常對(duì)照組,但活動(dòng)期UC患者的TMAO水平與非活動(dòng)期相比差異無(wú)統(tǒng)計(jì)學(xué)意義。然而,Wilson等[41]的研究表明,UC患者血漿TMAO水平顯著降低,且活動(dòng)期TMAO水平明顯低于非活動(dòng)期,提示TMAO可能在監(jiān)測(cè)UC患者病情方面具有臨床應(yīng)用價(jià)值。這種研究結(jié)論的差異可能與樣本量較小、UC患者腸道菌群失調(diào)以及TMAO本身依賴腸道菌群代謝產(chǎn)生有關(guān)。對(duì)于TMAO在臨床中是否有助于診斷、監(jiān)測(cè)UC患者疾病活動(dòng)性以及其在UC中的作用機(jī)制,仍有待探索。
5. 維生素:腸道菌群可生物合成維生素。雙歧桿菌和乳酸菌能合成維生素B9(葉酸)[42];腸桿菌、遲緩真桿菌和擬桿菌可合成維生素K2[43]。維生素對(duì)機(jī)體至關(guān)重要,其代謝紊亂可影響UC的發(fā)生、發(fā)展。一項(xiàng)meta分析顯示,UC患者血漿維生素B9、維生素B12水平明顯低于正常人,同型半胱氨酸(homocysteine, Hcy)高于正常人,低維生素B9、維生素B12和高Hcy可能是UC的危險(xiǎn)因素[44]。維生素B9、維生素B12以及Hcy參與甲硫氨酸的循環(huán)代謝。Hcy甲基化需維生素B9提供甲基供體,維生素B12作為輔酶,維生素B9、維生素B12減少可引起Hcy堆積。高Hcy可能通過(guò)產(chǎn)生自由氧、引發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激、介導(dǎo)細(xì)胞黏附、誘導(dǎo)細(xì)胞因子產(chǎn)生來(lái)促進(jìn)腸黏膜炎癥或破壞吞噬細(xì)胞的抗菌系統(tǒng)來(lái)增加宿主對(duì)病原體的易感性,從而加劇UC病情[44?46]。補(bǔ)充維生素B9、維生素B12在一定程度上可能會(huì)減輕高Hcy所致的炎癥。此外,維生素B12缺乏可降低自然殺傷細(xì)胞(NK細(xì)胞)活性和抑制B細(xì)胞增殖[47]。維生素B9缺乏不僅抑制CD8+ T細(xì)胞增殖,亦會(huì)使DNA損傷、細(xì)胞凋亡以及細(xì)胞周期阻滯[48?49]。上述研究結(jié)果提示維生素B9、維生素B12可能通過(guò)介導(dǎo)免疫細(xì)胞來(lái)影響UC的發(fā)生、發(fā)展。除上述維生素外,其他維生素亦有緩解UC的作用。Yadav等[50]發(fā)現(xiàn)維生素B1可抑制NF?κB激活,同時(shí)抑制促炎細(xì)胞因子、趨化因子、炎性標(biāo)志蛋白誘導(dǎo)型一氧化氮合酶和環(huán)氧合酶?2表達(dá),緩解細(xì)菌內(nèi)毒素所誘導(dǎo)的炎癥。在動(dòng)物模型中,缺乏維生素K2的小鼠結(jié)腸炎癥狀加劇,補(bǔ)充維生素K2后結(jié)腸炎獲得緩解,可能與維生素K2通過(guò)抑制kappa B抑制蛋白激酶(inhibitor of kappa B kinase, IKK)α/β磷酸化和NF?κB活性發(fā)揮抗炎作用有關(guān)[51?52]。
6. 硫化氫(H2S):腸腔內(nèi)H2S主要通過(guò)硫酸鹽還原菌對(duì)硫氨基酸、硫酸鹽等物質(zhì)發(fā)酵產(chǎn)生,并通過(guò)結(jié)腸黏膜硫氰酸生成酶和硫醇甲基轉(zhuǎn)移酶對(duì)其甲基化作用以及腸道排氣等途徑清除。多項(xiàng)研究結(jié)果表明H2S與UC有關(guān)。Levine等[53]和Rowan等[54]分別發(fā)現(xiàn)UC患者糞便H2S的濃度較正常對(duì)照組高3~4倍、UC患者糞便或黏膜活檢樣本中的硫酸鹽還原菌如脫硫弧菌的豐度增加。此外,Ramasamy等[55]的研究發(fā)現(xiàn),UC患者結(jié)腸黏膜中硫氰酸生成酶(硫代硫酸鹽硫轉(zhuǎn)移酶和巰基丙酮酸硫轉(zhuǎn)移酶)局灶性減少,對(duì)H2S的解毒能力降低,提示其可能與UC的發(fā)病有關(guān)。H2S在UC發(fā)病機(jī)制中起致病作用,其主要機(jī)制可能包括下列數(shù)種途徑:①H2S通過(guò)阻礙細(xì)胞膜合成、抑制丁酸鹽氧化和細(xì)胞呼吸以及增加細(xì)胞滲透性來(lái)?yè)p傷結(jié)腸上皮細(xì)胞[56];②H2S通過(guò)增加T細(xì)胞活化、上調(diào)IL?6表達(dá)、抑制細(xì)菌免疫吞噬作用以及增加細(xì)菌移位,從而發(fā)揮免疫作用,進(jìn)一步損傷腸道黏膜[57];③H2S通過(guò)破壞腸道黏蛋白2半胱氨酸結(jié)構(gòu)域中的二硫鍵來(lái)降低黏液黏度以及增加黏膜的滲透性,從而損傷黏膜屏障[58]。
四、腸道菌群與UC的治療
1. 糞菌移植(fecal microbiota transplantation, FMT):FMT系指將健康人糞便中的功能菌群移植至患者體內(nèi),重新建立新的腸道菌群,從而治療疾病。多項(xiàng)隨機(jī)對(duì)照試驗(yàn)表明FMT在輕中度UC的治療中具有潛在作用。Paramsothy等[59]的研究發(fā)現(xiàn),F(xiàn)MT可緩解UC患者的臨床癥狀(如黏液血便、腹瀉、腹痛等),降低Mayo內(nèi)鏡評(píng)分(黏膜炎癥、糜爛、瘺管、潰瘍程度)。Narula等[60]進(jìn)行的系統(tǒng)性回顧和meta分析發(fā)現(xiàn),F(xiàn)MT治療UC的緩解率較安慰劑組高,且嚴(yán)重不良事件在統(tǒng)計(jì)學(xué)上無(wú)顯著差異。在隨機(jī)對(duì)照試驗(yàn)中,基于觀察到的療效和安全性,短期使用FMT有望作為緩解UC的方法。雖然FMT治療UC的中短期療效較好,但長(zhǎng)期緩解率低[61]。因此,對(duì)于誘導(dǎo)和維持治療,應(yīng)進(jìn)一步研究輸注次數(shù)和劑量。此外,供體選擇是影響FMT療效的重要因素,若單個(gè)供體的整體移植有效率≥75%可認(rèn)為是“超級(jí)供體”。FMT供體間療效差異顯著,在未來(lái)的研究中可進(jìn)一步挖掘“超級(jí)供體”,實(shí)現(xiàn)個(gè)性化FMT治療。
2. 益生菌:益生菌是一種活的微生物輔助藥物,被批準(zhǔn)應(yīng)用于臨床的益生菌有鼠李糖乳桿菌、嗜酸乳桿菌、短雙歧桿菌等。這些益生菌通過(guò)提高腸道菌群多樣性、增強(qiáng)腸道屏障功能和改善免疫功能對(duì)宿主產(chǎn)生有益影響。然而,傳統(tǒng)益生菌來(lái)源少,作用范圍小,功效局限。近年來(lái),新一代益生菌的概念被提出,指具有治療功效的活體生物藥益生菌,如嗜黏蛋白阿克曼菌、脆弱擬桿菌等[62]。Zhang等[63]的研究發(fā)現(xiàn),嗜黏蛋白阿克曼菌可通過(guò)促進(jìn)SCFAs產(chǎn)生和Treg細(xì)胞增殖來(lái)緩解UC。He等[64]發(fā)現(xiàn)脆弱擬桿菌可通過(guò)抑制NF?κB信號(hào)通路,降低促炎因子(TNF?α、IL?1β、IL?6)表達(dá),促進(jìn)IL?10表達(dá)以及增強(qiáng)腸道屏障功能來(lái)改善UC。雖然益生菌在UC治療中具有巨大潛能,但其機(jī)制仍待進(jìn)一步闡明。
3. 益生元和后生元:益生元是可供腸道微生物選擇利用的基質(zhì),由富含低聚果糖的胰島素、膳食碳水化合物以及淀粉等組成。Valcheva等[65]發(fā)現(xiàn)UC患者口服富含低聚果糖的菊糖后,臨床癥狀得到緩解,其可能與選擇性刺激腸道中的有益菌、改善腸道通透性或增加SCFAs產(chǎn)生來(lái)減輕腸道炎癥有關(guān)。后生元是指對(duì)宿主起有益作用的滅活菌、菌體成分以及代謝產(chǎn)物。有臨床試驗(yàn)結(jié)果表明,口服補(bǔ)充丁酸可促進(jìn)產(chǎn)SCFAs的細(xì)菌生長(zhǎng),顯著緩解腸道癥狀,改善UC患者的生活質(zhì)量[66]?;诤笊纫嫔鸵嫔陌踩院头€(wěn)定性更高,人群使用范圍更廣、使用更靈活以及發(fā)揮作用速度更快,其在未來(lái)有望成為UC患者安全有效的治療選擇之一。
五、結(jié)語(yǔ)
綜上所述,腸道菌群在UC中發(fā)揮重要作用,其可通過(guò)調(diào)節(jié)腸道黏膜屏障功能、免疫反應(yīng)及其代謝物來(lái)影響UC的發(fā)生、發(fā)展,但目前多數(shù)研究是基于動(dòng)物實(shí)驗(yàn)水平,今后仍需大規(guī)模臨床試驗(yàn)來(lái)明確腸道菌群及其代謝物在UC中的作用。此外,腸道菌群及其代謝物在UC中的機(jī)制尚未有確切定論,仍有待進(jìn)一步研究。未來(lái)研究方向可從免疫方面和腸道菌群治療UC方面進(jìn)行深入探討。
參考文獻(xiàn)
[ 1 ] LE BERRE C, HONAP S, PEYRIN?BIROULET L. Ulcera?tive colitis[J]. Lancet, 2023, 402 (10401): 571?584.
[ 2 ] SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73: 455?468.
[ 3 ] KHAN I, ULLAH N, ZHA L, et al. Alteration of gut microbiota in inflammatory bowel disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome[J]. Pathogens, 2019, 8 (3): 126.
[ 4 ] YANG Q, WANG Y, JIA A, et al. The crosstalk between gut bacteria and host immunity in intestinal inflammation[J]. J Cell Physiol, 2021, 236 (4): 2239?2254.
[ 5 ] KRISHNAN S, ALDEN N, LEE K. Pathways and functions of gut microbiota metabolism impacting host physiology[J]. Curr Opin Biotechnol, 2015, 36: 137?145.
[ 6 ] SHEN Z H, ZHU C X, QUAN Y S, et al. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation[J]. World J Gastroenterol, 2018, 24 (1): 5?14.
[ 7 ] OKUMURA R, TAKEDA K. Maintenance of intestinal homeostasis by mucosal barriers[J]. Inflamm Regen, 2018, 38: 5.
[ 8 ] SELLON R K, TONKONOGY S, SCHULTZ M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin?10?deficient mice[J]. Infect Immun, 1998, 66 (11): 5224?5231.
[ 9 ] 樓麗霞, 邢曉威, 戴振華. 潰瘍性結(jié)腸炎患者腸道乳酸桿菌變化及其與臨床分期、炎癥指標(biāo)的關(guān)系[J]. 全科醫(yī)學(xué)臨床與教育, 2023, 21 (1): 32?35.
[10] 王寧, 張衛(wèi)寧, 陳雨婕, 等. IL?23/IL?17炎癥軸與炎癥性腸病的關(guān)系研究進(jìn)展[J]. 細(xì)胞與分子免疫學(xué)雜志, 2021, 37 (3): 271?277.
[11] 黃明靜. 潰瘍性結(jié)腸炎活動(dòng)期患者結(jié)腸鏡活檢腸道菌群分布及與其相關(guān)白細(xì)胞介素水平變化的關(guān)聯(lián)性[J]. 黑龍江醫(yī)學(xué), 2020, 44 (7): 914?916.
[12] ATARASHI K, TANOUE T, ANDO M, et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells[J]. Cell, 2015, 163 (2): 367?380.
[13] MOYA?PéREZ A, NEEF A, SANZ Y. Bifidobacterium pseudocatenulatum CECT 7765 reduces obesity?associated inflammation by restoring the lymphocyte?macrophage balance and gut microbiota structure in high?fat diet?fed mice[J]. PLoS One, 2015, 10 (7): e0126976.
[14] JEONG J J, LEE H J, JANG S E, et al. et al. Lactobacillus plantarum C29 alleviates NF?κB activation and Th17/Treg imbalance in mice with TNBS?induced colitis[J]. Food Agric Immunol, 2018, 29 (1): 577?589.
[15] YU R, ZUO F, MA H, et al. Exopolysaccharide?producing Bifidobacterium adolescentis strains with similar adhesion property induce differential regulation of inflammatory immune response in Treg/Th17 axis of DSS?colitis mice[J]. Nutrients, 2019, 11 (4): 782.
[16] BROCKMANN L, TRAN A, HUANG Y, et al. Intestinal microbiota?specific Th17 cells possess regulatory properties and suppress effector T cells via c?MAF and IL?10[J]. Immunity, 2023, 56 (12): 2719?2735.
[17] LIU L, LIANG L, LIANG H, et al. Fusobacterium nucleatum aggravates the progression of colitis by regulating M1 macrophage polarization via AKT2 pathway [J]. Front Immunol, 2019, 10: 1324.
[18] TAN J K, MACIA L, MACKAY C R. Dietary fiber and SCFAs in the regulation of mucosal immunity[J]. J Allergy Clin Immunol, 2023, 151 (2): 361?370.
[19] MACIA L, TAN J, VIEIRA A T, et al. Metabolite?sensing receptors GPR43 and GPR109A facilitate dietary fibre?induced gut homeostasis through regulation of the inflam?masome[J]. Nat Commun, 2015, 6: 6734.
[20] DA?EN CI, TAN J, AUDO R, et al. Gut?derived acetate promotes B10 cells with antiinflammatory effects[J]. JCI Insight, 2021, 6 (7): e144156.
[21] SCOTT S A, FU J, CHANG P V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor[J]. Proc Natl Acad Sci U S A, 2020, 117 (32): 19376?19387.
[22] ZHU S, HAN M, LIU S, et al. Composition and diverse differences of intestinal microbiota in ulcerative colitis patients[J]. Front Cell Infect Microbiol, 2022, 12: 953962.
[23] KUMARI R, AHUJA V, PAUL J. Fluctuations in butyrate?producing bacteria in ulcerative colitis patients of North India[J]. World J Gastroenterol, 2013, 19 (22): 3404?3414.
[24] YANG W, YU T, HUANG X, et al. Intestinal microbiota?derived short?chain fatty acids regulation of immune cell IL?22 production and gut immunity[J]. Nat Commun, 2020, 11 (1): 4457.
[25] BIAN Z, ZHANG Q, QIN Y, et al. Sodium butyrate inhibits oxidative stress and NF?κB/NLRP3 activation in dextran sulfate sodium salt?induced colitis in mice with involvement of the Nrf2 signaling pathway and mitophagy[J]. Dig Dis Sci, 2023, 68 (7): 2981?2996.
[26] XUE C, LI G, ZHENG Q, et al. Tryptophan metabolism in health and disease[J]. Cell Metab, 2023, 35 (8): 1304?1326.
[27] CHEN Y, WANG Y, FU Y, et al. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation[J]. Cell Biosci, 2023, 13 (1): 85.
[28] AOKI R, AOKI?YOSHIDA A, SUZUKI C, et al. Indole?3?pyruvic acid, an aryl hydrocarbon receptor activator, suppresses experimental colitis in mice[J]. J Immunol, 2018, 201 (12): 3683?3693.
[29] ALEXEEV E E, LANIS J M, KAO D J, et al. Microbiota?derived indole metabolites promote human and murine intestinal homeostasis through regulation of interleukin?10 receptor[J]. Am J Pathol, 2018, 188 (5): 1183?1194.
[30] LIU M, WANG Y, XIANG H, et al. The tryptophan metabolite indole?3?carboxaldehyde alleviates mice with DSS?induced ulcerative colitis by balancing amino acid metabolism, inhibiting intestinal inflammation, and improving intestinal barrier function[J]. Molecules, 2023, 28 (9): 3704.
[31] WOJCIECH L, PNG C W, KOH E Y, et al. A tryptophan metabolite made by a gut microbiome eukaryote induces pro?inflammatory T cells[J]. EMBO J, 2023, 42 (21): e112963.
[32] SOMMERSBERGER S, GUNAWAN S, ELGER T, et al. Altered fecal bile acid composition in active ulcerative colitis[J]. Lipids Health Dis, 2023, 22 (1): 199.
[33] SINHA S R, HAILESELASSIE Y, NGUYEN L P, et al. Dysbiosis?induced secondary bile acid deficiency promotes intestinal inflammation[J]. Cell Host Microbe, 2020, 27 (4): 659?670. e5.
[34] BIAGIOLI M, CARINO A, CIPRIANI S, et al. The bile acid receptor GPBAR1 regulates the M1/M2 phenotype of intestinal macrophages and activation of GPBAR1 rescues mice from murine colitis[J]. J Immunol, 2017, 199 (2): 718?733.
[35] BIAGIOLI M, MARCHIANò S, CARINO A, et al. Bile acids activated receptors in inflammatory bowel disease[J]. Cells, 2021, 10 (6): 1281.
[36] GADALETA R M, VAN ERPECUM K J, OLDENBURG B, et al. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease[J]. Gut, 2011, 60 (4): 463?472.
[37] HANG S, PAIK D, YAO L, et al. Bile acid metabolites control TH17 and Treg cell differentiation[J]. Nature, 2019, 576 (7785): 143?148.
[38] SELDIN M M, MENG Y, QI H, et al. Trimethylamine N?oxide promotes vascular inflammation through signaling of mitogen?activated protein kinase and nuclear factor?κB[J]. J Am Heart Assoc, 2016, 5 (2): e002767.
[39] BOINI K M, HUSSAIN T, LI P L, et al. Trimethylamine?N?oxide instigates NLRP3 inflammasome activation and endothelial dysfunction[J]. Cell Physiol Biochem, 2017, 44 (1): 152?162.
[40] SUN M, DU B, SHI Y, et al. Combined signature of the fecal microbiome and plasma metabolome in patients with ulcerative colitis[J]. Med Sci Monit, 2019, 25: 3303?3315.
[41] WILSON A, TEFT W A, MORSE B L, et al. Trimethylamine?N?oxide: a novel biomarker for the identification of inflammatory bowel disease[J]. Dig Dis Sci, 2015, 60 (12): 3620?3630.
[42] STEINERT A, RADULOVIC K, NIESS J. Gastro?intestinal tract: the leading role of mucosal immunity[J]. Swiss Med Wkly, 2016, 146: w14293.
[43] BIESALSKI H K. Nutrition meets the microbiome: micronutrients and the microbiota[J]. Ann N Y Acad Sci, 2016, 1372 (1): 53?64.
[44] 陳忠娥. 葉酸及維生素B12水平與潰瘍性結(jié)腸炎相關(guān)性的meta分析[D]. 南昌: 南昌大學(xué), 2018.
[45] 弓景波, 王新興, 杲修杰, 等. 應(yīng)激對(duì)同型半胱氨酸關(guān)鍵代謝酶活性的影響[J]. 營(yíng)養(yǎng)學(xué)報(bào), 2013, 35 (3): 246?249.
[46] 薛雄燕, 朱嫦琳, 潘練華, 等. 血漿同型半胱氨酸、葉酸和維生素B12在潰瘍性結(jié)腸炎中的應(yīng)用[J]. 檢驗(yàn)醫(yī)學(xué)與臨床, 2017, 14 (3): 435?436.
[47] PARTEARROYO T, úBEDA N, MONTERO A, et al. Vitamin B12 and folic acid imbalance modifies NK cytotoxicity, lymphocytes B and lymphoprolipheration in aged rats[J]. Nutrients, 2013, 5 (12): 4836?4848.
[48] COURTEMANCHE C, ELSON?SCHWAB I, MASHIYAMA S T, et al. Folate deficiency inhibits the proliferation of primary human CD8+ T lymphocytes in vitro[J]. J Immunol, 2004, 173 (5): 3186?3192.
[49] COURTEMANCHE C, HUANG A C, ELSON?SCHWAB I, et al. Folate deficiency and ionizing radiation cause DNA breaks in primary human lymphocytes: a comparison[J]. FASEB J, 2004, 18 (1): 209?211.
[50] YADAV U C, KALARIYA N M, SRIVASTAVA S K, et al. Protective role of benfotiamine, a fat?soluble vitamin B1 analogue, in lipopolysaccharide?induced cytotoxic signals in murine macrophages[J]. Free Radic Biol Med, 2010, 48 (10): 1423?1434.
[51] SHIRAISHI E, IIJIMA H, SHINZAKI S, et al. Vitamin K deficiency leads to exacerbation of murine dextran sulfate sodium?induced colitis[J]. J Gastroenterol, 2016, 51 (4): 346?356.
[52] OHSAKI Y, SHIRAKAWA H, MIURA A, et al. Vitamin K suppresses the lipopolysaccharide?induced expression of inflammatory cytokines in cultured macrophage?like cells via the inhibition of the activation of nuclear factor κB through the repression of IKKα/β phosphorylation[J]. J Nutr Biochem, 2010, 21 (11): 1120?1126.
[53] LEVINE J, ELLIS C J, FURNE J K, et al. Fecal hydrogen sulfide production in ulcerative colitis[J]. Am J Gastro?enterol, 1998, 93 (1): 83?87.
[54] ROWAN F, DOCHERTY N G, MURPHY M, et al. Desulfovibrio bacterial species are increased in ulcerative colitis[J]. Dis Colon Rectum, 2010, 53 (11): 1530?1536.
[55] RAMASAMY S, SINGH S, TANIERE P, et al. Sulfide?detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 291 (2): G288?G296.
[56] ROEDIGER W E. Review article: nitric oxide from dysbiotic bacterial respiration of nitrate in the patho?genesis and as a target for therapy of ulcerative colitis[J]. Aliment Pharmacol Ther, 2008, 27 (7): 531?541.
[57] YAO C K, SARBAGILI?SHABAT C. Gaseous metabolites as therapeutic targets in ulcerative colitis[J]. World J Gastroenterol, 2023, 29 (4): 682?691.
[58] TEIGEN L M, GENG Z, SADOWSKY M J, et al. Dietary factors in sulfur metabolism and pathogenesis of ulcer?ative colitis[J]. Nutrients, 2019, 11 (4): 931.
[59] PARAMSOTHY S, KAMM M A, KAAKOUSH N O, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo?controlled trial[J]. Lancet, 2017, 389 (10075): 1218?1228.
[60] NARULA N, KASSAM Z, YUAN Y, et al. Systematic review and meta?analysis: fecal microbiota transplantation for treatment of active ulcerative colitis[J]. Inflamm Bowel Dis, 2017, 23 (10): 1702?1709.
[61] HAIFER C, SAIKAL A, PARAMSOTHY R, et al. Response to faecal microbiota transplantation in ulcer?ative colitis is not sustained long term following induction therapy[J]. Gut, 2021, 70 (11): 2210?2211.
[62] 朱錚, 李蘭娟, 王保紅. 新一代益生菌——腸道微生態(tài)療法的新機(jī)遇[J]. 中國(guó)醫(yī)學(xué)前沿雜志(電子版), 2024, 16 (1): 92.
[63] ZHANG T, JI X, LU G, et al. The potential of Akkermansia muciniphila in inflammatory bowel disease[J]. Appl Microbiol Biotechnol, 2021, 105 (14?15): 5785?5794.
[64] HE Q, NIU M, BI J, et al. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro[J]. Sci Rep, 2023, 13 (1): 15842.
[65] VALCHEVA R, KOLEVA P, MARTíNEZ I, et al. Inulin?type fructans improve active ulcerative colitis associated with microbiota changes and increased short?chain fatty acids levels[J]. Gut Microbes, 2019, 10 (3): 334?357.
[66] FACCHIN S, VITULO N, CALGARO M, et al. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease[J]. Neuro?gastroenterol Motil, 2020, 32 (10): e13914.
(2024?03?09收稿;2024?04?13修回)
(本文編輯:歐洋肖)