• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced conductivity and weakened magnetism in Pb-doped Sr2IrO4

    2024-01-25 07:14:36ZhiLaiYue岳智來(lái)WeiLiZhen甄偉立RuiNiu牛瑞KeKeJiao焦珂珂WenKaZhu朱文卡LiPi皮靂andChangJinZhang張昌錦
    Chinese Physics B 2024年1期
    關(guān)鍵詞:朱文

    Zhi-Lai Yue(岳智來(lái)), Wei-Li Zhen(甄偉立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂),Wen-Ka Zhu(朱文卡),?, Li Pi(皮靂),?, and Chang-Jin Zhang(張昌錦),3,§

    1High Magnetic Field Laboratory,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China

    2Science Island Branch of Graduate School,University of Science and Technology of China,Hefei 230026,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China

    Keywords: iridates,doping,conductivity,magnetism

    1.Introduction

    The search for possible room-temperature superconductors and the establishment of high-temperature superconducting mechanisms are two of the main scientific challenges facing the condensed matter physics community.[1]At ambient pressure,two classes of high-temperature superconducting materials, i.e., cuprate and iron-based superconductors,[2,3]have been discovered.The exploration of superconductors with transition temperature beyond the McMillan limit has attracted worldwide attention not only from the scientific community, but also from industry, as high-temperature superconductors have the potential to revolutionize electrical technology.[4]Besides the exploration of new superconducting materials, intensive experimental and theoretical investigations have been performed in order to unveil the mysterious pairing mechanisms of high-temperature superconductivity.[5–10]Despite the fact that significant progress has been achieved in the exploration of hightemperature superconducting mechanisms,the physical nature of the driving forces causing two electrons to form a superconducting pair is still under debate.Scientists are now eagerly expecting to discover a new family of high-temperature superconducting materials,which would greatly contribute to the final establishment of high-temperature superconducting mechanisms.

    Sr2IrO4is a 5d transition metal oxide material that has a similar layered perovskite-type crystal structure to the parent compound of the cuprate high-temperature superconductor,La2CuO4.[11]Similar to theS=1/2 Mott insulating state in La2CuO4,the unique electronic and magnetic behaviors of Sr2IrO4could be accounted by a novelJeff= 1/2 Mott insulating state due to large relativistic spin–orbit coupling.[12]ThisJeff=1/2 Mott state leads to a canted antiferromagnetic ground state in Sr2IrO4, which is also reminiscent of the antiferromagnetic ground state in La2CuO4.Due to the similarities in the crystal structures and electronic and magnetic ground states of Sr2IrO4and La2CuO4, it is natural to anticipate that similar physical phenomena, especially the possible high-temperature superconductivity, could be realized upon modulating the physical behaviors of Sr2IrO4by chemical doping,pressure and other methods.Moreover,a series of theoretical work on the band structures and phase diagrams of doped Sr2IrO4have predicted that possible high-temperature superconductivity could be achieved upon proper chemical doping.[13–16]

    Experimentally, the effects of chemical doping on the Sr2IrO4compound have been extensively investigated during the past several years.[17–28]Many intriguing physical phenomena, such as the formation of surface Fermi arcs and pseudogaps,[20]as well as the fragmented antiferromagnetic order,[22]have been observed.However, bulk superconductivity has not yet been achieved.Among the various possible dopants, La is the most often chosen element in investigations of the effects of doping on the physical properties of Sr2IrO4.[17,18,22,28]Generally, doping can result in structural modifications of the parent material,which in turn leads to alterations of its band filling.In Sr2IrO4,partial substitution of Sr by La induces a change in the bandwidth.[17,18]However,the low solubility of dopants in Sr2IrO4significantly limits the band filling control over a wide range.For instance, the transport data of a(Sr1?xLax)2IrO4single crystal withx=0.04 suggest that the insulating state could be driven into a metallic state.[29]However,no further data could be found with higher La doping level in Sr2IrO4single crystals.Besides La, other rare-earth elements and metal elements,such as K,Tb,Nd,Pr and Nb,have been chosen as dopants to investigate the physical behaviors of doped Sr2IrO4.[23–27]It was quite surprising to find that the insulating state is very robust against doping in Sr2IrO4.[26]Thus it is necessary to extend the investigation of effects of doping in the Sr2IrO4compound by choosing other possible elements as dopants.

    In this work, we report the influence of Pb doping on the physical properties of Sr2IrO4.Pb is a group IV element which can be steadily coordinated at the A-site of ABO3-type perovskite compounds such as PbTiO3and Pb(Mg1/3Nb2/3)O3.[30,31]Since Sr2IrO4is crystallized in a K2NiF4-type perovskite structure where the coordination conditions of Sr-site ions are similar to those of A-site ions in ABO3-type perovskite materials, we anticipate that Pb ions could be incorporated into the Sr site of Sr2IrO4.It is found that the solid solubility of Pb in Sr2?xPbxIrO4could be as high asx=0.3.The magnetic data reveal that although the longrange canted antiferromagnetic ordering state is substantially suppressed by Pb doping,the net ferromagnetic moment could still be detected even in thex=0.3 sample.Quantitatively,the net ferromagnetic moment decreases from 0.042μB/Ir in the parent Sr2IrO4sample to 0.033μB/Ir in thex=0.3 sample.Compared to those reported in previous literatures, the suppression of magnetic ordering state in Pb-doped samples is the weakest among the doped Sr2IrO4compounds,suggesting that Pb ions do not severely alter the pristine ordered magnetic state in the Sr2IrO4system.The Sr2?xPbxIrO4polycrystalline samples exhibit an insulator-like behavior when the Pb doping content is less thanx=0.2.When the Pb doping level is higher than 0.2, a drastic increase of conductivity is seen, particularly in the low-temperature region.The greatly enhanced conductivity in Sr2?xPbxIrO4polycrystalline samples deserves further study through subsequent single-crystal growth and a comprehensive investigation of their physical properties.Taking into account the high solid solubility of Pb in the Sr2IrO4matrix,Sr2?xPbxIrO4compounds could serve as ideal material bases in future investigations of doping-induced physical phenomena in the Sr2IrO4system.

    2.Experiment

    The Sr2?xPbxIrO4polycrystalline samples were prepared via a conventional solid-state reaction technique.In detail,mixtures of high purity Sr2CO3,PbO and IrO2were weighed at a stoichiometric molar ratio of SrCO3:PbO:IrO2=(2?x):x:1.02 and thoroughly mixed in an agate mortar.In order to compensate for the possible loss of Ir at high temperature,we added 2%of additional IrO2in the starting materials.The mixtures were loaded into alumina crucibles and put into a high-temperature furnace,which was preheated to 1100°C for 24 hours.After another grinding,the mixtures were re-heated once again at 1150°C for 24 hours.Then the mixtures were ground and pressed into pellets.The pellets were finally sintered at 1150°C for 48 hours.

    Powder x-ray diffraction(XRD)data were collected by a PANalytical X’Pert Pro MPD detector using monochromated CuKα1radiation as the x-ray source.The chemical compositions of the samples were determined with the aim of energy dispersive x-ray spectrometry analyses using an Oxford Swift 3000 spectrometer equipped with a Hitachi TM3000 scanning electron microscope.The temperature and field dependences of magnetization were measured on a Quantum Design superconducting quantum interference device magnetometer.The temperature dependence of resistivity was measured on a physical property measurement system using the standard four-probe method.

    3.Results and discussion

    Figure 1(a) shows the powder XRD patterns of the Sr2?xPbxIrO4samples.The parent material of Sr2IrO4crystallizes in a K2NiF4-type perovskite tetrahedral-phase structure,with space groupI41/acd.[11]It can be seen from Fig.1(a)that all the XRD diffraction peaks of the Sr2?xPbxIrO4samples are nearly identical to those of the Sr2IrO4parent sample,without any impurity peaks.This fact suggests that all Sr2?xPbxIrO4samples are crystallized into a single-phase crystal structure.In order to quantitatively determine the lattice parameters of the Sr2?xPbxIrO4samples,we performed detailed Rietveld refinements on the XRD data.Typical Rietveld refinement results of thex=0.3 sample are shown in Fig.1(b).It can be seen that the calculated curve can well reproduce the experimental data,suggesting that the refinements are reliable.Figure 1(c) gives the variations of thea- andc-axis lattice constants of the Sr2?xPbxIrO4samples.Thea-andc-axis lattice constants of the undoped Sr2IrO4sample are 5.4905 ?A and 25.751 ?A,respectively.These values are consistent with those reported in the literature.[11]With increasing Pb doping,botha-andc-axis lattice constants increase monotonously,reflecting the influence of Pb dopants on the lattice structures.

    Fig.1.(a)Powder XRD patterns of the Sr2?xPbxIrO4 samples detected at room temperature.(b)Typical Rietveld refinements to the x=0.3 sample.The black hollow circles are experimental data.The red curve is the fitting to experimental data.The green curve is the difference between the experimental data and the fitting results.(c)The variations of lattice constants with increasing Pb doping.(d)The lattice constant ratio of the c-to a-axis(c/a ratio)and the in-plane Ir–O–Ir bond angle at different Pb doping levels.

    It is well known that the IrO6octahedra in Sr2IrO4are rotated around the crystallographiccaxis by about 11°.[11]As a consequence of this rotation, the in-plane Ir–O–Ir bond is significantly bent away from a perfect IrO2plane.The resultant in-plane Ir–O–Ir bond angle is about 157.9°in the pristine Sr2IrO4sample.It is not yet clear whether or not the bent character of the Ir–O–Ir bond plays a crucial role in determining the transport and magnetic properties of the Sr2IrO4compound.In order to learn the influence of Pb doping on the Ir–O–Ir bond of the Sr2?xPbxIrO4samples,we calculated the in-plane Ir–O–Ir bond angle of the Pb-doped samples.The results are plotted in Fig.1(d).It can be seen that the introduction of Pb results in a monotonous increase of the in-plane Ir–O–Ir bond angle.The monotonous strengthening of the inplane Ir–O–Ir bond indicates that the rotation of IrO6octahedra is substantially released in Pb-doped samples.In Fig.1(d)we give the lattice constant ratio of thec- to thea-axis (c/aratio) at different Pb doping levels.It is found that thec/aratio monotonously increases with increasing Pb doping.In a layered perovskite oxide, the enhancedc/aratio suggests that the material becomes more two-dimensional.This twodimensional feature is consistent with the increased Ir–O–Ir bond angle.

    In order to know whether or not the Pb ions are uniformly distributed and to what extent the Pb ions are melted into the samples, we performed energy dispersive x-ray spectrometry(EDX)analyses on the Sr2?xPbxIrO4samples.Figure 2 shows the typical EDX spectrum of thex=0.3 sample.It can be seen from the elemental mapping data of Figs.2(a)–2(c) that the Sr, Pb and Ir ions are all nearly uniformly distributed in the Sr2?xPbxIrO4polycrystalline samples, with no evidence of phase separations.The distribution of Pb is regular, confirming the successful incorporation of Pb in the Sr2IrO4matrix.Figure 2(d)gives a typical EDS spectrum of thex=0.3 sample.The quantitative analyses of the EDS spectra of the Sr2?xPbxIrO4samples confirm that the real compositions of the obtained samples are comparable to the nominal compositions.Combining the XRD data and the EDS results, it is suggested that the Pb ions are uniformly incorporated into the Sr2IrO4matrix,with solid solubility as high asx=0.3.

    Fig.2.(a)–(c) The energy-dispersive x-ray spectroscopy (EDS) mapping data of the Sr(a),Pb(b)and Ir(c)elements of the Sr1.7Pb0.3IrO4 sample.(d)A typical EDS spectrum confirming the chemical composition of Sr1.7Pb0.3IrO4.

    Figure 3(a)gives the temperature dependence of dc magnetic susceptibility (χ–T) of the Sr2?xPbxIrO4samples measured under zero-field-cooling (ZFC) and field-cooling (FC)processes.For the parent Sr2IrO4sample,theχ–Tcurves exhibit a paramagnetic-like behavior at high temperature, with theχ–Tcurves measured under the ZFC and FC conditions nearly identical.BelowTN~240 K, theχ–Tcurves exhibit a drastic upturn with decreasing temperature.In addition,theχ–Tcurves measured under ZFC condition and FC condition diverge, consistent with the formation of a canted antiferromagnetic state.[12]Previous studies have revealed that the Ir 5d orbitals are strongly hybridized with the neighboring O 2p orbitals and thus significant parts of the moments are canceled in the canted antiferromagnetic ordered state,leading to a net ferromagnetism in Sr2IrO4.[11,12]

    A remarkable observation is that the N′eel temperatureTNstays at about 240 K in all Pb-doped samples.The nearly unchanged N′eel temperature in the Pb-doped samples is sharply different from that in many other elements (such as La, K,Tb, Sm, Pr, and Nb)doped samples, where the incorporation of dopants readily depresses the antiferromagnetic ordering state.[17,21–26]Interestingly,we find that the nearly unchangedTNhints at a certain similarity to the cases in Fe and Sc doping at the Ir-site of Sr2IrO4.[32,33]In Fe-doped samples, it is suggested that the Fe dopants have only aS=1 spin, thus carrying very small magnetic moments that are too weak to effectively affect the superexchange interactions between the Ir ions.[32]In the Pb-doped samples,the charge-transfer effect between the Sr(Pb)O layer and the IrO2layer is weak; thus the superexchange interactions within the InO2layer is hardly influenced.

    It should be noted that with the incorporation of Pb, the absolute value of magnetic susceptibility exhibits a slight decrease.The decrease of the absolute value of magnetic susceptibility means that the net ferromagnetic moment is slightly decreased in the Pb-doped samples.Figure 3(b) gives the irreversibility curve of the Sr2?xPbxIrO4samples obtained by subtracting the ZFC data from the FC data.It can be seen that the amplitude of the irreversibility data decreases with increasing Pb doping content, consistent with the decrease of net ferromagnetic moment.The decrease of net ferromagnetic moment is due to the strong coupling of the magnetic moment and lattice.[34–36]Due to the coupling of the magnetic moment and lattice, a relaxed Ir–O–Ir bond angle (Fig.1(c)) inevitably weakens the Dzyaloshinskii–Moriya interaction that drives the canted antiferromagnetic ordering state in Sr2IrO4,leading to the decrease of net ferromagnetic moment.It can be also seen from Fig.3(b)that the decrease of net ferromagnetic moment is small in all Pb-doped samples.Quantitatively,the net ferromagnetic moment decreases from 0.042μB/Ir in the undoped Sr2IrO4sample to 0.033μB/Ir in thex=0.3 sample.This small decrease of net ferromagnetic moment suggests that the introduction of Pb dopants only moderately suppresses its magnetic ordered state.Figure 3(c)gives the isothermal magnetization (M–H) curve of thex=0.3 sample.The apparent magnetic hysteresis loop displayed in theM–Hcurve of thex=0.3 sample confirms that a substantial amount of net ferromagnetic moment still survives in heavily Pb-doped samples.

    Fig.3.(a)Temperature dependence of DC magnetic susceptibility of the Sr2?xPbxIrO4 samples measured under zero-field-cooling(ZFC)and field-cooling (FC) processes.The applied magnetic field is 1500 Oe.(b) The irreversibility curve of the DC magnetic susceptibility of the Sr2?xPbxIrO4 samples obtained by subtracting the ZFC data from the FC data.(c) Magnetic field dependence of DC magnetization of the x=0.3 sample measured at 10 K.

    Figure 4(a) shows the temperature dependence of resistivity (ρ–T) of the Sr2?xPbxIrO4samples.The undoped Sr2IrO4sample exhibits a typical insulator-like behavior over the whole temperature range, consistent with its spin–orbit coupling drivenJeff=1/2 Mott insulating state.[12]With the incorporation of Pb, the resistivity decreases in the 100 K–300 K temperature region,suggesting an enhanced conductivity.For thex ≤0.15 samples, they exhibit typical insulatorlike behavior over the whole temperature range,similar to the undoped Sr2IrO4sample.However, for thex ≥0.2 samples,theρ–Tcurves exhibit different features compared to those of thex ≤0.15 samples.For example, the resistivity only displays a small increase with decreasing temperature, showing typical semiconductor-like behavior.In addition, there is an inflection point at around 100 K.These different features suggest that the incorporation of a sufficient amount of Pb could alter the electronic conductivity of the Sr2?xPbxIrO4compounds.

    In order to learn more about the conductive mechanisms of the Sr2?xPbxIrO4samples,we perform a fitting to theρ–Tcurves of the samples.The fitting is performed according to the segmentation fitting method proposed by Kiniet al.[37]In the high temperature region (210 K–300 K), theρ–Tcurves of Sr2IrO4could be fitted using the logarithmic relation ofρ(T) =ρ0e?αT, whereρ0andαare constants dependent on the samples.The lnρ–Tcurves of the Sr2?xPbxIrO4samples are plotted in Fig.4(b).It can be seen that the lnρ–Tcurves of all Sr2?xPbxIrO4samples yield nearly linear behavior in the 210 K–300 K regions, suggesting that the logarithmic relation could well explain the transport mechanisms of the Sr2?xPbxIrO4samples.In the intermediate temperature region of 110 K–190 K,Kiniet al.suggest that the conduction mechanism of Sr2IrO4could be described using a thermally activated model according to an Arrhenius type relation ofρ(T)=ρ0eΔ/(2kBT),whereΔis a constant relating to the energy gap of the sample andkBis the Boltzmann constant.The nearly linear lnρ–T?1curves displayed in Fig.4(c) suggest that the conduction mechanism of the Sr2?xPbxIrO4samples could be ascribed using the thermally activated model in the 110 K–190 K temperature region.According to the slope of the lnρ–T?1curves,the energy gap of the Sr2?xPbxIrO4samples can be derived.The energy gap of the Sr2IrO4sample is 115 meV,which is consistent with the small theoretically calculated gap value.[38]The energy gap decreases monotonously with increasing Pb doping.For example, the energy gaps of thex=0.1 and 0.2 samples are 104 meV and 38 meV,respectively.For thex=0.3 sample,the energy gap is only 4.1 meV.The continuous decrease of energy gap could be connected to the increase of Ir–O–Ir bond angle with Pb doping.In Sr2IrO4,the significantly bent Ir–O–Ir bond hinders the free motion of charge carriers within the IrO2conductive plane.With the incorporation of Pb,the in-plane Ir–O–Ir bond becomes straightened.The straightened Ir–O–Ir bond favors orbital hybridization between the Ir 4f electrons and the O 2p electrons,leading to a monotonous decrease of the energy gap and an enhancement of the electrical conductivity in Sr2?xPbxIrO4samples.

    Fig.4.(a)Temperature dependence of resistivity of the Sr2?xPbxIrO4 polycrystalline samples.(b)The lnρ versus T curves in the 210–300 K temperature region.(c)The lnρ versus T?1 curves in the 110–190 K temperature region.

    4.Conclusion

    We report the synthesis and physical properties of a series of Sr2?xPbxIrO4samples.The detailed Rietveld refinements to the x-ray diffraction data and the energy-dispersive x-ray spectrometry analyses provide dual evidence that the Pb ions are successfully incorporated into the Sr2IrO4matrix with solid solubility up tox=0.3.The incorporation of Pb results in a moderate destruction of the canted antiferromagnetic state of the Sr2IrO4compound.The incorporation of Pb substantially enhances the conductivity of Sr2?xPbxIrO4samples at high temperature.The energy gap decreases monotonously with increased Pb doping.However,the energy gap could not reach zero even in the heaviest Pb-doped samples.Despite the greatly enhanced conductivity,complete metallization remains unrealized in Sr2?xPbxIrO4samples.In future, the growth of single crystals and the investigation of the physical properties of Sr2?xPbxIrO4single-crystal samples are needed.In addition, preparing the Pb-doped samples withx >0.3 using unconventional synthetic techniques such as the high-pressure high-temperature method is highly anticipated in order to realize complete metallization and,more importantly,superconductivity.

    Acknowledgements

    Project supported by the National Key R&D Program of China(Grant Nos.2022YFA1403203 and 2021YFA1600201),the National Natural Science Foundation of China (Grant Nos.11974356 and 12274414), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences Large-Scale Scientific Facility (Grant No.U1932216).

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    走三邊
    唱起號(hào)子走漢江
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
    石油物探(2017年1期)2017-03-15 10:46:51
    日韩成人在线观看一区二区三区| 色av中文字幕| 在线免费观看不下载黄p国产 | 超碰av人人做人人爽久久 | 成年版毛片免费区| 免费av不卡在线播放| 午夜免费成人在线视频| 午夜福利免费观看在线| 亚洲成人久久爱视频| 两个人看的免费小视频| 小说图片视频综合网站| 国产精品久久久久久精品电影| 国产高清有码在线观看视频| 在线看三级毛片| 窝窝影院91人妻| 999久久久精品免费观看国产| 一区福利在线观看| 国产精品久久视频播放| 色尼玛亚洲综合影院| 国产精品99久久久久久久久| 国产乱人伦免费视频| 日本五十路高清| 亚洲美女黄片视频| 露出奶头的视频| 欧美日韩一级在线毛片| 日日夜夜操网爽| 久久精品91蜜桃| 99久久精品热视频| 最近最新免费中文字幕在线| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 亚洲美女视频黄频| 久久久久国内视频| 最新美女视频免费是黄的| 亚洲精品一卡2卡三卡4卡5卡| 国产一区二区在线观看日韩 | 99精品在免费线老司机午夜| 91久久精品电影网| 一个人免费在线观看的高清视频| 久久久久性生活片| 在线播放无遮挡| 国产精品亚洲一级av第二区| 成人鲁丝片一二三区免费| 性色avwww在线观看| 一本一本综合久久| 无人区码免费观看不卡| 午夜激情欧美在线| 99精品久久久久人妻精品| 国产av在哪里看| 欧美色视频一区免费| 久久亚洲精品不卡| 成人永久免费在线观看视频| 亚洲国产精品合色在线| 亚洲无线观看免费| 人人妻人人看人人澡| 老熟妇乱子伦视频在线观看| 久久中文看片网| 欧美成人一区二区免费高清观看| 日本一本二区三区精品| 在线观看av片永久免费下载| 国产精品自产拍在线观看55亚洲| 国产成人影院久久av| 网址你懂的国产日韩在线| 亚洲国产精品合色在线| 亚洲av成人不卡在线观看播放网| 日韩欧美 国产精品| 麻豆久久精品国产亚洲av| 亚洲专区国产一区二区| 一级黄色大片毛片| 又紧又爽又黄一区二区| 国产三级中文精品| 中文字幕av成人在线电影| 亚洲激情在线av| 免费高清视频大片| 久久久久性生活片| 国产伦在线观看视频一区| 最好的美女福利视频网| 69av精品久久久久久| 亚洲avbb在线观看| 午夜两性在线视频| 亚洲内射少妇av| 国产成人aa在线观看| 免费一级毛片在线播放高清视频| 亚洲av五月六月丁香网| 免费av观看视频| 少妇的逼好多水| 神马国产精品三级电影在线观看| 成人高潮视频无遮挡免费网站| 午夜福利在线观看吧| 欧美激情在线99| 成人特级av手机在线观看| 美女cb高潮喷水在线观看| 国产精品1区2区在线观看.| 精品一区二区三区视频在线观看免费| 18禁黄网站禁片免费观看直播| 日本a在线网址| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 亚洲av免费在线观看| 夜夜躁狠狠躁天天躁| 午夜福利在线观看免费完整高清在 | 波多野结衣巨乳人妻| 精品人妻偷拍中文字幕| 性色av乱码一区二区三区2| 人妻久久中文字幕网| 亚洲av二区三区四区| 精品久久久久久,| 性色av乱码一区二区三区2| 亚洲人成网站在线播| 国产精品1区2区在线观看.| 久久中文看片网| 国产淫片久久久久久久久 | 一本综合久久免费| 精品国产三级普通话版| 午夜精品久久久久久毛片777| 麻豆一二三区av精品| 精品人妻1区二区| 日日干狠狠操夜夜爽| 法律面前人人平等表现在哪些方面| 亚洲精品一卡2卡三卡4卡5卡| 美女黄网站色视频| 免费在线观看亚洲国产| 老司机在亚洲福利影院| 亚洲内射少妇av| 日本撒尿小便嘘嘘汇集6| 91九色精品人成在线观看| 美女大奶头视频| 最近最新免费中文字幕在线| 一级毛片女人18水好多| 日韩欧美精品v在线| 亚洲aⅴ乱码一区二区在线播放| 国产高清videossex| 三级国产精品欧美在线观看| 亚洲性夜色夜夜综合| 99久久综合精品五月天人人| 亚洲 欧美 日韩 在线 免费| 国产一区二区三区在线臀色熟女| 国产精品 欧美亚洲| 亚洲一区二区三区色噜噜| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 亚洲av二区三区四区| 中文字幕人妻丝袜一区二区| 色视频www国产| 成年版毛片免费区| 琪琪午夜伦伦电影理论片6080| 国产97色在线日韩免费| 日韩精品中文字幕看吧| 亚洲美女黄片视频| 国产精品久久电影中文字幕| 尤物成人国产欧美一区二区三区| 国产探花在线观看一区二区| 久久精品亚洲精品国产色婷小说| 国产探花极品一区二区| 国产精品爽爽va在线观看网站| 国产蜜桃级精品一区二区三区| 国产国拍精品亚洲av在线观看 | 亚洲av不卡在线观看| 国产一区在线观看成人免费| 丝袜美腿在线中文| 国产精品电影一区二区三区| 亚洲精品一区av在线观看| 一个人观看的视频www高清免费观看| 国产高清videossex| 国产爱豆传媒在线观看| 啪啪无遮挡十八禁网站| 欧美最黄视频在线播放免费| 97人妻精品一区二区三区麻豆| 精品久久久久久久末码| 真人做人爱边吃奶动态| 国产真人三级小视频在线观看| 男人的好看免费观看在线视频| 国产欧美日韩精品一区二区| 日本 av在线| tocl精华| 在线观看舔阴道视频| av欧美777| av女优亚洲男人天堂| 欧美+日韩+精品| 国产欧美日韩一区二区三| 18禁黄网站禁片午夜丰满| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 国产精品久久电影中文字幕| 久久欧美精品欧美久久欧美| 久久精品91无色码中文字幕| 国产亚洲精品综合一区在线观看| 久久中文看片网| 久9热在线精品视频| 精品久久久久久久久久免费视频| 亚洲狠狠婷婷综合久久图片| 天天躁日日操中文字幕| 日本一二三区视频观看| 国产一区二区三区在线臀色熟女| а√天堂www在线а√下载| 久久性视频一级片| 99久国产av精品| 在线国产一区二区在线| 身体一侧抽搐| 国产免费av片在线观看野外av| 国产高清视频在线观看网站| 在线观看免费视频日本深夜| 我的老师免费观看完整版| 男女下面进入的视频免费午夜| 久久久久久久午夜电影| 69av精品久久久久久| 久久草成人影院| 国产激情欧美一区二区| 在线观看免费视频日本深夜| 国产亚洲精品综合一区在线观看| 国产成人av激情在线播放| 国产野战对白在线观看| av女优亚洲男人天堂| 国内精品一区二区在线观看| 90打野战视频偷拍视频| 久久久精品大字幕| 亚洲精品成人久久久久久| 真人一进一出gif抽搐免费| 9191精品国产免费久久| 日韩精品青青久久久久久| 亚洲国产色片| 精品久久久久久久毛片微露脸| 男女之事视频高清在线观看| 热99re8久久精品国产| 韩国av一区二区三区四区| 97碰自拍视频| 亚洲av电影在线进入| 狂野欧美白嫩少妇大欣赏| 亚洲成av人片在线播放无| 亚洲精品亚洲一区二区| 夜夜爽天天搞| 午夜精品一区二区三区免费看| 久久精品91蜜桃| 黄色视频,在线免费观看| 国产精品久久久久久久久免 | 高清在线国产一区| 身体一侧抽搐| 一夜夜www| 日本在线视频免费播放| 日本免费一区二区三区高清不卡| 黄色视频,在线免费观看| 中出人妻视频一区二区| 婷婷精品国产亚洲av| 国产精品一及| 久久久色成人| 亚洲av中文字字幕乱码综合| 国产三级在线视频| 性色av乱码一区二区三区2| 成熟少妇高潮喷水视频| 亚洲专区国产一区二区| 99精品欧美一区二区三区四区| 国产真实乱freesex| 在线观看舔阴道视频| 在线观看一区二区三区| 嫁个100分男人电影在线观看| 成人一区二区视频在线观看| 神马国产精品三级电影在线观看| 我要搜黄色片| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 哪里可以看免费的av片| aaaaa片日本免费| 又紧又爽又黄一区二区| www.999成人在线观看| 国产日本99.免费观看| 小说图片视频综合网站| 最近视频中文字幕2019在线8| 欧美国产日韩亚洲一区| 精品人妻偷拍中文字幕| 99国产精品一区二区蜜桃av| 九色国产91popny在线| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放| 制服人妻中文乱码| 在线观看av片永久免费下载| 18禁美女被吸乳视频| 欧美一级毛片孕妇| 国产精品98久久久久久宅男小说| 午夜a级毛片| 欧美在线一区亚洲| 欧美国产日韩亚洲一区| 国产精品久久久久久久电影 | svipshipincom国产片| 亚洲国产精品合色在线| 日韩成人在线观看一区二区三区| 99国产精品一区二区蜜桃av| 级片在线观看| 搡女人真爽免费视频火全软件 | 国产视频一区二区在线看| 亚洲精品一区av在线观看| 一个人看视频在线观看www免费 | 91在线精品国自产拍蜜月 | 国产精品香港三级国产av潘金莲| 免费看美女性在线毛片视频| 桃色一区二区三区在线观看| 日韩欧美在线乱码| 不卡一级毛片| 小说图片视频综合网站| 嫩草影院精品99| 亚洲在线自拍视频| 岛国视频午夜一区免费看| 国产精品久久电影中文字幕| 最新中文字幕久久久久| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| 99热6这里只有精品| 成人特级黄色片久久久久久久| 成人午夜高清在线视频| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 亚洲av成人av| 99热这里只有是精品50| 美女高潮喷水抽搐中文字幕| 国产 一区 欧美 日韩| 五月伊人婷婷丁香| 亚洲av不卡在线观看| 欧美日本亚洲视频在线播放| 美女高潮的动态| 又粗又爽又猛毛片免费看| 国产淫片久久久久久久久 | 国产一级毛片七仙女欲春2| 夜夜爽天天搞| 亚洲av二区三区四区| 岛国在线免费视频观看| 激情在线观看视频在线高清| 一夜夜www| 韩国av一区二区三区四区| 亚洲av日韩精品久久久久久密| 亚洲不卡免费看| 国产一级毛片七仙女欲春2| 久久人妻av系列| 日本黄色视频三级网站网址| 午夜亚洲福利在线播放| 级片在线观看| 欧美最新免费一区二区三区 | 国产精品99久久久久久久久| www.色视频.com| 午夜免费激情av| 国产 一区 欧美 日韩| 两个人的视频大全免费| 久久久国产精品麻豆| 97超级碰碰碰精品色视频在线观看| 熟妇人妻久久中文字幕3abv| 一进一出好大好爽视频| a在线观看视频网站| 成人永久免费在线观看视频| 88av欧美| 亚洲内射少妇av| 老汉色av国产亚洲站长工具| 国产精品嫩草影院av在线观看 | 国产毛片a区久久久久| 国产精品永久免费网站| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 国产v大片淫在线免费观看| 色在线成人网| 老司机午夜福利在线观看视频| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 日韩成人在线观看一区二区三区| 蜜桃亚洲精品一区二区三区| 日韩欧美精品v在线| 免费在线观看亚洲国产| 亚洲自拍偷在线| av片东京热男人的天堂| 女人高潮潮喷娇喘18禁视频| 成年女人毛片免费观看观看9| 欧美av亚洲av综合av国产av| 亚洲欧美精品综合久久99| 亚洲国产精品999在线| 久久久国产成人精品二区| 欧美av亚洲av综合av国产av| 欧美成人免费av一区二区三区| 丁香欧美五月| 精品久久久久久成人av| 国产精品久久久人人做人人爽| 日本在线视频免费播放| 久久久成人免费电影| 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 日本一本二区三区精品| 国产一区二区在线av高清观看| 怎么达到女性高潮| 九九热线精品视视频播放| 色综合婷婷激情| 噜噜噜噜噜久久久久久91| 91九色精品人成在线观看| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看| 色播亚洲综合网| 国产精品99久久99久久久不卡| 精品久久久久久久末码| 亚洲中文字幕一区二区三区有码在线看| 美女cb高潮喷水在线观看| 欧美日韩黄片免| 午夜精品久久久久久毛片777| 日本免费一区二区三区高清不卡| 99久久精品国产亚洲精品| 国产野战对白在线观看| 亚洲avbb在线观看| 91av网一区二区| 在线观看免费午夜福利视频| 精品国产亚洲在线| 国产美女午夜福利| 久久精品亚洲精品国产色婷小说| 国产一区二区在线观看日韩 | 国产精品久久电影中文字幕| 麻豆久久精品国产亚洲av| 天美传媒精品一区二区| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区 | 欧美最新免费一区二区三区 | avwww免费| 一级黄片播放器| 亚洲中文字幕日韩| 69av精品久久久久久| 欧美乱码精品一区二区三区| 99热只有精品国产| 少妇人妻精品综合一区二区 | 国产精品久久久久久人妻精品电影| 国产精品影院久久| 日本与韩国留学比较| 国产淫片久久久久久久久 | 色老头精品视频在线观看| or卡值多少钱| 国产精品电影一区二区三区| 97超视频在线观看视频| 特大巨黑吊av在线直播| 热99re8久久精品国产| 亚洲成人久久性| 可以在线观看的亚洲视频| 又粗又爽又猛毛片免费看| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 99久国产av精品| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 国产黄a三级三级三级人| 一级毛片高清免费大全| 深爱激情五月婷婷| 成年版毛片免费区| 青草久久国产| 91字幕亚洲| 色视频www国产| 啦啦啦免费观看视频1| 国产精品 欧美亚洲| 精品乱码久久久久久99久播| 免费人成在线观看视频色| 露出奶头的视频| 又黄又粗又硬又大视频| 精品久久久久久久末码| 我的老师免费观看完整版| 少妇人妻精品综合一区二区 | 久久久久久久久大av| 夜夜躁狠狠躁天天躁| 色综合站精品国产| 亚洲欧美日韩东京热| 国产精品久久视频播放| 1000部很黄的大片| 国产亚洲精品久久久com| 亚洲人成网站在线播放欧美日韩| 18禁在线播放成人免费| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 在线观看66精品国产| 精品免费久久久久久久清纯| 亚洲国产日韩欧美精品在线观看 | 啦啦啦韩国在线观看视频| 亚洲av免费在线观看| 一本精品99久久精品77| 久久这里只有精品中国| 久久国产精品人妻蜜桃| 嫩草影院精品99| 香蕉久久夜色| 香蕉丝袜av| 欧美丝袜亚洲另类 | www国产在线视频色| 亚洲精品一区av在线观看| 午夜激情福利司机影院| 1000部很黄的大片| 日韩亚洲欧美综合| 999久久久精品免费观看国产| 一区二区三区免费毛片| 白带黄色成豆腐渣| 亚洲欧美日韩卡通动漫| 免费无遮挡裸体视频| 亚洲五月婷婷丁香| 国产真实伦视频高清在线观看 | 一级黄片播放器| 日韩 欧美 亚洲 中文字幕| 两个人看的免费小视频| 乱人视频在线观看| av福利片在线观看| 黄色片一级片一级黄色片| 亚洲欧美日韩无卡精品| 在线播放国产精品三级| 国产一区二区在线av高清观看| 日韩国内少妇激情av| 亚洲五月婷婷丁香| 午夜影院日韩av| av黄色大香蕉| 噜噜噜噜噜久久久久久91| 网址你懂的国产日韩在线| 国产真实乱freesex| 一级a爱片免费观看的视频| 中文字幕人妻熟人妻熟丝袜美 | 白带黄色成豆腐渣| 精品熟女少妇八av免费久了| 国产不卡一卡二| 啦啦啦观看免费观看视频高清| av在线天堂中文字幕| 欧美日韩综合久久久久久 | 国产av不卡久久| 在线播放无遮挡| 一区二区三区免费毛片| 波多野结衣高清无吗| 精品午夜福利视频在线观看一区| 中文字幕人妻丝袜一区二区| 一个人看视频在线观看www免费 | 亚洲美女黄片视频| 国产高清三级在线| 国产伦人伦偷精品视频| 成年女人看的毛片在线观看| 亚洲一区高清亚洲精品| 亚洲av美国av| 国产亚洲精品综合一区在线观看| 亚洲精品久久国产高清桃花| 日韩精品青青久久久久久| 亚洲精品乱码久久久v下载方式 | 国产精品亚洲美女久久久| 啪啪无遮挡十八禁网站| 91久久精品电影网| av片东京热男人的天堂| 美女免费视频网站| 非洲黑人性xxxx精品又粗又长| 欧美色欧美亚洲另类二区| 午夜福利高清视频| 亚洲国产色片| 亚洲精品亚洲一区二区| 在线观看免费午夜福利视频| 三级国产精品欧美在线观看| 国产精华一区二区三区| 亚洲 欧美 日韩 在线 免费| 禁无遮挡网站| 老熟妇仑乱视频hdxx| 一级黄片播放器| 亚洲乱码一区二区免费版| 欧美中文日本在线观看视频| 国产一区二区在线观看日韩 | 亚洲午夜理论影院| 国产精品久久视频播放| 亚洲真实伦在线观看| 国产精品永久免费网站| 乱人视频在线观看| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频| 十八禁网站免费在线| www日本在线高清视频| 国产淫片久久久久久久久 | 久久久久久久久久黄片| 一本综合久久免费| 1024手机看黄色片| 久久亚洲精品不卡| 欧美高清成人免费视频www| 一本久久中文字幕| 亚洲自拍偷在线| 淫妇啪啪啪对白视频| 最近最新中文字幕大全免费视频| 一进一出抽搐gif免费好疼| 亚洲精品乱码久久久v下载方式 | 欧美最新免费一区二区三区 | av黄色大香蕉| 亚洲av一区综合| 两个人的视频大全免费| 日本三级黄在线观看| 国产一区二区三区在线臀色熟女| 日韩中文字幕欧美一区二区| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 欧美区成人在线视频| 首页视频小说图片口味搜索| 亚洲18禁久久av| 老熟妇乱子伦视频在线观看| 免费在线观看亚洲国产| 男女床上黄色一级片免费看| 欧美激情久久久久久爽电影| 国产美女午夜福利| 国产精品免费一区二区三区在线| 天天一区二区日本电影三级| 国产麻豆成人av免费视频| 欧美午夜高清在线| 日韩国内少妇激情av| 国产美女午夜福利| 免费电影在线观看免费观看| 757午夜福利合集在线观看| 热99re8久久精品国产| 99热只有精品国产| 老熟妇乱子伦视频在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲18禁久久av| 亚洲av二区三区四区| 亚洲一区高清亚洲精品| 亚洲内射少妇av| 在线观看免费视频日本深夜| 中出人妻视频一区二区| 亚洲av日韩精品久久久久久密| 亚洲va日本ⅴa欧美va伊人久久| 日韩高清综合在线| 国产乱人视频| 午夜亚洲福利在线播放| 欧美国产日韩亚洲一区| 少妇的逼好多水| 一本综合久久免费|