• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure

    2022-10-26 09:52:28YuanGao高源HuipingLi李慧平andWenguangZhu朱文光
    Chinese Physics B 2022年10期
    關(guān)鍵詞:朱文

    Yuan Gao(高源) Huiping Li(李慧平) and Wenguang Zhu(朱文光)

    1International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    2Department of Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: quantum anomalous Hall effect,two-dimensional heterostructure

    1. Introduction

    The quantum anomalous Hall effect (QAHE)[1]is the manifestation of topological electronic structure characterized by a nonzero Chern number (CN) and chiral edge electronic states. Aside from fundamental interest, the QAHE also has great promise in development of low-power-consumption spintronic devices for practical applications owing to its dissipationless transport nature, which has stimulated tremendous efforts for its experimental realization since the first theoretical model was proposed by Haldane in 1998.[1]Following a theoretical recipe,[2]the experimental realization was first achieved in magnetically doped three-dimensional topological insulators in the family of Bi2Se3,[3–8]while the highest temperature achieved so far is only 2 K,[8]due to inevitable degradation of sample quality with the complexity caused by the magnetic doping. More recently, the QAHE was realized in a layered compound MnBi2Te4[9–11]with a record temperature of 13 K and an external magnetic field required to align the intrinsically antiferromagnetically coupled MnBi2Te4layers to be ferromagnetic (FM).[11]In addition, twisted bilayer graphene was also recently reported to achieve the QAHE experimentally at 1.6 K.[12]However,searching for new QAHE systems particularly with substantially enhanced the critical temperature is highly demanded for practical applications but still a grant challenge in this field.

    Recent discovery of two-dimensional (2D) ferromagnetic materials provides new opportunities for this endeavor.By constructing multilayer van der Waals heterostructures,several new QAHE systems were theoretically proposed, including the ones consisting of a layered topological insulator and a 2D ferromagnetic layer, e.g., arranged by publishing time,graphene/BiFeO3,[13]graphene/RbMnCl3,[14]graphene/Cr2Ge2Te6,[15]MnBi2Te4/GeBi2Te4,[16]MnBi2Se4/Bi2Se3,[17]CrI3/Bi2Se3,[18]CrBi2Se4/Bi2Se3,[18]germanene/Cr2Ge2Te6,[19,20]graphene/CrBr3,[21]MnBi2Te4/ Sb2Te3,[22]MnBi2Te4/CrI3,[23]graphene/MnPSe3,[24]graphene/NiI2,[25]MnBi2Te4/VBi2Te4[26]or MnBi2Te4/Bi2Te3[27]and the ones consisting of two ferromagnetic layers MnNF/MnNCl.[28]

    In this work, we propose a 2D van der Waals (vdW) bilayer heterostructure constructed by stacking two topologically trivial ferromagnetic(FM)monolayers CrI3and ScCl2to realize the QAHE state. Based on first-principles calculations within the framework of density functional theory(DFT),the topological nature of the heterostructure is revealed to be attributed to an interlayer band inversion between the monolayers,and it critically depends on the structural symmetry of the stacking configuration. Our calculation shows that the pristine bilayer heterostructure has a sizable topologically nontrivial band gap of 4.5 meV.We further demonstrate that the band gap can be increased nearly linearly by the application of a perpendicular external pressure and reaches 8.1 meV at 2.7 GPa,and the application of an external out-of-plane electric field can also modulate the band gap and convert the system back to being topologically trivial via eliminating the band inversion.An effective model is developed to describe the evolution of

    the topological phases observed in this bilayer system.

    2. Computational methods

    The first-principles DFT calculations were performed based on the projector augmented wave(PAW)formalisms[29]with the exchange and correlation functional in the form of PBEsol[30]as implemented in the Viennaab initiosimulation package (VASP).[31,32]A plane wave basis cutoff of 400 eV was used. To model the 2D heterostructure,the supercell contains a monolayer of an 1×1 CrI3stacking with a monolayer of a 2×2 ScCl2with a vacuum region of 30 ?A.AΓ-centered 8×8×1 mesh was used fork-point sampling.[33]HubbardU= 3 eV and 1 eV were added to the partially filled 3d transition-metal elements Cr and Sc, respectively, to capture the local Coulomb interaction. The van der Waals corrections as parameterized in the semiempirical DFT-D3 method[34]were included. The electronic convergence criterion was set to 10-6eV,and atomic structures were fully relaxed until the forces on all atom were smaller than 0.005 eV/?A.The Hamiltonian matrixes in the Wannier function basis were calculated by Wannier90,[35]which served as an input of PythTB to calculate the Berry curvature as well as the CN and the surface states with WannierTools.[36]To verify the dynamical stability of 2D monolayer ScCl2, phonon dispersion analysis was performed using VASP and phonopy,[37]in which the structure was fully relaxed until the energy and the forces were converged to 10-8eV and 10-6eV/?A,respectively.

    3. Results and discussion

    3.1. Atomic structure and magnetism of monolayer CrI3 and ScCl2

    CrI3is a 2D vdW stacked layered material,and its monolayer has been experimentally demonstrated to be an FM insulator with a Curie temperature of 45 K.[38]As shown in Fig. 1(a), each unit cell of monolayer CrI3contains two Cr atoms, forming a honeycomb lattice, and each Cr atom covalently bonds with six neighboring I atoms, with a space group ofPˉ31m. Monolayer ScCl2was also predicted to be an FM insulator.[39,40]As shown in Fig.1(b),each monolayer of ScCl2is composed of three atomic layers,and the atoms in each atomic layer contain only one element forming a triangular lattice, among which the Sc layer is sandwiched between the two Cl layers and the three atomic layers follow an ABA stacking sequence with the whole structure possessing a space group ofPˉ6m2. The absence of imaginary frequency in the calculated phonon spectra of monolayer ScCl2,as indicated in Fig.A1,confirms the dynamical stability of the structure. The optimized in-plane lattice constants of monolayer ScCl2and CrI3are 3.474 ?A and 6.900 ?A,respectively. Thus a 2×2 unit cell of ScCl2can perfectly match with a 1×1 unit cell of CrI3with a mismatch of merely 0.7%.

    Figures 1(c) and 1(d) show the calculated band structures of monolayer CrI3and ScCl2in the FM phase, indicating that they are both FM insulators with band gaps of 1.12 eV and 0.15 eV for CrI3and ScCl2and Cr and Sc atoms carry magnetic moments of 3μBand 1μB, respectively. For CrI3, the magnetization of the whole layer prefers out-ofplane orientation with a magnetic anisotropy energy (MAE)of 1.61 meV/unit cell relative to the in-plane magnetization,while the magnetization of monolayer ScCl2slightly favors in-plane orientation with an MAE of 0.01 meV/unit cell.Band structures of monolayer CrI3and ScCl2with spin orbital coupling(SOC)are shown in Fig.B1.

    Fig.1. Atomic structure and magnetism of monolayer CrI3 and ScCl2.(a)Top view and side view of CrI3. The black solid line on the top view shows the unit cell. (b) Top view and side view of ScCl2. The blue dashed line and the black solid line on the top view show the unit cell and the 2×2 unit cells,respectively. (c)and(d)The band structures of monolayer CrI3 and monolayer ScCl2,respectively,without SOC.

    3.2. Stacking structure and magnetism of CrI3/ScCl2 heterobilayer

    Before investigating its electronic structure,we first identify the most stable stacking configuration of an FM-coupled CrI3/ScCl2bilayer (Fig. 2(a)) by mapping out the whole 2D energy landscape (Fig. 2(b)) of the stacking registry space of the two layers sliding relative to each other. Figures 2(c)and 2(d)show the stacking configurations with the lowest and highest energies,respectively.In the highest energy configuration,Cr atoms in one of the Cr sublattices in the CrI3layer are vertically aligned with Sc atoms in the ScCl2layer and the rest Cr atoms in another Cr sublattice is aligned with the hollow sites of the ScCl2layer. In the most stable configuration with optimized in-plane lattice constant 6.937 ?A,one of the Cr sublattices is still aligned with the hollow sites of the ScCl2layer,while another Cr sublattice is aligned with the Cl atoms of the ScCl2layer. The energy difference between the highest and the lowest energy configurations is 58.05 meV/cell. The calculations with considering different interlayer magnetic structures and magnetization orientations indicate that the CrI3and ScCl2layers always favor FM coupling with the magnetization of both layers along the out-of-plane orientation,independent of the stacking configuration. For the most stable configuration, the energy of the FM state is lower than that of the interlayer antiferromagnetic(AFM)state by 5.75 meV/cell. Detailed calculation results are summarized in Table 1.

    Fig. 2. Stacking structure of CrI3/ScCl2 bilayer. (a) The side view of CrI3/ScCl2 heterostructure. (b)The contour map showing the stacking energy as a function of lateral shift with respect to the highest energy stacking. The scale of axes means the relative translation fraction of the two monolayers. (c) and (d) Top views of the lowest energy stacking and the highest energy stacking,respectivley.

    Table 1.Space groups,and magnetic properties of monolayer CrCl3,monolayer ScCl2 and bilayer heterostructure CrI3/ScCl2 with different stacking configurations. The second column shows the space groups of those systems. The third and fourth columns show relative MAE of different magnetic structures. We list stacking(1/6,1/3),stacking(1/3,1/6),stacking(1/3,1/3),and stacking(1/2,1/6)for example.For each cell discussed in this table,there are two Cr atoms and/or four Sc atoms.

    3.3. Topological property of CrI3/ScCl2 heterobilayer

    Figure 3(a) shows the calculated band structure of the most stable stacking configuration of the FM-coupled CrI3/ScCl2bilayer with SOC. It clearly reveals that there is indeed band inversion between the valance band of the ScCl2layer and the conduction band of the CrI3layer in the vicinity of theΓpoint. The zoomed-in band structure plot indicates a sizable band gap of~4.5 meV opened in the overlapped bands, which implies the emergence of potential topological non-trivial band structure. Detailed atomic orbital projection analysis further reveals that the inverted valence band and conduction band are both spin polarized and contributed by Sc dz2orbital of the ScCl2layer and Cr dxz+dyzorbitals of the CrI3layer, respectively. In addition, the most stable stacking configuration belongs to space groupP3, which is associated with point groupC3,and the irreducible representations of the two inverted bands atΓpoint belong to the irreducible representations table of the little co-groupGΓ ≈C3as listed in Table 2,suggesting that the two inverted bands at theΓpoint have different symmetries and thus it is expected to induce a topological phase transition.[41,42]

    We calculated the CN of the most stable stacking configuration of the FM-coupled CrI3/ScCl2bilayer from firstprinciples in reciprocal space[43]with

    wherenis the band index,Enkandψnkare the eigenvalue and eigenstate of bandnrespectively,vx/yis the velocity operator,andfn=1 for the occupied band. The reciprocal space distribution of the Berry curvatureΩ(k) of all occupied bands as shown in Fig.3(b)suggests a nonzero integration over the whole Brillouin zone, and the calculation indeed confirms a CN of-1, indicating that the stacking of the CrI3/ScCl2bilayer in the most stable configuration makes the system undergo a topological phase transition to the QAHE state.

    Fig. 3. Band structure and topological property of CrI3/ScCl2 bilayer.(a)Band structure of 2D bilayer heterostructure CrI3/ScCl2 with SOC.There is band inversion between dz2 orbital of Sc atom and dxz+dyz orbital of Cr atom.The irreducible representations of the two states of two inverted bands at Γ point is shown.The inset is the enlarged view of the bands near Fermi level at Γ point. The band inversion leaves band gap of 4.5 meV.(b)The distribution of Berry curvature in reciprocal space for the lowest energy stacking.

    Table 2. The irreducible representations table of the little co-group GΓ ≈C3 of the Γ point,where ω =exp(2π i/3).

    For vdW heterostructures,interlayer sliding may serve as a possible tuning method, due to the relatively weak vdW,to alter the topological nature of the vdW heterostructures,as previously predicted in transition metal dichalcogenide heterobilayers.[44]In this regard, we investigate the topological nature of the FM-coupled CrI3/ScCl2bilayer at other stacking configurations. The band structures and the reciprocal space distribution of the Berry curvature of several representative stacking configurations are provided in Fig.C1. The results,as indicated by the stars and dots in the energy landscape contour map of Fig.2(b),reveal that high-symmetry stacking configurations with space groupP3 lead to a CN of-1,while the other stacking configurations with low symmetry space groupP1 are topological trivial with a CN of 0 due to fact that the symmetries of the two inverted bands at theΓpoint become the same and thus the band inversion does not make topological transition.

    As a manifestation of the QAHE,the edges of a nonzero CN insulator always possess topologically protected gapless chiral edge states within the energy gap of the bulk bands.To examine the presence of the topological edge states of the most stable configuration of the FM-coupled CrI3/ScCl2bilayer, we constructed a CrI3/ScCl2bilayer ribbon (shown in Fig. 4(a)) cut along the zigzag edges of the ScCl2layer with delicately designed edge termination to avoid trivial edge states. By using Green’s function method based on the tightbinding Hamiltonian generated by the Wannier functions obtained from the first-principles calculation,[36]the band structures of the two edges of the ribbon are obtained. As revealed in Figs. 4(b) and 4(c), there indeed exists a nontrivial edge state connecting the conduction band and valence band on each edge,and the two edge states on the two different edges have opposite group velocities as expected for the QAHE.

    Fig.4. Edge states of CrI3/ScCl2 bilayer. (a)Ribbon cut from the 2D bilayer heterostructure CrI3/ScCl2 along the zigzag direction of the Cr honeycomb lattice. Two edge states of this ribbon are shown in(b)and(c),respectively.

    3.4. Effective model to describe the QAHE state of

    CrI3/ScCl2heterobilayer

    We develop an effective model to reveal the topological origin of the proposed CrI3/ScCl2heterobilayer. According to the first-principles calculation revealed orbital contributions of the two inverted bands,an effective Hamiltonian without considering spin-polarization can be constructed as whereσdenotes the Pauli matrices for orbital andsdenotes the Pauli matrices for spin. The symmetry-allowed SOC Hamiltonian can be found.

    As the heterostructure holding interlayer FM interaction,the bases can be chosen as (|1,↑〉,|2,↑〉) and the effective Hamiltonian reminds

    without any contribution of the SOC Hamiltonian as the first order approximation,where the parametersαis related to the strength of the splitting at the crossing point of the two inverted bands,while the parameterμindicates the strength of the band inversion. It is suitable to setα2=1 meV and the meaningful range ofμcan be chosen from 5 meV to 2 meV.As shown in Fig.5,for a given value ofα,the band structure can be clearly differentiated into the case with the band inversion forμ <0 and the case without the band inversion forμ >0.

    Using the TKNN formula,[43]the eigenvalue, Berry curvature and the CN of the effective Hamiltonian in Eq.(6)can be calculated one by one as

    For the case ofμ <0 with the band inversion, CNFM=-1, while for the case ofμ >0 without the band inversion,CNFM=0.

    Fig. 5. For the given α satisfied α2 = 1 meV, band structures calculated from the effective Hamiltonian with μ =-5 meV, μ =0 meV and μ =2 meV,respectively.

    3.5. External pressure and electric field tuning of the QAHE state of CrI3/ScCl2 bilayer

    Since the topological band gap in the CrI3/ScCl2bilayer is the result of the hybridization between the energy bands of the two layers,one possible approach to increase the band gap is to apply an external pressure perpendicular to the 2D plane to reduce the distance between the two layers and to enhance the hybridization of their energy bands.

    Fig. 6. External pressure and electric field tuning of the QAHE state in CrI3/ScCl2 heterostructure. The result of band gap g is shown as a function of external pressure P(a)or electric field E (b). The positive direction of the electric field is defined from the CrI3 layer to the ScCl2 layer. (c)The elimination of band inversion as well as QAHE from electric field from-0.26 V/?A to-0.28 V/?A.

    To test this effect, we perform first-principles calculation for the most stable configuration of the FM-coupled CrI3/ScCl2bilayer at a series of perpendicular compressive pressure while fixing the in-plane lattice constant of the bilayer. The results, as illustrated in Fig. 6(a), indicate that the topological band gap increases linearly as the increase of the pressure and the band gap can be enlarged to 8.1 meV at a pressure of 2.7 GPa with-6% strain along the out-ofplane direction. Calculation shows the out-of-plane FM state is still the magnetic ground state. The out-of-plane AFM state is 14.1 meV higher while the CrI3(out-of-plane)/ScCl2(inplane)state 7.06 meV is higher of one cell.

    The application of an external electric field perpendicular to the 2D plane is expected to induce an electric potential difference between the two layers, which would affect the overlapping of the two inverted bands and thus may change the topological nature of the heterostructure. Our first-principles calculation results,as shown in Fig.6(c),indicate that the band inversion can be eliminated as an external electrical field applied along the direction from the ScCl2layer to the CrI3layer larger than 0.27 V/?A and the heterobilayer becomes topological trivial. In addition, upon the application of an external electrical field along the opposite direction, the heterobilayer is still topologically non-trivial and the topological band gap is slightly enlarged,as shown in Fig.6(b).

    4. Conclusions

    In summary, we have demonstrated, based on firstprinciples calculation, that the QAHE can be robustly realized in the 2D bilayer heterostructure CrI3/ScCl2with a sizable band gap of 4.5 meV and its topological nature and the topologically nontrivial band gap can be effectively tuned by interlayer sliding, the application of a perpendicular external pressure or an electric field. This work provides a new candidate system based on 2D vdW materials for the realization of potential high-temperature QAHE with considerable controllability.

    Acknowledgements

    We thanks Jiabin Yu and Qingrui Cao for helpful discussion.

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant No. 11634011), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000),and the Fundamental Research Funds for the Central Universities (Grant No. WK2340000082). Computational support was provided by National Supercomputing Center in Tianjin.

    Appendix A

    The phonon spectra of ScCl2with out-of-plane and inplane magnetic moments are shown in Fig. A1. The absence of imaginary phonon frequency in both phonon spectra indicates that the ferromagnetic phase of monolayer ScCl2is dynamically stable.

    Fig.A1.The phonon spectra of ScCl2 with out-of-plane(a)and in-plane(b)magnetic moments,respectively.

    Appendix B

    Band structures of monolayer CrI3and monolayer ScCl2with spin orbital coupling are shown in Fig. B1. The band gaps are 0.724 eV (CrI3) and 0.145 eV (ScCl2), respectively.The conduction band minimum(CBM)of CrI3is made by the combination of dxzand dyzorbitals of the Cr atom while the valence band maximum (VBM) of ScCl2is made by dz2orbital of the Sc atom. Both of those two-band extrema locate at the sameΓpoint of the reciprocal space and this makes it possible to generate band inversion and leave a global band gap after the inversion.

    Fig. B1. Band structures of monolayer CrI3 (a) and monolayer ScCl2(b),with spin orbital coupling.

    Appendix C

    As the supercell of ScCl2is a 2×2 unit cell, as shown in Fig. 2(b) in 2×2 periods. Except for stacking (1/6,1/3),whose band structure and distribution of Berry curvature are shown in Figs.3(a)and 3(b),respectively. Here we only give the band structures and the distributions of Berry curvature of stacking (1/3,1/6), stacking (1/2,1/2) with space group ofP3 and CN of-1,and of stacking(1/2,1/6)with space group ofP1 and CN of 0 in Fig. C1. As the band structures do not change so much, the distributions of Berry curvature change significantly.

    Fig.C1. (a)and(b)The band structures and the distributions of Berry curvature of stacking (1/3,1/6) and stacking (1/3,1/3) with space group of P3 and CN of -1. (c) The band structures and the distributions of Berry curvature stacking(1/2,1/6)with space group of P1 and CN of 0.

    猜你喜歡
    朱文
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    走三邊
    秦川好
    唱起號(hào)子走漢江
    Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    av网站在线播放免费| 欧美精品高潮呻吟av久久| 国产精品二区激情视频| 一边摸一边抽搐一进一小说 | 国产高清videossex| 国产免费视频播放在线视频| 亚洲国产欧美日韩在线播放| www.999成人在线观看| 久久精品91无色码中文字幕| √禁漫天堂资源中文www| 女人爽到高潮嗷嗷叫在线视频| 久久婷婷成人综合色麻豆| 蜜桃在线观看..| 老鸭窝网址在线观看| 亚洲伊人久久精品综合| 丁香六月欧美| 欧美 亚洲 国产 日韩一| 人人妻人人澡人人看| 欧美日韩成人在线一区二区| 亚洲天堂av无毛| 午夜精品久久久久久毛片777| 欧美日韩福利视频一区二区| aaaaa片日本免费| 国产日韩一区二区三区精品不卡| 动漫黄色视频在线观看| 欧美老熟妇乱子伦牲交| 如日韩欧美国产精品一区二区三区| 在线播放国产精品三级| 日本黄色视频三级网站网址 | 色94色欧美一区二区| 麻豆国产av国片精品| 两个人看的免费小视频| 精品少妇一区二区三区视频日本电影| 国产精品香港三级国产av潘金莲| 亚洲国产精品一区二区三区在线| 欧美黄色淫秽网站| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| 国产黄频视频在线观看| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 国产精品国产av在线观看| 亚洲av欧美aⅴ国产| 亚洲综合色网址| 久久精品亚洲精品国产色婷小说| 男女无遮挡免费网站观看| 最近最新中文字幕大全免费视频| 2018国产大陆天天弄谢| 国产精品免费视频内射| 欧美黑人欧美精品刺激| 亚洲色图 男人天堂 中文字幕| 9色porny在线观看| 精品少妇一区二区三区视频日本电影| 午夜两性在线视频| 精品一区二区三区视频在线观看免费 | 欧美 亚洲 国产 日韩一| 午夜免费成人在线视频| 精品久久久久久久毛片微露脸| 一进一出抽搐动态| 咕卡用的链子| 精品视频人人做人人爽| 国产成人影院久久av| av一本久久久久| 一二三四在线观看免费中文在| 久久久精品免费免费高清| 视频在线观看一区二区三区| 精品一区二区三区av网在线观看 | 夜夜爽天天搞| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三区在线| 精品国产一区二区三区久久久樱花| 精品一区二区三区四区五区乱码| 超碰成人久久| 啦啦啦免费观看视频1| 久久久久久久精品吃奶| 国产日韩一区二区三区精品不卡| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| 亚洲第一欧美日韩一区二区三区 | 日韩视频一区二区在线观看| 熟女少妇亚洲综合色aaa.| 美女国产高潮福利片在线看| 宅男免费午夜| 国产极品粉嫩免费观看在线| 国产成+人综合+亚洲专区| 欧美精品高潮呻吟av久久| 最近最新中文字幕大全免费视频| 久久ye,这里只有精品| 国产精品免费视频内射| 日韩欧美三级三区| 精品国产一区二区久久| 在线十欧美十亚洲十日本专区| 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 日本黄色视频三级网站网址 | 亚洲色图 男人天堂 中文字幕| 国产成人免费观看mmmm| 香蕉久久夜色| 亚洲欧美色中文字幕在线| 国产不卡av网站在线观看| 久久精品亚洲av国产电影网| 亚洲午夜理论影院| 国产主播在线观看一区二区| 99精品久久久久人妻精品| 啦啦啦视频在线资源免费观看| 老熟女久久久| 欧美精品人与动牲交sv欧美| 日本av手机在线免费观看| 999久久久国产精品视频| 亚洲精品国产精品久久久不卡| 日本av免费视频播放| 亚洲 欧美一区二区三区| 18禁观看日本| 亚洲av日韩在线播放| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 日韩熟女老妇一区二区性免费视频| aaaaa片日本免费| 久久精品亚洲熟妇少妇任你| 国产欧美日韩一区二区三| 国产精品成人在线| 黑人操中国人逼视频| 丝袜喷水一区| 在线观看免费日韩欧美大片| 91九色精品人成在线观看| 日本欧美视频一区| 成人黄色视频免费在线看| 久久国产亚洲av麻豆专区| 日本五十路高清| 国产伦人伦偷精品视频| 国产aⅴ精品一区二区三区波| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 国产精品秋霞免费鲁丝片| 美国免费a级毛片| 亚洲国产看品久久| 一区在线观看完整版| 色播在线永久视频| 少妇被粗大的猛进出69影院| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 久久久国产欧美日韩av| 国产黄频视频在线观看| 国产精品久久久久成人av| 国产免费av片在线观看野外av| 久久九九热精品免费| 国产免费视频播放在线视频| 国产免费av片在线观看野外av| 麻豆国产av国片精品| 女人爽到高潮嗷嗷叫在线视频| 在线观看免费视频网站a站| 国产精品成人在线| 五月天丁香电影| 国产欧美日韩一区二区三| 精品熟女少妇八av免费久了| 97人妻天天添夜夜摸| 99国产精品免费福利视频| 老司机午夜十八禁免费视频| 一二三四在线观看免费中文在| 天堂动漫精品| 中文字幕色久视频| 黄色 视频免费看| 丝袜美腿诱惑在线| 成人18禁高潮啪啪吃奶动态图| 伊人久久大香线蕉亚洲五| 日本a在线网址| 国产日韩一区二区三区精品不卡| 国产日韩欧美在线精品| 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 国产精品免费大片| 黑人巨大精品欧美一区二区蜜桃| 又大又爽又粗| 在线观看舔阴道视频| 久久亚洲精品不卡| 免费不卡黄色视频| 国产无遮挡羞羞视频在线观看| 国内毛片毛片毛片毛片毛片| 50天的宝宝边吃奶边哭怎么回事| avwww免费| 久久午夜亚洲精品久久| www日本在线高清视频| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 侵犯人妻中文字幕一二三四区| 亚洲精品粉嫩美女一区| svipshipincom国产片| 美女视频免费永久观看网站| 欧美精品人与动牲交sv欧美| 天天躁日日躁夜夜躁夜夜| 久久精品国产亚洲av香蕉五月 | 脱女人内裤的视频| 80岁老熟妇乱子伦牲交| 桃花免费在线播放| 黄网站色视频无遮挡免费观看| 视频区欧美日本亚洲| 国产男女内射视频| 人人妻,人人澡人人爽秒播| 亚洲精华国产精华精| 男男h啪啪无遮挡| 成年动漫av网址| 久久香蕉激情| 亚洲欧美日韩另类电影网站| 视频区欧美日本亚洲| 成人18禁在线播放| 搡老岳熟女国产| 波多野结衣一区麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲综合色网址| 日日夜夜操网爽| 少妇粗大呻吟视频| 日韩欧美三级三区| 又大又爽又粗| 成人影院久久| 激情视频va一区二区三区| 久久av网站| 超色免费av| 中文字幕最新亚洲高清| 在线观看免费视频日本深夜| 国产av一区二区精品久久| 成在线人永久免费视频| 久久九九热精品免费| 亚洲avbb在线观看| 亚洲成人手机| 亚洲 国产 在线| 亚洲av美国av| 99国产精品一区二区蜜桃av | 美女扒开内裤让男人捅视频| 久久国产亚洲av麻豆专区| 国产精品久久久久久精品古装| 中文字幕人妻丝袜一区二区| 中国美女看黄片| 亚洲国产av新网站| 天堂中文最新版在线下载| 69精品国产乱码久久久| 老司机午夜福利在线观看视频 | 亚洲中文字幕日韩| 欧美精品一区二区大全| 黑人操中国人逼视频| 91麻豆精品激情在线观看国产 | 天堂动漫精品| 久久精品人人爽人人爽视色| 亚洲国产精品一区二区三区在线| 欧美黄色淫秽网站| 成年人午夜在线观看视频| 精品一品国产午夜福利视频| 久久久久国内视频| 伦理电影免费视频| 亚洲专区中文字幕在线| 免费观看人在逋| 亚洲精品国产色婷婷电影| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 一本—道久久a久久精品蜜桃钙片| 欧美日韩精品网址| 日本精品一区二区三区蜜桃| 在线观看免费日韩欧美大片| 丝袜美足系列| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| 高潮久久久久久久久久久不卡| 国产精品98久久久久久宅男小说| 欧美黑人欧美精品刺激| 午夜精品久久久久久毛片777| 热re99久久国产66热| 亚洲全国av大片| 国产av精品麻豆| 一级毛片电影观看| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 日韩一卡2卡3卡4卡2021年| 又黄又粗又硬又大视频| 男女无遮挡免费网站观看| 高清毛片免费观看视频网站 | 欧美日韩亚洲高清精品| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 久久精品亚洲熟妇少妇任你| 国产不卡av网站在线观看| 别揉我奶头~嗯~啊~动态视频| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区精品| 亚洲 欧美一区二区三区| 久久国产精品男人的天堂亚洲| 汤姆久久久久久久影院中文字幕| 午夜免费鲁丝| 狠狠精品人妻久久久久久综合| 狠狠婷婷综合久久久久久88av| 可以免费在线观看a视频的电影网站| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三| 最黄视频免费看| 亚洲va日本ⅴa欧美va伊人久久| 久久天堂一区二区三区四区| 视频区图区小说| 成人永久免费在线观看视频 | 精品国产乱码久久久久久小说| 在线观看舔阴道视频| 巨乳人妻的诱惑在线观看| 亚洲五月婷婷丁香| 国产成人av激情在线播放| 一个人免费看片子| 一边摸一边抽搐一进一小说 | av国产精品久久久久影院| 日本五十路高清| 亚洲九九香蕉| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品熟女久久久久浪| 亚洲精品一二三| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 99久久人妻综合| 日韩熟女老妇一区二区性免费视频| 一区二区三区精品91| 正在播放国产对白刺激| 999精品在线视频| 日韩熟女老妇一区二区性免费视频| 日韩大片免费观看网站| 无限看片的www在线观看| 午夜福利欧美成人| a在线观看视频网站| 怎么达到女性高潮| 三上悠亚av全集在线观看| 大陆偷拍与自拍| 亚洲精品国产色婷婷电影| 日本欧美视频一区| 成年女人毛片免费观看观看9 | 80岁老熟妇乱子伦牲交| www.熟女人妻精品国产| 国产欧美日韩一区二区三| 国产亚洲午夜精品一区二区久久| 精品一品国产午夜福利视频| √禁漫天堂资源中文www| 国产淫语在线视频| 亚洲精品国产一区二区精华液| 免费少妇av软件| 国产精品亚洲av一区麻豆| 亚洲伊人色综图| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 国产av又大| 中文亚洲av片在线观看爽 | 国产高清videossex| 国产不卡一卡二| 自拍欧美九色日韩亚洲蝌蚪91| 搡老岳熟女国产| 可以免费在线观看a视频的电影网站| 在线观看人妻少妇| 国产成人欧美在线观看 | 国产伦人伦偷精品视频| 757午夜福利合集在线观看| 国产免费福利视频在线观看| 成年版毛片免费区| 国产成人精品久久二区二区91| 老司机亚洲免费影院| 少妇裸体淫交视频免费看高清 | 精品午夜福利视频在线观看一区 | 精品久久久久久电影网| 亚洲成人免费av在线播放| 国产区一区二久久| 无遮挡黄片免费观看| 国产成人免费观看mmmm| 国产日韩欧美在线精品| 欧美日韩亚洲国产一区二区在线观看 | 久热爱精品视频在线9| 久久免费观看电影| 日本黄色视频三级网站网址 | 一级毛片女人18水好多| 性高湖久久久久久久久免费观看| 午夜日韩欧美国产| 少妇裸体淫交视频免费看高清 | 亚洲精品乱久久久久久| 欧美日韩亚洲高清精品| 在线看a的网站| 啦啦啦 在线观看视频| 99久久精品国产亚洲精品| 黄色视频在线播放观看不卡| 久久精品aⅴ一区二区三区四区| 国产黄色免费在线视频| 午夜福利影视在线免费观看| 宅男免费午夜| 午夜老司机福利片| 亚洲专区国产一区二区| 露出奶头的视频| 色播在线永久视频| 久久精品人人爽人人爽视色| 9色porny在线观看| 日韩成人在线观看一区二区三区| 最近最新中文字幕大全免费视频| 欧美久久黑人一区二区| 精品人妻1区二区| a在线观看视频网站| 亚洲国产欧美网| 成年动漫av网址| 日本撒尿小便嘘嘘汇集6| 国产日韩欧美视频二区| 91av网站免费观看| 国产精品 欧美亚洲| 久久久久久人人人人人| 久久中文字幕人妻熟女| 欧美成人免费av一区二区三区 | 在线播放国产精品三级| 成人国产一区最新在线观看| 这个男人来自地球电影免费观看| 在线观看免费高清a一片| 考比视频在线观看| 亚洲免费av在线视频| 国产成人欧美| 欧美精品人与动牲交sv欧美| 色综合婷婷激情| 久久久欧美国产精品| 亚洲成国产人片在线观看| 国产成人欧美| a在线观看视频网站| 香蕉久久夜色| 露出奶头的视频| 日日夜夜操网爽| 久久天堂一区二区三区四区| 夜夜夜夜夜久久久久| 亚洲三区欧美一区| 亚洲九九香蕉| 国产av国产精品国产| 国产精品二区激情视频| 91成年电影在线观看| av天堂久久9| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 久久国产精品影院| 男女之事视频高清在线观看| 成人精品一区二区免费| 午夜福利,免费看| 国产精品 欧美亚洲| 啦啦啦免费观看视频1| 日本vs欧美在线观看视频| 成人av一区二区三区在线看| 又大又爽又粗| 一级黄色大片毛片| 一夜夜www| 午夜福利视频精品| 黄片小视频在线播放| 狂野欧美激情性xxxx| 日韩免费av在线播放| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 国产伦理片在线播放av一区| 一区二区av电影网| 建设人人有责人人尽责人人享有的| 91av网站免费观看| 国产一区二区 视频在线| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 久久中文看片网| 国产免费视频播放在线视频| 男女免费视频国产| 午夜两性在线视频| 久久这里只有精品19| 少妇精品久久久久久久| 91大片在线观看| 在线天堂中文资源库| 成人永久免费在线观看视频 | 成人特级黄色片久久久久久久 | 动漫黄色视频在线观看| aaaaa片日本免费| av在线播放免费不卡| 国产日韩一区二区三区精品不卡| 国产成人精品在线电影| 老司机在亚洲福利影院| 亚洲一卡2卡3卡4卡5卡精品中文| videos熟女内射| 国产精品 欧美亚洲| 久久久久精品人妻al黑| 国产亚洲精品一区二区www | 国产一区二区 视频在线| 日韩熟女老妇一区二区性免费视频| 免费在线观看视频国产中文字幕亚洲| 国产成人影院久久av| 亚洲全国av大片| 亚洲国产欧美在线一区| 欧美黑人欧美精品刺激| 午夜福利影视在线免费观看| 这个男人来自地球电影免费观看| 韩国精品一区二区三区| 欧美中文综合在线视频| 99在线人妻在线中文字幕 | 亚洲欧美色中文字幕在线| 成人影院久久| 国产男女超爽视频在线观看| 亚洲欧美精品综合一区二区三区| 麻豆国产av国片精品| 无遮挡黄片免费观看| 亚洲精品国产色婷婷电影| 五月开心婷婷网| 99国产精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人不卡在线观看播放网| 大片电影免费在线观看免费| 亚洲精品美女久久av网站| 老司机深夜福利视频在线观看| 亚洲一区二区三区欧美精品| 国产深夜福利视频在线观看| 欧美另类亚洲清纯唯美| 久久久久精品人妻al黑| 在线十欧美十亚洲十日本专区| 国产精品成人在线| 久久久国产欧美日韩av| 久久热在线av| 成人免费观看视频高清| 欧美日韩精品网址| 视频区图区小说| 在线观看免费视频网站a站| 99精品在免费线老司机午夜| 久久99一区二区三区| 国产成人欧美| 人妻久久中文字幕网| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美软件| 久久九九热精品免费| 色在线成人网| 黄片播放在线免费| 性色av乱码一区二区三区2| 中文亚洲av片在线观看爽 | 无限看片的www在线观看| 桃红色精品国产亚洲av| 精品亚洲成国产av| 黑人欧美特级aaaaaa片| 一夜夜www| 欧美亚洲日本最大视频资源| 欧美成人免费av一区二区三区 | 天堂中文最新版在线下载| 在线观看www视频免费| 99热网站在线观看| 人妻一区二区av| 一区二区三区乱码不卡18| 男女边摸边吃奶| 黑人巨大精品欧美一区二区蜜桃| 多毛熟女@视频| 宅男免费午夜| 亚洲 欧美一区二区三区| 99精国产麻豆久久婷婷| 天堂俺去俺来也www色官网| 国产国语露脸激情在线看| 亚洲少妇的诱惑av| 人妻久久中文字幕网| 91精品三级在线观看| 欧美精品啪啪一区二区三区| 欧美日韩一级在线毛片| 两个人免费观看高清视频| 久久国产亚洲av麻豆专区| 中亚洲国语对白在线视频| av线在线观看网站| 久久ye,这里只有精品| 国产精品av久久久久免费| 久久久精品区二区三区| 欧美一级毛片孕妇| av有码第一页| 亚洲精品成人av观看孕妇| 久久久久久亚洲精品国产蜜桃av| 国产伦理片在线播放av一区| 99国产精品一区二区三区| 美女主播在线视频| 一区福利在线观看| 岛国在线观看网站| 国产国语露脸激情在线看| 久久毛片免费看一区二区三区| 国产成人精品久久二区二区免费| 汤姆久久久久久久影院中文字幕| 午夜福利视频在线观看免费| 久久99热这里只频精品6学生| 99国产精品一区二区蜜桃av | 免费高清在线观看日韩| 一区二区三区激情视频| 成年女人毛片免费观看观看9 | 男女免费视频国产| 亚洲 国产 在线| 成人影院久久| 亚洲av第一区精品v没综合| 纯流量卡能插随身wifi吗| 伦理电影免费视频| 黄频高清免费视频| 日韩免费av在线播放| 亚洲精品国产色婷婷电影| 国产伦人伦偷精品视频| 中文字幕制服av| 正在播放国产对白刺激| 国产亚洲精品久久久久5区| 亚洲三区欧美一区| 精品午夜福利视频在线观看一区 | 国产在线精品亚洲第一网站| 国产成人精品无人区| 乱人伦中国视频| 50天的宝宝边吃奶边哭怎么回事| 交换朋友夫妻互换小说| 97在线人人人人妻| 一级毛片女人18水好多| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品第一综合不卡| 看免费av毛片| 视频在线观看一区二区三区| 亚洲欧美色中文字幕在线| 99国产精品99久久久久| 99riav亚洲国产免费| 欧美在线黄色| 国产免费视频播放在线视频| 亚洲五月婷婷丁香| avwww免费| 香蕉久久夜色| 欧美日韩福利视频一区二区| kizo精华| www日本在线高清视频|