• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matched second-harmonic generation in hybrid polymer-LN waveguides

    2022-10-26 09:54:30ZijieWang王梓杰BodongLiu劉伯東ChunhuaWang王春華andHuakangYu虞華康
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王梓

    Zijie Wang(王梓杰) Bodong Liu(劉伯東) Chunhua Wang(王春華) and Huakang Yu(虞華康)

    1School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510641,China

    2School of Electrical Engineering and Intelligentization,Dongguan University of Technology,Dongguan 523808,China

    3China–Singapore International Joint Research Institute,Guangzhou Knowledge City,Guangzhou 510663,China

    Keywords: nonlinear waveguides,super-mode theory,phase matching,second harmonic generation

    1. Introduction

    Nonlinear optical conversion is crucial for modern photonics.[1,2]Along with advance in high-profile fabrication techniques,various platforms of integrated photonics are rapidly developed in the past decades, giving rise to diverse on-chip applications, including data communication, optical sensors, and optical interconnection.[3–6]Generally, on-chip devices could tightly confine the light field within a small volume, leading to dramatically enhanced light–matter interactions with superior performance.[7]In particular,efficient nonlinear frequency conversions can be achieved in photonic integration platforms composed of materials with strong secondorder nonlinearity,such as LN and AlN.[8–11]

    It is known that the realization of phase-matching condition is vital for nonlinear optical conversions, such as second-harmonic generation.[1,2]For nonlinear optical processes inside photonic waveguides, several strategies for realizing phase-matching condition have been proposed and demonstrated, including quasi-phase matching (QPM),[12–14]birefringence phase matching (BPM),[15]and modal phase matching (MPM).[16]QPM is realized by domain patterning of the nonlinear susceptibility of waveguide, but limited by the domain size for further integration into photonic circuits. Meanwhile, BPM is only available for phase matching at specific wavelength.[15]For the traditional MPM method,phase-matching condition is usually achieved between zeroorder mode of fundamental wavelength and high-order mode of second harmonics, the distinct spatial distributions between which would correspond to poor overlap and prevent high conversion efficiency. Various nanostructures have been demonstrated to improve the spatial overlap integral, such as ring resonators, high-quality photonic cavities, and optical waveguides.[17–28]Notably, high-quality thin-film lithium niobate on insulator (LNOI) is now commercially available,which would significantly extend associated applications in on-chip nonlinear optics.[11]To be noted, a novel special waveguide structure, namely reversed-polarization doublelayer LN waveguide, was proposed with large modal overlap integral and high efficient nonlinear frequency conversion.[29]

    Based on LNOI, hybrid nanophotonic waveguide has been proposed by introducing a fabrication-friendly material (such as polymer, TiO2, silicon) on the top of LN substrate.[30–34]And new phase-matching condition can be achieved between a fundamental mode at the fundamental wavelength and a high-order mode at the second harmonics. It is noted that such hybrid waveguiding structure can be treated as an asymmetric coupled waveguide,composed of the top polymer waveguide (χ(2)=0) and the bottom thinfilm LN waveguide (χ(2)/=0). Inside such coupled waveguides,guided waves would split into even and odd modes for the fundamental waveguiding mode, and the superposition of these supermodes would lead to energy exchanging between the two waveguides.[35–37]Notably, the rise of supermodes enables new schemes for the phase-matched nonlinear optical process, since extra momentum can be obtained during the coupling processes both for the fundamental and secondharmonic waves.According to super-mode theory,this mechanism of phase matching has been implemented inside symmetric coupled nonlinear optical waveguides with identical material,while enabling large spatial modal overlap factors.[38–40]However, restricted by the fabrication technique of LN material, it is difficult to construct coupled waveguides with the same LN materials. Therefore, it is natural to bring in mind that one could construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon,on top of high-quality LN thin film.[33,34]Such waveguide structure could be readily fabricated and promising for excellent optical performance. Considering the low optical loss of polymer in the visible range, we prefer to construct polymer-LN semi-nonlinear waveguide in this paper.

    According to super-mode theory, we investigate phasematched second-harmonic generation inside a hybrid polymer-LN semi-nonlinear waveguide, composed of the top polymer waveguide and the bottom thin-film LN waveguide. Geometric parameters of the hybrid waveguide were carefully engineered and optimized parameters were obtained numerically.Phase-matching conditions were closely investigated with corresponding modal overlap integrals calculated.

    First, we look back at the phase-matching condition of SHG in a symmetric coupled waveguide structure. Here, we take SHG,i.e.,ω2= 2ω1, as an illustration. According to super-mode theory,[35–37]fundamental waveguiding mode of each single waveguide would split into a pair of modes,i.e.,even (symmetric) or odd (antisymmetric) modes, as a result of perturbation-induced coupling interaction between the two waveguides. The combination of even and odd modes in the coupled waveguide structure would lead to power exchange between the two waveguides. Additional possibilities in realizing phase matching become available by employing the emerging even and odd fundamental modes in nonlinear optical interactions processes. We have listed all the six possible phase-matching conditions as given in Table 1.[38]

    2. Theory

    Table 1. Phase-matching condition of SHG in coupled waveguides(from Ref.[38]).

    whereε0andcare the permittivity and light speed in vacuum;n1andn2represent the effective modal refractive indices of the pump and SHG;λis the pump wavelength;deffis the effective nonlinear susceptibility;Srepresents effective modal overlap integral between the pump and SHG modes over the effective nonlinear optical region,[23,42]

    The overlap integralSbecomes considerably large due to the identical spatial distributions between the fundamental pump modes and SHG fundamental modes inside the nonlinear optical waveguide. However,it is noted that phase-matching conditions 4–6(as listed in Table 1)are not applicable in the symmetric coupled waveguides, which can be easily deduced as one checks the mathematical symmetry properties of modal overlap integrals[see Eq.(2)].

    For asymmetric coupled waveguides, the prohibition of phase-matching conditions 4–6 could be removed so as to provide additional possibility in realizing phase matching beyond conventional methods. As mentioned before, it is easy to construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon, on top of high-quality LN thin-film.[31–34]Such waveguide structure could be readily fabricated and promising for excellent optical performance.

    Here we investigate the semi-nonlinear waveguide composed of a polymer waveguide (rectangular cross section) on the top and thin-film LN on the bottom. The reason to choose polymer is listed as follows. First,due to the relentless desire for high-performance integrated optical devices, some excellent polymers have been available with a high refractive index closed to LN,which is promising for tight optical confinement and modal splitting inside the composite waveguide structure.Second, nanofabrication techniques for polymer have been well-developed with high precision in the photonic industry nowadays, including laser direct writing, ultra-violet (UV)lithography, and nanoimprint lithography. Third, another advantage is the low absorption loss of polymer at visible wavelength,compared with silicon.[34]To be pointed out,the polymer is generally amorphous with its corresponding secondorder susceptibilityχ(2)to be zero. To reflect such asymmetric profile ofχ(2), the integral regions of numerator and denominator,labeled as subscripts in Eq.(2),are thus different.And nonlinear overlap integral becomes significant inside such asymmetric coupled waveguide,making phase-matching conditions 4–6 applicable inside such asymmetric coupled waveguide. The schematic of a polymer-LN semi-nonlinear waveguide is shown in Fig.1. The high-quality LNOI platform consists of anX-cut LN thin film and SiO2buried layer. A rectangular polymer waveguide is located directly based on the top of LNOI.Figure 1 shows the geometric parameters of the hybrid waveguide,including polymer waveguide heighth1,polymer waveguide widthw, and LN heighth2. HereX-cut configuration of LNOI with waveguide direction alongYcrystal axis of LN was chosen in order to make use of second-order susceptibilities,d31(~4.3 pm/V)andd33(~27 pm/V)of LN.Phase-matching condition is numerically investigated in the following context by carefully tuning the structure parameters of this hybrid polymer-LN waveguide.

    Fig.1. Schematic structure of the hybrid polymer-LN waveguide. The bottom is a thick layer of silica(gray),the middle is an X-cut LN thin film(light blue),and the top is a thin polymer waveguide(dark blue).

    3. Simulation results and discussion

    In order to implement phase-matching conditions 4–6 as listed in Table 1, one should carefully engineer the waveguide structural parameters so as to obtain bound modes for both pump and SHG wavelengths.[33]As indicated in our previous paper,[38]it is invalid to use conventional coupled mode theory since slowly varying envelope approximation is no more applicable for such hybrid waveguides. Instead, a finite-element method is adopted here in order to investigate the optical modes of hybrid coupled waveguides in a straightforward manner.[38]Refractive indices of lithium niobate were extracted from the open database, while the refractive index of the polymer was set as 2.15 so as to have considerable intra-coupling effects between polymer and LN thin film. And waveguide structure parameters were set asw=4 μm,h1=0.401 μm, andh2=0.4 μm, considering the facility of mature fabrication condition and acquiring the phase-matching condition. We firstly examine the possibility of phase matching between the TM01-like,TE00-like,and TE01-like modes at the pump wavelengthsλpranging from 800 nm to 1400 nm.According to the super-mode theory, TE00-like modes could be identified as fundamental even modes, while TM01-like and TE01-like modes could be identified as fundamental odd modes. As shown in Fig.2,the effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes)were calculated as a function of wavelength.

    Fig. 2. Simulated effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes) as a function of wavelength. Effective refractive indices of the low-order waveguide modes at both pump wavelengths(TM01-like and TE00-like modes)and SHG wavelengths(TE01-like modes),and the inset(i)and inset(ii)show two enlarged phase-matching cases. The unit a.u. is short for arbitrary units.

    Apparently,the intersecting points of the curves indicate phase matching of interacting modes. The inset (i) of Fig. 2 shows a detailed phase matching occurring between TM01-like mode at 911 nm and TE01-like mode at 455.5 nm. The modal profile of its largest electric field component (Ey) of TM01-like mode at 911 nm is plotted at the top of Fig. 3(a).It is easily seen that electric fieldEyis distributed in polymersection and LN-section with inversed polarity, which can be regarded as an odd mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component (Ez) of TE01-like mode at 455.5 nm is plotted at the bottom of Fig. 3(a). Similarly, TE01-like mode at 455.5 nm can be regarded as an odd mode. This case corresponds to phase-matching conditions 5 as listed in Table 1. Though theEycomponent of the TM01-like mode at 911 nm and theEzcomponent of the TE01-like mode at 455.5 nm are both with the inverse polarity between polymer area and LN area, the net modal overlap integral can be significant,due to the asymmetric profile ofχ(2)in the hybrid waveguide. The distribution curves of main electric field components alongxdirection are illustrated in Fig. 3(b), where dark blue area represents polymer waveguide and light blue area represents LN.And one may easily find that the spatial distributions of the two main electric fields are identical in the LN layer, which would lead to a considerably large modal overlap integral as predicted by the theory. From this point,phase-matching condition 5 is now achieved. The calculated modal overlap integralSis 0.365 and the effective modal areaAeffis 9.92 μm2.In this case,for a lossless waveguide without pumping depletion, the normalized conversion efficiencyηis estimated to be~9.11%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 0.09% W-1for 1-mm-long waveguide. To be mentioned here,the nonlinearity coefficientd31,rather thand33,is used here because the main electric field component of the 911-nm TM01-like isEyinstead ofEz. However,it is difficult to utilize the largest nonlinearity coefficient during the nonlinear process due to the largest electric field component of TM01-like mode at 911 nm isEyinstead ofEz.

    Fig.3. Simulated modal profiles: (a)the modal profiles of the largest electric field components of 911-nm TM01-like(top)and 455.5-nm TE01-like(bottom), and(b)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line) and SHG (blue line) wavelengths. (c) The mode profiles of the largest electric field components of 1320-nm quasi-TE00 (top) and 660-nm quasi-TE01 (bottom),and(d)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line)and SHG(blue line)wavelengths.

    Another phase-matching point is found between TE00-like mode at 1320 nm and TE01-like mode at 660 nm,as shown in the inset (ii) of Fig. 2. The modal profile of its largest electric field component (Ez) of TE00-like mode at 1320 nm is plotted at the top of Fig.3(c). It is easily seen that the polarity of electric fieldEzis the same in both the polymer-section and LN-section,corresponding to an even mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component(Ez)of TE01-like mode at 660 nm is plotted at the bottom of Fig. 3(c). Similarly, TE01-like mode at 660 nm can be regarded as an odd mode. The distribution curves of main electric field components along the vertical direction (i.e., alongxaxis) of the waveguide are illustrated in Fig. 3(d). Again, the net modal overlap integral between the modes is calculated to be 0.299 with effective modal area of 8.77 μm2. To be pointed out, here the largest nonlinear coefficient,namelyd33is utilized,contributing to more efficient nonlinear optical conversion. Indeed, we obtain the normalized conversion efficiencyηas high as 148%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 1.48%W-1for a 1-mm-long waveguide.This value is much higher(~300 times) than reported SHG efficiency in hybrid polymer-LN waveguide,[33]showing the advantage of our design presented in this paper. Recalling Eq.(1),it is reasonable for the larger conversion efficiency, since we have a largerχ(2)nonlinear coefficient (27 pm/Vversus-4.3 pm/V), larger modal overlap integralS(0.299versus0.14),and smaller effective modal areaAeff(8.77 μm2versus20.3 μm2).

    Besides, we have fulfilled the phase-matching condition around 1550 nm by sweeping the height of hybrid waveguide.The phase-matching condition was realized between TM01-like mode at 1550 nm and TE01-like mode at 775 nm, withh1=425 nm,w=4 μm, andh2=0.4 μm. To be noted, the largest electric field component of TM01-like mode at 1550 nm isEy, and the largest electric field component of TE01-like mode at 775 nm isEz. Therefore, an effective nonlinear susceptibilityd31is utilized. And the corresponding modal overlap integralSis calculated to be 0.294 with effective modal area of 8.9 μm2. For a lossless waveguide without pumping depletion,the normalized conversion efficiencyηis estimated to be 2.75%W-1·cm-2.

    Fig. 4. The sensitivity of phase-matching condition 6 on geometric parameters. Effective refractive indices of the modes (inset (ii) of Fig. 2) at both wavelengths varying with(a)polymer waveguide height,h1 (with fixed w=4 μm and h2 =400 nm)and(b)width,w(with fixed h1 =401 nm and h2=400 nm).

    We also investigated the structural sensitivity of above phase-matching condition on geometric parameters(i.e.,polymer waveguide heighth1and widthw) of the hybrid waveguide. For TE00-like mode at 1320 nm and TE01-like mode at 660 nm,dispersion relationships as functions of the waveguide heighth1and the waveguide widthware shown in Figs.4(a)and 4(b). As shown in Fig. 4(a), the effective modal refractive indices of TE00-like mode at 1320 nm increase by~0.001 when the waveguide heighth1changes from 400 nm to 405 nm. However,the effective modal refractive indices of TE00-like mode at 1320 nm increase only by~0.0001 when the waveguide widthwchanges from 4000 nm to 4050 nm,as shown in Fig. 4(b). Apparently, the modal refractive indices vary more slowly with the change of waveguide width. This is benefited from the larger waveguide dimension inzdirection (~4 μm) thanxdirection (~0.4 μm). Therefore, it indicates that one is more convenient to engineer the width than the height of the polymer waveguide for detuning the phasematching condition. And the relatively large value (micrometer scale)of polymer waveguide width significantly releases the difficulty of polymer fabrication. The proposed waveguide holds the fabrication feasibility and is promising for future onchip efficient nonlinear conversion devices.

    4. Conclusion

    In conclusion, we have presented a simple hybrid polymer-LN semi-nonlinear waveguide to realize efficient onchip SHG by directly constructing polymer waveguide on theX-cut LNOI.Both symmetric(even)and antisymmetric(odd)modes of the pump and SHG waves in the hybrid waveguide were employed to achieve phase matching with large modal overlap. The largest nonlinear coefficient, namelyd33, could be utilized for phase matching between a fundamental even(TE00-like) mode at 1320 nm and a fundamental odd (TE01-like)mode at 660 nm,with an efficient calculated normalized conversion efficiency of 148% W-1·cm-2. Considering the fabrication feasibility of such a hybrid waveguide with features including etchless, large dimension, and low structural sensitivity, we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91850107 and 12174116),the National Key Research and Development Program of China (Grant No. 2018YFA0306200), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201904020013),the Science and Technology Project of Guangdong Province,China (Grant No. 2020B010190001), and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    王梓
    我和恐龍捉迷藏
    哪里最舒服
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《花月夜》
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《精靈瀑布》
    中國寶玉石(2020年4期)2020-09-23 07:45:54
    任家萱?楊子騰?王梓丞
    哄娃神器
    挑食的小怪物
    那山,那花,那水
    童話世界(2019年17期)2019-07-04 15:15:44
    雪后的校園
    法律面前人人平等表现在哪些方面| 精品国产一区二区三区久久久樱花| 亚洲中文av在线| 99在线人妻在线中文字幕 | 亚洲成av片中文字幕在线观看| 蜜桃在线观看..| 日本黄色日本黄色录像| 亚洲精品中文字幕一二三四区 | 久久九九热精品免费| 久久久久国内视频| 国内毛片毛片毛片毛片毛片| 国产成人影院久久av| 亚洲av电影在线进入| 欧美日本中文国产一区发布| 国产精品av久久久久免费| 亚洲七黄色美女视频| 视频在线观看一区二区三区| 亚洲伊人久久精品综合| 国产人伦9x9x在线观看| 精品久久久精品久久久| 99九九在线精品视频| 国产精品久久久久成人av| 久热爱精品视频在线9| 免费在线观看影片大全网站| av欧美777| 日韩欧美三级三区| 男女免费视频国产| 一区在线观看完整版| 天堂中文最新版在线下载| 交换朋友夫妻互换小说| 黄色片一级片一级黄色片| 久久精品国产99精品国产亚洲性色 | 亚洲视频免费观看视频| 国产男女超爽视频在线观看| 国产精品偷伦视频观看了| 一区二区av电影网| 黄色丝袜av网址大全| 国产免费视频播放在线视频| 精品高清国产在线一区| 亚洲成人免费电影在线观看| 精品亚洲成a人片在线观看| 丰满迷人的少妇在线观看| 99精品在免费线老司机午夜| 妹子高潮喷水视频| 天堂动漫精品| 69精品国产乱码久久久| 丁香六月欧美| 老熟妇仑乱视频hdxx| 亚洲精品美女久久久久99蜜臀| 成人手机av| 国产片内射在线| 成年版毛片免费区| 成年动漫av网址| 狠狠狠狠99中文字幕| 成人国产av品久久久| 国产91精品成人一区二区三区 | 悠悠久久av| 欧美老熟妇乱子伦牲交| 久久午夜亚洲精品久久| 亚洲精品av麻豆狂野| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美在线一区二区| aaaaa片日本免费| 成人18禁高潮啪啪吃奶动态图| 国产精品国产高清国产av | 成年人午夜在线观看视频| 一区二区三区激情视频| 久久久久久人人人人人| 97在线人人人人妻| 久久亚洲精品不卡| 十八禁网站免费在线| 国产精品.久久久| 黄频高清免费视频| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品免费大片| av天堂久久9| 美女福利国产在线| 国产精品一区二区精品视频观看| videos熟女内射| 99re6热这里在线精品视频| 最近最新中文字幕大全免费视频| 一区二区三区精品91| 成人国产av品久久久| 久久精品熟女亚洲av麻豆精品| 国产91精品成人一区二区三区 | 香蕉久久夜色| 精品一区二区三区视频在线观看免费 | 天天添夜夜摸| 这个男人来自地球电影免费观看| 精品一区二区三区av网在线观看 | 满18在线观看网站| 伦理电影免费视频| 欧美 日韩 精品 国产| 日本黄色日本黄色录像| 十分钟在线观看高清视频www| 高清欧美精品videossex| 一个人免费看片子| 国产精品 国内视频| 午夜成年电影在线免费观看| 日韩中文字幕欧美一区二区| 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| cao死你这个sao货| 久久人妻av系列| 精品国产亚洲在线| 亚洲精品粉嫩美女一区| 国产97色在线日韩免费| 亚洲欧美日韩另类电影网站| 中文字幕人妻丝袜一区二区| 国产一区二区在线观看av| 天天躁日日躁夜夜躁夜夜| 女人高潮潮喷娇喘18禁视频| 国产福利在线免费观看视频| 9色porny在线观看| 飞空精品影院首页| 91av网站免费观看| 国产日韩一区二区三区精品不卡| 亚洲全国av大片| 日韩视频一区二区在线观看| 免费久久久久久久精品成人欧美视频| 国产精品99久久99久久久不卡| 久久亚洲精品不卡| 制服诱惑二区| 一区二区三区乱码不卡18| 在线观看人妻少妇| 老鸭窝网址在线观看| 制服人妻中文乱码| 好男人电影高清在线观看| 91成年电影在线观看| 性少妇av在线| 国产精品免费视频内射| 亚洲精品国产精品久久久不卡| 无人区码免费观看不卡 | a级毛片在线看网站| 国产精品秋霞免费鲁丝片| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 国产成人影院久久av| 国精品久久久久久国模美| 国产男靠女视频免费网站| 国产免费福利视频在线观看| 久久人人爽av亚洲精品天堂| 国产男靠女视频免费网站| 欧美精品一区二区大全| 久久人妻av系列| 老汉色∧v一级毛片| 午夜福利免费观看在线| 一级毛片电影观看| 日韩制服丝袜自拍偷拍| 久久中文字幕人妻熟女| 法律面前人人平等表现在哪些方面| 另类精品久久| 叶爱在线成人免费视频播放| 久久ye,这里只有精品| 黄色 视频免费看| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 婷婷成人精品国产| 51午夜福利影视在线观看| 成人国产av品久久久| 久久精品成人免费网站| 亚洲av成人一区二区三| 亚洲精品久久成人aⅴ小说| 色精品久久人妻99蜜桃| 丝袜美足系列| 12—13女人毛片做爰片一| 免费高清在线观看日韩| 多毛熟女@视频| 欧美 日韩 精品 国产| 俄罗斯特黄特色一大片| 欧美大码av| 国产深夜福利视频在线观看| 免费看十八禁软件| 夜夜骑夜夜射夜夜干| 国产精品久久久人人做人人爽| 大香蕉久久成人网| 老司机深夜福利视频在线观看| 国产av一区二区精品久久| 国产欧美日韩一区二区精品| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 国产区一区二久久| 国产精品一区二区精品视频观看| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看 | 99热国产这里只有精品6| 一本大道久久a久久精品| a级片在线免费高清观看视频| 国产国语露脸激情在线看| 咕卡用的链子| 亚洲精品美女久久av网站| 亚洲免费av在线视频| 国产亚洲av高清不卡| 国产精品.久久久| 国产深夜福利视频在线观看| 亚洲精品国产精品久久久不卡| 成人黄色视频免费在线看| 久久ye,这里只有精品| 亚洲五月色婷婷综合| 亚洲欧美色中文字幕在线| 日本a在线网址| 久久久精品国产亚洲av高清涩受| av国产精品久久久久影院| 黄色 视频免费看| 欧美日本中文国产一区发布| 亚洲天堂av无毛| 黄片播放在线免费| 一级黄色大片毛片| 国产不卡av网站在线观看| 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 丝袜美足系列| 久久婷婷成人综合色麻豆| 十八禁网站网址无遮挡| 成人黄色视频免费在线看| 色播在线永久视频| 搡老岳熟女国产| 亚洲一码二码三码区别大吗| 多毛熟女@视频| 精品国产超薄肉色丝袜足j| 国产欧美日韩精品亚洲av| tocl精华| 午夜久久久在线观看| 日韩免费高清中文字幕av| 国产精品麻豆人妻色哟哟久久| 午夜福利免费观看在线| 国产一区二区在线观看av| 午夜日韩欧美国产| 男人舔女人的私密视频| www.999成人在线观看| 18在线观看网站| 多毛熟女@视频| 亚洲欧美精品综合一区二区三区| 欧美精品高潮呻吟av久久| 99精国产麻豆久久婷婷| e午夜精品久久久久久久| 咕卡用的链子| 免费黄频网站在线观看国产| 狠狠狠狠99中文字幕| 日本wwww免费看| 欧美日韩精品网址| 久久久精品免费免费高清| 中文欧美无线码| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 黄色a级毛片大全视频| 亚洲欧美色中文字幕在线| 别揉我奶头~嗯~啊~动态视频| a级毛片黄视频| 国产三级黄色录像| 国产精品一区二区免费欧美| 久久狼人影院| 成人国语在线视频| 乱人伦中国视频| 国产成人影院久久av| 99国产精品一区二区三区| 五月开心婷婷网| 在线播放国产精品三级| 在线观看免费视频网站a站| 黄色片一级片一级黄色片| 亚洲成人免费电影在线观看| 亚洲精品自拍成人| 精品福利观看| 狠狠婷婷综合久久久久久88av| 精品国产乱子伦一区二区三区| 搡老岳熟女国产| 日本wwww免费看| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 热re99久久国产66热| 1024香蕉在线观看| 欧美中文综合在线视频| 丁香欧美五月| 久久久久视频综合| 丁香六月天网| 国产一区二区在线观看av| 欧美日韩黄片免| 中亚洲国语对白在线视频| 99九九在线精品视频| 国产在线视频一区二区| 欧美久久黑人一区二区| 亚洲,欧美精品.| 色综合欧美亚洲国产小说| 乱人伦中国视频| 亚洲av日韩在线播放| 国产精品电影一区二区三区 | 欧美在线黄色| 欧美成狂野欧美在线观看| 欧美日韩国产mv在线观看视频| 午夜福利乱码中文字幕| 麻豆国产av国片精品| 香蕉久久夜色| 亚洲,欧美精品.| 18禁黄网站禁片午夜丰满| 一本大道久久a久久精品| 国产精品香港三级国产av潘金莲| 99riav亚洲国产免费| 国产精品电影一区二区三区 | 午夜福利一区二区在线看| 久久性视频一级片| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 免费高清在线观看日韩| 大片电影免费在线观看免费| 水蜜桃什么品种好| 在线天堂中文资源库| 99久久精品国产亚洲精品| 不卡av一区二区三区| 少妇被粗大的猛进出69影院| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 热re99久久精品国产66热6| 久久久久久久久久久久大奶| 亚洲午夜精品一区,二区,三区| 肉色欧美久久久久久久蜜桃| 在线观看免费高清a一片| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区在线不卡| a级片在线免费高清观看视频| 多毛熟女@视频| 午夜福利欧美成人| 狂野欧美激情性xxxx| 欧美+亚洲+日韩+国产| 美女主播在线视频| 亚洲专区中文字幕在线| 99热国产这里只有精品6| 蜜桃国产av成人99| 午夜精品久久久久久毛片777| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 国产亚洲av高清不卡| 午夜福利在线观看吧| 激情在线观看视频在线高清 | 久久久久国产一级毛片高清牌| 99久久人妻综合| 无人区码免费观看不卡 | 大片电影免费在线观看免费| 在线观看免费视频网站a站| 老司机福利观看| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 国产男靠女视频免费网站| 精品一区二区三区四区五区乱码| 国产男靠女视频免费网站| 一进一出抽搐动态| www日本在线高清视频| 99国产精品免费福利视频| 久久久久国产一级毛片高清牌| 在线观看www视频免费| 国产成人精品在线电影| 欧美日韩亚洲国产一区二区在线观看 | 老司机午夜十八禁免费视频| 777久久人妻少妇嫩草av网站| 五月开心婷婷网| 免费久久久久久久精品成人欧美视频| 中文字幕制服av| 狠狠狠狠99中文字幕| 黄片播放在线免费| 日本欧美视频一区| tocl精华| 岛国在线观看网站| 日韩三级视频一区二区三区| 国产成人啪精品午夜网站| 日韩免费av在线播放| 日韩人妻精品一区2区三区| 日日夜夜操网爽| 亚洲第一青青草原| 人妻久久中文字幕网| 久久人人97超碰香蕉20202| 久久亚洲真实| 色播在线永久视频| 久久毛片免费看一区二区三区| 欧美国产精品一级二级三级| 黄片小视频在线播放| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀| 久久影院123| 国产91精品成人一区二区三区 | 国产精品自产拍在线观看55亚洲 | 91成人精品电影| 成人国产av品久久久| 亚洲精品乱久久久久久| 天天影视国产精品| 国产男女内射视频| avwww免费| 国产男女内射视频| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 欧美激情极品国产一区二区三区| 亚洲中文日韩欧美视频| 亚洲九九香蕉| 欧美日韩av久久| 电影成人av| 国产亚洲av高清不卡| 国产黄频视频在线观看| 三上悠亚av全集在线观看| 18禁黄网站禁片午夜丰满| 99国产极品粉嫩在线观看| 99久久精品国产亚洲精品| 丝袜喷水一区| 亚洲avbb在线观看| 一进一出好大好爽视频| 50天的宝宝边吃奶边哭怎么回事| 欧美午夜高清在线| 两个人看的免费小视频| 日韩熟女老妇一区二区性免费视频| 王馨瑶露胸无遮挡在线观看| 日韩欧美免费精品| 色老头精品视频在线观看| 天堂中文最新版在线下载| 国产在视频线精品| 欧美激情高清一区二区三区| 免费日韩欧美在线观看| 最新的欧美精品一区二区| 999久久久精品免费观看国产| 亚洲色图 男人天堂 中文字幕| 国产一区二区三区视频了| 欧美日韩成人在线一区二区| 999久久久国产精品视频| 色婷婷av一区二区三区视频| 在线观看一区二区三区激情| 国产精品免费大片| 日本精品一区二区三区蜜桃| 9191精品国产免费久久| 男女下面插进去视频免费观看| 国产精品98久久久久久宅男小说| 这个男人来自地球电影免费观看| 久久久久久人人人人人| 国产精品亚洲av一区麻豆| 久久精品熟女亚洲av麻豆精品| 成人影院久久| 亚洲熟妇熟女久久| 欧美日韩国产mv在线观看视频| 亚洲七黄色美女视频| 亚洲精品一卡2卡三卡4卡5卡| 高清毛片免费观看视频网站 | 高潮久久久久久久久久久不卡| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 日韩熟女老妇一区二区性免费视频| 中文字幕av电影在线播放| 国产av精品麻豆| 亚洲午夜精品一区,二区,三区| a在线观看视频网站| 久久久久久久大尺度免费视频| 99精品久久久久人妻精品| 亚洲少妇的诱惑av| 夫妻午夜视频| 精品乱码久久久久久99久播| 国产成人精品久久二区二区免费| 天堂中文最新版在线下载| 一二三四在线观看免费中文在| 久久性视频一级片| av天堂在线播放| 熟女少妇亚洲综合色aaa.| 久久毛片免费看一区二区三区| 一级毛片女人18水好多| 天天添夜夜摸| 国产精品1区2区在线观看. | 亚洲综合色网址| 国产不卡av网站在线观看| 日日爽夜夜爽网站| 51午夜福利影视在线观看| 女同久久另类99精品国产91| 免费观看a级毛片全部| 新久久久久国产一级毛片| 亚洲国产中文字幕在线视频| 人人妻人人爽人人添夜夜欢视频| 欧美乱码精品一区二区三区| 一个人免费在线观看的高清视频| 欧美日韩av久久| 亚洲熟女精品中文字幕| 丝袜喷水一区| 国产日韩一区二区三区精品不卡| 啦啦啦 在线观看视频| 天天躁日日躁夜夜躁夜夜| 久久亚洲真实| 午夜视频精品福利| 自拍欧美九色日韩亚洲蝌蚪91| 久久久欧美国产精品| 国精品久久久久久国模美| 狠狠婷婷综合久久久久久88av| 亚洲五月色婷婷综合| 视频区图区小说| 午夜福利欧美成人| 怎么达到女性高潮| 51午夜福利影视在线观看| 亚洲中文字幕日韩| 国产成人一区二区三区免费视频网站| 一区福利在线观看| 亚洲精品久久午夜乱码| 天堂中文最新版在线下载| 国产日韩欧美视频二区| 99久久国产精品久久久| 久久亚洲精品不卡| 黄色毛片三级朝国网站| 精品国产乱码久久久久久男人| 亚洲欧美日韩另类电影网站| 久久这里只有精品19| 欧美黑人精品巨大| 亚洲色图综合在线观看| 国产成人精品久久二区二区91| 妹子高潮喷水视频| 国产单亲对白刺激| 亚洲,欧美精品.| 欧美日韩国产mv在线观看视频| 午夜福利在线观看吧| 亚洲专区中文字幕在线| 国产亚洲午夜精品一区二区久久| 日本黄色日本黄色录像| 国产老妇伦熟女老妇高清| 成人黄色视频免费在线看| 免费看a级黄色片| 成人影院久久| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩另类电影网站| 极品人妻少妇av视频| 少妇被粗大的猛进出69影院| 99久久99久久久精品蜜桃| av网站免费在线观看视频| 日韩中文字幕欧美一区二区| 日韩大片免费观看网站| 欧美黑人欧美精品刺激| 美国免费a级毛片| 黄片大片在线免费观看| 女人高潮潮喷娇喘18禁视频| 成人18禁高潮啪啪吃奶动态图| 大陆偷拍与自拍| 亚洲成人免费电影在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲av美国av| 国产精品熟女久久久久浪| 男人操女人黄网站| 国产成人系列免费观看| 免费在线观看日本一区| 久久精品国产亚洲av高清一级| 999精品在线视频| 99在线人妻在线中文字幕 | 超碰成人久久| 日韩欧美一区视频在线观看| 老司机福利观看| 涩涩av久久男人的天堂| 色婷婷av一区二区三区视频| av线在线观看网站| 国产欧美日韩综合在线一区二区| 黑人巨大精品欧美一区二区mp4| 这个男人来自地球电影免费观看| 一本大道久久a久久精品| 久久人妻福利社区极品人妻图片| 91九色精品人成在线观看| 五月开心婷婷网| 淫妇啪啪啪对白视频| 捣出白浆h1v1| 淫妇啪啪啪对白视频| 国产在线视频一区二区| 国产成人免费无遮挡视频| 啦啦啦 在线观看视频| 精品国产国语对白av| 肉色欧美久久久久久久蜜桃| 久热爱精品视频在线9| 国产av又大| 纯流量卡能插随身wifi吗| 精品一区二区三区四区五区乱码| 午夜福利欧美成人| 国产精品一区二区免费欧美| 国产精品.久久久| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一区二区三区欧美精品| 侵犯人妻中文字幕一二三四区| 国产精品成人在线| 久久精品国产a三级三级三级| 精品午夜福利视频在线观看一区 | 国产熟女午夜一区二区三区| 嫩草影视91久久| 人妻久久中文字幕网| 亚洲,欧美精品.| 精品少妇内射三级| 国产福利在线免费观看视频| 黄网站色视频无遮挡免费观看| 人人妻人人澡人人看| 国产又色又爽无遮挡免费看| 国产一区二区 视频在线| 亚洲人成77777在线视频| 成人特级黄色片久久久久久久 | 成人国产一区最新在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品中文字幕一二三四区 | 国产男女内射视频| 午夜福利在线免费观看网站| 动漫黄色视频在线观看| 熟女少妇亚洲综合色aaa.| 免费高清在线观看日韩| 国产精品久久久久久精品古装| 法律面前人人平等表现在哪些方面| 成在线人永久免费视频| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 成人免费观看视频高清| 成人特级黄色片久久久久久久 | 涩涩av久久男人的天堂| 久久99热这里只频精品6学生| 男女边摸边吃奶| 国产精品久久久av美女十八| 成人精品一区二区免费| a在线观看视频网站| 美女午夜性视频免费| 99九九在线精品视频| 久久久国产成人免费| 热99久久久久精品小说推荐|