• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-matched second-harmonic generation in hybrid polymer-LN waveguides

    2022-10-26 09:54:30ZijieWang王梓杰BodongLiu劉伯東ChunhuaWang王春華andHuakangYu虞華康
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王梓

    Zijie Wang(王梓杰) Bodong Liu(劉伯東) Chunhua Wang(王春華) and Huakang Yu(虞華康)

    1School of Physics and Optoelectronics,South China University of Technology,Guangzhou 510641,China

    2School of Electrical Engineering and Intelligentization,Dongguan University of Technology,Dongguan 523808,China

    3China–Singapore International Joint Research Institute,Guangzhou Knowledge City,Guangzhou 510663,China

    Keywords: nonlinear waveguides,super-mode theory,phase matching,second harmonic generation

    1. Introduction

    Nonlinear optical conversion is crucial for modern photonics.[1,2]Along with advance in high-profile fabrication techniques,various platforms of integrated photonics are rapidly developed in the past decades, giving rise to diverse on-chip applications, including data communication, optical sensors, and optical interconnection.[3–6]Generally, on-chip devices could tightly confine the light field within a small volume, leading to dramatically enhanced light–matter interactions with superior performance.[7]In particular,efficient nonlinear frequency conversions can be achieved in photonic integration platforms composed of materials with strong secondorder nonlinearity,such as LN and AlN.[8–11]

    It is known that the realization of phase-matching condition is vital for nonlinear optical conversions, such as second-harmonic generation.[1,2]For nonlinear optical processes inside photonic waveguides, several strategies for realizing phase-matching condition have been proposed and demonstrated, including quasi-phase matching (QPM),[12–14]birefringence phase matching (BPM),[15]and modal phase matching (MPM).[16]QPM is realized by domain patterning of the nonlinear susceptibility of waveguide, but limited by the domain size for further integration into photonic circuits. Meanwhile, BPM is only available for phase matching at specific wavelength.[15]For the traditional MPM method,phase-matching condition is usually achieved between zeroorder mode of fundamental wavelength and high-order mode of second harmonics, the distinct spatial distributions between which would correspond to poor overlap and prevent high conversion efficiency. Various nanostructures have been demonstrated to improve the spatial overlap integral, such as ring resonators, high-quality photonic cavities, and optical waveguides.[17–28]Notably, high-quality thin-film lithium niobate on insulator (LNOI) is now commercially available,which would significantly extend associated applications in on-chip nonlinear optics.[11]To be noted, a novel special waveguide structure, namely reversed-polarization doublelayer LN waveguide, was proposed with large modal overlap integral and high efficient nonlinear frequency conversion.[29]

    Based on LNOI, hybrid nanophotonic waveguide has been proposed by introducing a fabrication-friendly material (such as polymer, TiO2, silicon) on the top of LN substrate.[30–34]And new phase-matching condition can be achieved between a fundamental mode at the fundamental wavelength and a high-order mode at the second harmonics. It is noted that such hybrid waveguiding structure can be treated as an asymmetric coupled waveguide,composed of the top polymer waveguide (χ(2)=0) and the bottom thinfilm LN waveguide (χ(2)/=0). Inside such coupled waveguides,guided waves would split into even and odd modes for the fundamental waveguiding mode, and the superposition of these supermodes would lead to energy exchanging between the two waveguides.[35–37]Notably, the rise of supermodes enables new schemes for the phase-matched nonlinear optical process, since extra momentum can be obtained during the coupling processes both for the fundamental and secondharmonic waves.According to super-mode theory,this mechanism of phase matching has been implemented inside symmetric coupled nonlinear optical waveguides with identical material,while enabling large spatial modal overlap factors.[38–40]However, restricted by the fabrication technique of LN material, it is difficult to construct coupled waveguides with the same LN materials. Therefore, it is natural to bring in mind that one could construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon,on top of high-quality LN thin film.[33,34]Such waveguide structure could be readily fabricated and promising for excellent optical performance. Considering the low optical loss of polymer in the visible range, we prefer to construct polymer-LN semi-nonlinear waveguide in this paper.

    According to super-mode theory, we investigate phasematched second-harmonic generation inside a hybrid polymer-LN semi-nonlinear waveguide, composed of the top polymer waveguide and the bottom thin-film LN waveguide. Geometric parameters of the hybrid waveguide were carefully engineered and optimized parameters were obtained numerically.Phase-matching conditions were closely investigated with corresponding modal overlap integrals calculated.

    First, we look back at the phase-matching condition of SHG in a symmetric coupled waveguide structure. Here, we take SHG,i.e.,ω2= 2ω1, as an illustration. According to super-mode theory,[35–37]fundamental waveguiding mode of each single waveguide would split into a pair of modes,i.e.,even (symmetric) or odd (antisymmetric) modes, as a result of perturbation-induced coupling interaction between the two waveguides. The combination of even and odd modes in the coupled waveguide structure would lead to power exchange between the two waveguides. Additional possibilities in realizing phase matching become available by employing the emerging even and odd fundamental modes in nonlinear optical interactions processes. We have listed all the six possible phase-matching conditions as given in Table 1.[38]

    2. Theory

    Table 1. Phase-matching condition of SHG in coupled waveguides(from Ref.[38]).

    whereε0andcare the permittivity and light speed in vacuum;n1andn2represent the effective modal refractive indices of the pump and SHG;λis the pump wavelength;deffis the effective nonlinear susceptibility;Srepresents effective modal overlap integral between the pump and SHG modes over the effective nonlinear optical region,[23,42]

    The overlap integralSbecomes considerably large due to the identical spatial distributions between the fundamental pump modes and SHG fundamental modes inside the nonlinear optical waveguide. However,it is noted that phase-matching conditions 4–6(as listed in Table 1)are not applicable in the symmetric coupled waveguides, which can be easily deduced as one checks the mathematical symmetry properties of modal overlap integrals[see Eq.(2)].

    For asymmetric coupled waveguides, the prohibition of phase-matching conditions 4–6 could be removed so as to provide additional possibility in realizing phase matching beyond conventional methods. As mentioned before, it is easy to construct a composite waveguide structure by patterning a fabrication-friendly material, such as polymer or silicon, on top of high-quality LN thin-film.[31–34]Such waveguide structure could be readily fabricated and promising for excellent optical performance.

    Here we investigate the semi-nonlinear waveguide composed of a polymer waveguide (rectangular cross section) on the top and thin-film LN on the bottom. The reason to choose polymer is listed as follows. First,due to the relentless desire for high-performance integrated optical devices, some excellent polymers have been available with a high refractive index closed to LN,which is promising for tight optical confinement and modal splitting inside the composite waveguide structure.Second, nanofabrication techniques for polymer have been well-developed with high precision in the photonic industry nowadays, including laser direct writing, ultra-violet (UV)lithography, and nanoimprint lithography. Third, another advantage is the low absorption loss of polymer at visible wavelength,compared with silicon.[34]To be pointed out,the polymer is generally amorphous with its corresponding secondorder susceptibilityχ(2)to be zero. To reflect such asymmetric profile ofχ(2), the integral regions of numerator and denominator,labeled as subscripts in Eq.(2),are thus different.And nonlinear overlap integral becomes significant inside such asymmetric coupled waveguide,making phase-matching conditions 4–6 applicable inside such asymmetric coupled waveguide. The schematic of a polymer-LN semi-nonlinear waveguide is shown in Fig.1. The high-quality LNOI platform consists of anX-cut LN thin film and SiO2buried layer. A rectangular polymer waveguide is located directly based on the top of LNOI.Figure 1 shows the geometric parameters of the hybrid waveguide,including polymer waveguide heighth1,polymer waveguide widthw, and LN heighth2. HereX-cut configuration of LNOI with waveguide direction alongYcrystal axis of LN was chosen in order to make use of second-order susceptibilities,d31(~4.3 pm/V)andd33(~27 pm/V)of LN.Phase-matching condition is numerically investigated in the following context by carefully tuning the structure parameters of this hybrid polymer-LN waveguide.

    Fig.1. Schematic structure of the hybrid polymer-LN waveguide. The bottom is a thick layer of silica(gray),the middle is an X-cut LN thin film(light blue),and the top is a thin polymer waveguide(dark blue).

    3. Simulation results and discussion

    In order to implement phase-matching conditions 4–6 as listed in Table 1, one should carefully engineer the waveguide structural parameters so as to obtain bound modes for both pump and SHG wavelengths.[33]As indicated in our previous paper,[38]it is invalid to use conventional coupled mode theory since slowly varying envelope approximation is no more applicable for such hybrid waveguides. Instead, a finite-element method is adopted here in order to investigate the optical modes of hybrid coupled waveguides in a straightforward manner.[38]Refractive indices of lithium niobate were extracted from the open database, while the refractive index of the polymer was set as 2.15 so as to have considerable intra-coupling effects between polymer and LN thin film. And waveguide structure parameters were set asw=4 μm,h1=0.401 μm, andh2=0.4 μm, considering the facility of mature fabrication condition and acquiring the phase-matching condition. We firstly examine the possibility of phase matching between the TM01-like,TE00-like,and TE01-like modes at the pump wavelengthsλpranging from 800 nm to 1400 nm.According to the super-mode theory, TE00-like modes could be identified as fundamental even modes, while TM01-like and TE01-like modes could be identified as fundamental odd modes. As shown in Fig.2,the effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes)were calculated as a function of wavelength.

    Fig. 2. Simulated effective refractive indices of the mentioned modes (at SHG wavelengths for the TE01-like modes and at pump wavelengths for the TM01-like and TE00-like modes) as a function of wavelength. Effective refractive indices of the low-order waveguide modes at both pump wavelengths(TM01-like and TE00-like modes)and SHG wavelengths(TE01-like modes),and the inset(i)and inset(ii)show two enlarged phase-matching cases. The unit a.u. is short for arbitrary units.

    Apparently,the intersecting points of the curves indicate phase matching of interacting modes. The inset (i) of Fig. 2 shows a detailed phase matching occurring between TM01-like mode at 911 nm and TE01-like mode at 455.5 nm. The modal profile of its largest electric field component (Ey) of TM01-like mode at 911 nm is plotted at the top of Fig. 3(a).It is easily seen that electric fieldEyis distributed in polymersection and LN-section with inversed polarity, which can be regarded as an odd mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component (Ez) of TE01-like mode at 455.5 nm is plotted at the bottom of Fig. 3(a). Similarly, TE01-like mode at 455.5 nm can be regarded as an odd mode. This case corresponds to phase-matching conditions 5 as listed in Table 1. Though theEycomponent of the TM01-like mode at 911 nm and theEzcomponent of the TE01-like mode at 455.5 nm are both with the inverse polarity between polymer area and LN area, the net modal overlap integral can be significant,due to the asymmetric profile ofχ(2)in the hybrid waveguide. The distribution curves of main electric field components alongxdirection are illustrated in Fig. 3(b), where dark blue area represents polymer waveguide and light blue area represents LN.And one may easily find that the spatial distributions of the two main electric fields are identical in the LN layer, which would lead to a considerably large modal overlap integral as predicted by the theory. From this point,phase-matching condition 5 is now achieved. The calculated modal overlap integralSis 0.365 and the effective modal areaAeffis 9.92 μm2.In this case,for a lossless waveguide without pumping depletion, the normalized conversion efficiencyηis estimated to be~9.11%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 0.09% W-1for 1-mm-long waveguide. To be mentioned here,the nonlinearity coefficientd31,rather thand33,is used here because the main electric field component of the 911-nm TM01-like isEyinstead ofEz. However,it is difficult to utilize the largest nonlinearity coefficient during the nonlinear process due to the largest electric field component of TM01-like mode at 911 nm isEyinstead ofEz.

    Fig.3. Simulated modal profiles: (a)the modal profiles of the largest electric field components of 911-nm TM01-like(top)and 455.5-nm TE01-like(bottom), and(b)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line) and SHG (blue line) wavelengths. (c) The mode profiles of the largest electric field components of 1320-nm quasi-TE00 (top) and 660-nm quasi-TE01 (bottom),and(d)the corresponding intensity distribution curves of the main electric field components along the x direction at both the pump(red line)and SHG(blue line)wavelengths.

    Another phase-matching point is found between TE00-like mode at 1320 nm and TE01-like mode at 660 nm,as shown in the inset (ii) of Fig. 2. The modal profile of its largest electric field component (Ez) of TE00-like mode at 1320 nm is plotted at the top of Fig.3(c). It is easily seen that the polarity of electric fieldEzis the same in both the polymer-section and LN-section,corresponding to an even mode according to super-mode theory.Meanwhile,the modal profile of its largest electric field component(Ez)of TE01-like mode at 660 nm is plotted at the bottom of Fig. 3(c). Similarly, TE01-like mode at 660 nm can be regarded as an odd mode. The distribution curves of main electric field components along the vertical direction (i.e., alongxaxis) of the waveguide are illustrated in Fig. 3(d). Again, the net modal overlap integral between the modes is calculated to be 0.299 with effective modal area of 8.77 μm2. To be pointed out, here the largest nonlinear coefficient,namelyd33is utilized,contributing to more efficient nonlinear optical conversion. Indeed, we obtain the normalized conversion efficiencyηas high as 148%W-1·cm-2,corresponding to a nonlinear conversion efficiency of 1.48%W-1for a 1-mm-long waveguide.This value is much higher(~300 times) than reported SHG efficiency in hybrid polymer-LN waveguide,[33]showing the advantage of our design presented in this paper. Recalling Eq.(1),it is reasonable for the larger conversion efficiency, since we have a largerχ(2)nonlinear coefficient (27 pm/Vversus-4.3 pm/V), larger modal overlap integralS(0.299versus0.14),and smaller effective modal areaAeff(8.77 μm2versus20.3 μm2).

    Besides, we have fulfilled the phase-matching condition around 1550 nm by sweeping the height of hybrid waveguide.The phase-matching condition was realized between TM01-like mode at 1550 nm and TE01-like mode at 775 nm, withh1=425 nm,w=4 μm, andh2=0.4 μm. To be noted, the largest electric field component of TM01-like mode at 1550 nm isEy, and the largest electric field component of TE01-like mode at 775 nm isEz. Therefore, an effective nonlinear susceptibilityd31is utilized. And the corresponding modal overlap integralSis calculated to be 0.294 with effective modal area of 8.9 μm2. For a lossless waveguide without pumping depletion,the normalized conversion efficiencyηis estimated to be 2.75%W-1·cm-2.

    Fig. 4. The sensitivity of phase-matching condition 6 on geometric parameters. Effective refractive indices of the modes (inset (ii) of Fig. 2) at both wavelengths varying with(a)polymer waveguide height,h1 (with fixed w=4 μm and h2 =400 nm)and(b)width,w(with fixed h1 =401 nm and h2=400 nm).

    We also investigated the structural sensitivity of above phase-matching condition on geometric parameters(i.e.,polymer waveguide heighth1and widthw) of the hybrid waveguide. For TE00-like mode at 1320 nm and TE01-like mode at 660 nm,dispersion relationships as functions of the waveguide heighth1and the waveguide widthware shown in Figs.4(a)and 4(b). As shown in Fig. 4(a), the effective modal refractive indices of TE00-like mode at 1320 nm increase by~0.001 when the waveguide heighth1changes from 400 nm to 405 nm. However,the effective modal refractive indices of TE00-like mode at 1320 nm increase only by~0.0001 when the waveguide widthwchanges from 4000 nm to 4050 nm,as shown in Fig. 4(b). Apparently, the modal refractive indices vary more slowly with the change of waveguide width. This is benefited from the larger waveguide dimension inzdirection (~4 μm) thanxdirection (~0.4 μm). Therefore, it indicates that one is more convenient to engineer the width than the height of the polymer waveguide for detuning the phasematching condition. And the relatively large value (micrometer scale)of polymer waveguide width significantly releases the difficulty of polymer fabrication. The proposed waveguide holds the fabrication feasibility and is promising for future onchip efficient nonlinear conversion devices.

    4. Conclusion

    In conclusion, we have presented a simple hybrid polymer-LN semi-nonlinear waveguide to realize efficient onchip SHG by directly constructing polymer waveguide on theX-cut LNOI.Both symmetric(even)and antisymmetric(odd)modes of the pump and SHG waves in the hybrid waveguide were employed to achieve phase matching with large modal overlap. The largest nonlinear coefficient, namelyd33, could be utilized for phase matching between a fundamental even(TE00-like) mode at 1320 nm and a fundamental odd (TE01-like)mode at 660 nm,with an efficient calculated normalized conversion efficiency of 148% W-1·cm-2. Considering the fabrication feasibility of such a hybrid waveguide with features including etchless, large dimension, and low structural sensitivity, we believe our findings would provide a useful reference for future on-chip efficient nonlinear conversion devices.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant Nos. 91850107 and 12174116),the National Key Research and Development Program of China (Grant No. 2018YFA0306200), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06C594), the Key Program of Guangzhou Scientific Research Special Project (Grant No. 201904020013),the Science and Technology Project of Guangdong Province,China (Grant No. 2020B010190001), and the Fundamental Research Funds for the Central Universities.

    猜你喜歡
    王梓
    我和恐龍捉迷藏
    哪里最舒服
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《花月夜》
    中國寶玉石(2020年4期)2020-09-23 07:45:56
    《精靈瀑布》
    中國寶玉石(2020年4期)2020-09-23 07:45:54
    任家萱?楊子騰?王梓丞
    哄娃神器
    挑食的小怪物
    那山,那花,那水
    童話世界(2019年17期)2019-07-04 15:15:44
    雪后的校園
    av国产久精品久网站免费入址| 亚洲av二区三区四区| 亚洲一区二区三区欧美精品 | 亚洲人成网站在线观看播放| 成年女人看的毛片在线观看| 日韩大片免费观看网站| 美女内射精品一级片tv| 亚洲图色成人| 久久精品国产亚洲av涩爱| 久久鲁丝午夜福利片| 亚洲av二区三区四区| 免费观看a级毛片全部| 夫妻午夜视频| 久久人人爽人人片av| 欧美97在线视频| 日本免费在线观看一区| 亚洲精品色激情综合| 欧美成人一区二区免费高清观看| 老师上课跳d突然被开到最大视频| 人人妻人人爽人人添夜夜欢视频 | 看黄色毛片网站| 亚洲精品aⅴ在线观看| 国产精品一及| 久久久色成人| av专区在线播放| 国产精品久久久久久久电影| 国产精品人妻久久久影院| 好男人视频免费观看在线| 国产欧美日韩一区二区三区在线 | 亚洲欧美清纯卡通| 亚洲在线观看片| 亚洲电影在线观看av| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 国产精品.久久久| 亚洲成人中文字幕在线播放| 欧美激情在线99| 国产精品久久久久久精品古装| 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 69av精品久久久久久| 久热久热在线精品观看| 国产精品.久久久| 日韩伦理黄色片| 国产精品.久久久| 日本免费在线观看一区| 中文字幕av成人在线电影| 欧美bdsm另类| xxx大片免费视频| 国产视频首页在线观看| 久久久久久久精品精品| 好男人视频免费观看在线| 内地一区二区视频在线| 人体艺术视频欧美日本| 又粗又硬又长又爽又黄的视频| 亚洲四区av| 在线观看一区二区三区激情| 两个人的视频大全免费| 国产国拍精品亚洲av在线观看| 亚洲四区av| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 99久国产av精品国产电影| 99久久人妻综合| 国产欧美日韩精品一区二区| 人人妻人人看人人澡| 国产精品99久久久久久久久| 色综合色国产| 人妻 亚洲 视频| 国产伦在线观看视频一区| 亚洲三级黄色毛片| kizo精华| 老司机影院毛片| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久大尺度免费视频| 亚洲在久久综合| 国产精品偷伦视频观看了| 中国国产av一级| 国产亚洲一区二区精品| 免费av不卡在线播放| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 成人欧美大片| 日本与韩国留学比较| 青青草视频在线视频观看| 成人二区视频| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 人妻系列 视频| 亚洲性久久影院| 亚洲真实伦在线观看| 国产精品女同一区二区软件| 亚洲图色成人| 边亲边吃奶的免费视频| 久久综合国产亚洲精品| 久久精品国产a三级三级三级| 国产老妇女一区| 爱豆传媒免费全集在线观看| 一级黄片播放器| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 国产亚洲精品久久久com| 欧美潮喷喷水| 国产精品成人在线| 观看美女的网站| 人妻系列 视频| 丝袜喷水一区| 内射极品少妇av片p| 我的老师免费观看完整版| 亚洲国产精品专区欧美| 国产亚洲午夜精品一区二区久久 | 欧美+日韩+精品| 亚洲精品aⅴ在线观看| 久久久久久久久大av| 国产黄片视频在线免费观看| 麻豆乱淫一区二区| 国产乱人偷精品视频| 少妇的逼水好多| av.在线天堂| 99久久精品热视频| 久久97久久精品| 国产中年淑女户外野战色| 中文在线观看免费www的网站| 免费看光身美女| 国产永久视频网站| 日韩制服骚丝袜av| av在线天堂中文字幕| 麻豆精品久久久久久蜜桃| 在线播放无遮挡| 国产真实伦视频高清在线观看| 欧美性感艳星| 99热全是精品| 伦理电影大哥的女人| 蜜臀久久99精品久久宅男| 高清日韩中文字幕在线| 国产亚洲最大av| 亚洲欧美清纯卡通| 免费黄网站久久成人精品| 免费av观看视频| 男女边摸边吃奶| 亚洲精品乱久久久久久| 韩国高清视频一区二区三区| 一级毛片黄色毛片免费观看视频| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av蜜桃| 欧美日韩综合久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 日本一二三区视频观看| 久久久久久久久久成人| 亚洲自偷自拍三级| 天堂俺去俺来也www色官网| 国产精品.久久久| 777米奇影视久久| 建设人人有责人人尽责人人享有的 | 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 国产成人福利小说| 女的被弄到高潮叫床怎么办| .国产精品久久| 久久久久久伊人网av| 亚洲av免费高清在线观看| 99久久精品一区二区三区| 免费高清在线观看视频在线观看| 久久韩国三级中文字幕| 中文字幕久久专区| 亚洲天堂av无毛| 欧美成人a在线观看| 亚洲av成人精品一区久久| 国产高潮美女av| 中国国产av一级| 亚洲国产成人一精品久久久| 熟女电影av网| 激情 狠狠 欧美| 一级av片app| 老司机影院毛片| 欧美另类一区| 中文在线观看免费www的网站| 亚洲精品亚洲一区二区| 丰满少妇做爰视频| 内射极品少妇av片p| av免费在线看不卡| 人妻系列 视频| 99久久九九国产精品国产免费| 爱豆传媒免费全集在线观看| 午夜精品国产一区二区电影 | 色播亚洲综合网| 成人美女网站在线观看视频| 国产精品福利在线免费观看| 在现免费观看毛片| 黄色一级大片看看| 国产av不卡久久| 成年免费大片在线观看| 两个人的视频大全免费| av国产精品久久久久影院| 日韩视频在线欧美| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| 人体艺术视频欧美日本| 午夜免费鲁丝| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| 中国美白少妇内射xxxbb| 在线精品无人区一区二区三 | 日日啪夜夜撸| 国产黄a三级三级三级人| 99久国产av精品国产电影| 国产高清三级在线| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 成人无遮挡网站| 欧美xxxx性猛交bbbb| 亚洲欧美一区二区三区国产| 人妻 亚洲 视频| 国产极品天堂在线| 舔av片在线| 国产人妻一区二区三区在| 人妻 亚洲 视频| 国产精品福利在线免费观看| 观看美女的网站| 18禁动态无遮挡网站| 人人妻人人澡人人爽人人夜夜| 国产 一区精品| 王馨瑶露胸无遮挡在线观看| 久久精品熟女亚洲av麻豆精品| 精品人妻偷拍中文字幕| 18禁在线播放成人免费| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 亚洲av免费在线观看| 国产精品一二三区在线看| 内射极品少妇av片p| 免费播放大片免费观看视频在线观看| 少妇猛男粗大的猛烈进出视频 | 国产黄色免费在线视频| 听说在线观看完整版免费高清| 日韩 亚洲 欧美在线| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 少妇的逼好多水| 熟女人妻精品中文字幕| 国产又色又爽无遮挡免| av在线观看视频网站免费| 亚洲av一区综合| 国产精品伦人一区二区| 伊人久久精品亚洲午夜| 久久精品国产自在天天线| 校园人妻丝袜中文字幕| 免费看日本二区| 成人高潮视频无遮挡免费网站| 日本午夜av视频| 日韩欧美精品免费久久| 联通29元200g的流量卡| 美女国产视频在线观看| 国产v大片淫在线免费观看| 22中文网久久字幕| 色婷婷久久久亚洲欧美| 国产精品久久久久久久电影| 亚洲高清免费不卡视频| 国产探花极品一区二区| 亚洲最大成人av| 老女人水多毛片| 亚洲欧美日韩无卡精品| 亚洲精品成人av观看孕妇| 国产av码专区亚洲av| 色视频在线一区二区三区| 久久久精品免费免费高清| 国产成人91sexporn| 欧美3d第一页| 国产精品国产三级专区第一集| 久久国内精品自在自线图片| 国产精品一区二区在线观看99| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 国产精品一及| 极品少妇高潮喷水抽搐| 日韩精品有码人妻一区| 中文字幕亚洲精品专区| 97人妻精品一区二区三区麻豆| 51国产日韩欧美| 国产熟女欧美一区二区| 大片免费播放器 马上看| 欧美+日韩+精品| 久久久久久久午夜电影| av专区在线播放| 中国三级夫妇交换| 老女人水多毛片| 日韩精品有码人妻一区| 中文字幕免费在线视频6| 亚洲欧美精品专区久久| 久久精品国产亚洲网站| 男女边摸边吃奶| 亚洲最大成人手机在线| 九九在线视频观看精品| 欧美激情在线99| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 久久99热6这里只有精品| 大香蕉久久网| 18禁裸乳无遮挡动漫免费视频 | 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| 久久精品国产亚洲av涩爱| 国产精品爽爽va在线观看网站| 中文字幕久久专区| 大片电影免费在线观看免费| 国产亚洲av片在线观看秒播厂| 成人国产麻豆网| 美女视频免费永久观看网站| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 久久久亚洲精品成人影院| 免费观看的影片在线观看| 欧美最新免费一区二区三区| 国产黄片视频在线免费观看| 亚洲欧美日韩东京热| 99九九线精品视频在线观看视频| 亚洲精华国产精华液的使用体验| 狂野欧美激情性xxxx在线观看| 欧美97在线视频| 97超视频在线观看视频| 在线观看人妻少妇| 我的女老师完整版在线观看| 日本三级黄在线观看| 欧美激情国产日韩精品一区| a级毛片免费高清观看在线播放| 亚洲在线观看片| 99久久中文字幕三级久久日本| 精品99又大又爽又粗少妇毛片| 中文欧美无线码| 狂野欧美白嫩少妇大欣赏| 亚洲精品aⅴ在线观看| 2021少妇久久久久久久久久久| 国产老妇女一区| 性插视频无遮挡在线免费观看| 一个人看视频在线观看www免费| 青春草亚洲视频在线观看| 赤兔流量卡办理| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 97超视频在线观看视频| 黄色欧美视频在线观看| 爱豆传媒免费全集在线观看| 老师上课跳d突然被开到最大视频| 免费观看a级毛片全部| 女人被狂操c到高潮| 只有这里有精品99| 亚洲精品中文字幕在线视频 | 99re6热这里在线精品视频| 久久久精品94久久精品| 成人午夜精彩视频在线观看| 噜噜噜噜噜久久久久久91| 日韩欧美一区视频在线观看 | 亚洲综合色惰| 丝袜喷水一区| 国产av不卡久久| 国产探花在线观看一区二区| 亚洲精品乱久久久久久| 真实男女啪啪啪动态图| 亚洲av福利一区| 国产免费又黄又爽又色| 2018国产大陆天天弄谢| 波多野结衣巨乳人妻| 亚洲国产欧美人成| 看黄色毛片网站| 91久久精品国产一区二区三区| 欧美变态另类bdsm刘玥| 我要看日韩黄色一级片| 99re6热这里在线精品视频| 视频中文字幕在线观看| 色综合色国产| 精品久久久精品久久久| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 91久久精品电影网| 韩国av在线不卡| 免费看a级黄色片| 麻豆乱淫一区二区| 亚洲真实伦在线观看| 色视频www国产| 国产精品偷伦视频观看了| 成年免费大片在线观看| 少妇被粗大猛烈的视频| 直男gayav资源| 菩萨蛮人人尽说江南好唐韦庄| 伊人久久国产一区二区| 精品午夜福利在线看| 亚洲av成人精品一区久久| 中文精品一卡2卡3卡4更新| 男女无遮挡免费网站观看| 午夜激情久久久久久久| 国产在线男女| 午夜亚洲福利在线播放| 少妇高潮的动态图| 欧美成人一区二区免费高清观看| 亚洲欧美精品自产自拍| 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 性色av一级| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 99热网站在线观看| 亚洲在线观看片| 亚洲内射少妇av| 99久久精品一区二区三区| 综合色av麻豆| 日韩国内少妇激情av| 国产高清有码在线观看视频| 老司机影院毛片| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站| 在线免费十八禁| 日韩人妻高清精品专区| 韩国高清视频一区二区三区| 久久久久精品久久久久真实原创| 真实男女啪啪啪动态图| 久久久久久久午夜电影| 国产精品99久久久久久久久| 天天躁日日操中文字幕| 亚洲电影在线观看av| 亚洲国产精品成人久久小说| 一区二区三区精品91| 免费看日本二区| 搡女人真爽免费视频火全软件| 亚洲国产精品国产精品| 777米奇影视久久| 欧美变态另类bdsm刘玥| 国产黄片视频在线免费观看| 国产老妇女一区| 好男人在线观看高清免费视频| 久久热精品热| 91精品国产九色| 九九久久精品国产亚洲av麻豆| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 亚洲欧美成人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 亚洲精品亚洲一区二区| 欧美日韩亚洲高清精品| 一本色道久久久久久精品综合| 国产探花在线观看一区二区| 欧美一区二区亚洲| 国产精品.久久久| 男插女下体视频免费在线播放| 免费观看在线日韩| 免费在线观看成人毛片| 少妇丰满av| 观看免费一级毛片| 91久久精品国产一区二区三区| 在线精品无人区一区二区三 | 又爽又黄a免费视频| 一级片'在线观看视频| 91精品一卡2卡3卡4卡| 久久6这里有精品| 老司机影院毛片| 精品一区二区三区视频在线| 街头女战士在线观看网站| 中文字幕免费在线视频6| 中国三级夫妇交换| 午夜免费男女啪啪视频观看| 欧美一区二区亚洲| 国产毛片在线视频| 欧美日韩国产mv在线观看视频 | 一级a做视频免费观看| 亚洲性久久影院| 六月丁香七月| 91久久精品电影网| 香蕉精品网在线| www.色视频.com| 亚洲三级黄色毛片| 校园人妻丝袜中文字幕| 国产熟女欧美一区二区| 99热全是精品| 搡女人真爽免费视频火全软件| 国产成人a区在线观看| 久久久久久久午夜电影| 大香蕉久久网| 色婷婷久久久亚洲欧美| 国产一区二区三区av在线| 尤物成人国产欧美一区二区三区| 国产精品三级大全| 亚洲国产日韩一区二区| 一本一本综合久久| 欧美日韩在线观看h| av在线app专区| 久久精品综合一区二区三区| 亚洲国产日韩一区二区| 一本一本综合久久| 91aial.com中文字幕在线观看| 亚洲国产精品国产精品| 成人特级av手机在线观看| 九草在线视频观看| 日本欧美国产在线视频| 自拍偷自拍亚洲精品老妇| 免费黄网站久久成人精品| 久久久国产一区二区| 搞女人的毛片| 高清欧美精品videossex| 国产精品国产三级专区第一集| 久久精品国产亚洲av天美| 国产精品欧美亚洲77777| 久久精品国产亚洲av涩爱| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| 丝瓜视频免费看黄片| www.精华液| www.av在线官网国产| 咕卡用的链子| 久久99精品国语久久久| 精品亚洲乱码少妇综合久久| 国产片内射在线| 久久精品人人爽人人爽视色| 久久久久精品性色| 久久久久精品久久久久真实原创| 一区福利在线观看| av国产精品久久久久影院| 国产免费福利视频在线观看| 黄色 视频免费看| 成年女人毛片免费观看观看9 | 国产熟女欧美一区二区| 建设人人有责人人尽责人人享有的| 精品一区二区免费观看| 国产一卡二卡三卡精品 | 日韩,欧美,国产一区二区三区| 亚洲四区av| 亚洲熟女精品中文字幕| 2018国产大陆天天弄谢| 亚洲,欧美精品.| 亚洲国产欧美网| 这个男人来自地球电影免费观看 | 国产精品 欧美亚洲| 看十八女毛片水多多多| 国产 精品1| 日韩伦理黄色片| 午夜福利乱码中文字幕| 热re99久久国产66热| 男女边摸边吃奶| 伊人久久国产一区二区| 国产日韩一区二区三区精品不卡| 免费观看人在逋| 婷婷色av中文字幕| 国产精品人妻久久久影院| 十八禁网站网址无遮挡| 亚洲一区中文字幕在线| 操出白浆在线播放| h视频一区二区三区| 中文字幕高清在线视频| 亚洲一码二码三码区别大吗| 三上悠亚av全集在线观看| 高清av免费在线| 女性生殖器流出的白浆| 亚洲欧美日韩另类电影网站| 亚洲免费av在线视频| 一本一本久久a久久精品综合妖精| 中文字幕精品免费在线观看视频| 日本色播在线视频| 美女中出高潮动态图| 亚洲,一卡二卡三卡| 纵有疾风起免费观看全集完整版| 成年av动漫网址| 国产视频首页在线观看| 欧美激情高清一区二区三区 | 亚洲一级一片aⅴ在线观看| 亚洲男人天堂网一区| 免费日韩欧美在线观看| 美女主播在线视频| 两个人免费观看高清视频| 午夜91福利影院| 只有这里有精品99| 久久国产精品男人的天堂亚洲| 亚洲精品av麻豆狂野| 麻豆av在线久日| 国产日韩欧美亚洲二区| 久久久久久久久免费视频了| 51午夜福利影视在线观看| 欧美成人精品欧美一级黄| 国产精品欧美亚洲77777| 大陆偷拍与自拍| 国产精品久久久久久精品古装| 午夜激情久久久久久久| 人人妻人人澡人人爽人人夜夜| 亚洲三区欧美一区| 中文字幕色久视频| 伦理电影大哥的女人| 亚洲欧美激情在线| 色综合欧美亚洲国产小说| 久久精品人人爽人人爽视色| 韩国高清视频一区二区三区| av网站在线播放免费| 亚洲av电影在线进入| 妹子高潮喷水视频| 欧美中文综合在线视频| 叶爱在线成人免费视频播放| 飞空精品影院首页| 精品一区在线观看国产| 男女之事视频高清在线观看 | 日韩 欧美 亚洲 中文字幕| 精品少妇内射三级| 91aial.com中文字幕在线观看| 在线观看免费视频网站a站| 欧美乱码精品一区二区三区| av免费观看日本| 国产午夜精品一二区理论片| 一区二区三区乱码不卡18| 69精品国产乱码久久久| 人妻 亚洲 视频| 夜夜骑夜夜射夜夜干| 久久精品久久久久久噜噜老黄| 国产不卡av网站在线观看| 老司机亚洲免费影院| 亚洲国产av影院在线观看|